
Alex Auvolat, Deuxfleurs Association

https://garagehq.deuxfleurs.fr/

Matrix channel: #garage:deuxfleurs.fr

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 1 / 46

https://garagehq.deuxfleurs.fr/

Who I am

Alex Auvolat
PhD; co-founder of Deuxfleurs

D
F

Deuxfleurs
A non-profit self-hosting collective,
member of the CHATONS network

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 2 / 46

Our objective at Deuxfleurs

Promote self-hosting and small-scale hosting
as an alternative to large cloud providers

Why is it hard?

Resilience
(we want good uptime/availability with low supervision)

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 3 / 46

Our objective at Deuxfleurs

Promote self-hosting and small-scale hosting
as an alternative to large cloud providers

Why is it hard?

Resilience
(we want good uptime/availability with low supervision)

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 3 / 46

Our objective at Deuxfleurs

Promote self-hosting and small-scale hosting
as an alternative to large cloud providers

Why is it hard?

Resilience
(we want good uptime/availability with low supervision)

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 3 / 46

How to make a stable system

Enterprise-grade systems typically employ:

▶ RAID

▶ Redundant power grid + UPS

▶ Redundant Internet connections

▶ Low-latency links

▶ ...

→ it’s costly and only worth it at DC scale

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 4 / 46

How to make a resilient system

Instead, we use:

▶ Commodity hardware (e.g. old desktop PCs)

▶ Commodity Internet (e.g. FTTB, FTTH) and power grid

▶ Geographical redundancy (multi-site replication)

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 5 / 46

How to make a resilient system

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 5 / 46

How to make a resilient system

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 5 / 46

How to make a resilient system

Instead, we use:

▶ Commodity hardware (e.g. old desktop PCs)

▶ Commodity Internet (e.g. FTTB, FTTH) and power grid

▶ Geographical redundancy (multi-site replication)

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 5 / 46

How to make a resilient system

Instead, we use:

▶ Commodity hardware (e.g. old desktop PCs)

▶ Commodity Internet (e.g. FTTB, FTTH) and power grid

▶ Geographical redundancy (multi-site replication)

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 5 / 46

How to make a resilient system

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 5 / 46

How to make this happen

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 6 / 46

How to make this happen

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 6 / 46

How to make this happen

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 6 / 46

Distributed file systems are slow

File systems are complex, for example:

▶ Concurrent modification by several processes

▶ Folder hierarchies

▶ Other requirements of the POSIX spec

Coordination in a distributed system is costly

Costs explode with commodity hardware / Internet connections
(we experienced this!)

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 7 / 46

A simpler solution: object storage

Only two operations:

▶ Put an object at a key

▶ Retrieve an object from its key

(and a few others)

Sufficient for many applications!

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 8 / 46

A simpler solution: object storage

S3: a de-facto standard, many compatible applications

MinIO is self-hostable but not suited for geo-distributed deployments

Garage is a self-hosted drop-in replacement for the Amazon S3 object store

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 9 / 46

The data model of object storage

Object storage is basically a key-value store:

Key: file path + name Value: file data + metadata

index.html Content-Type: text/html; charset=utf-8

Content-Length: 24929

<binary blob>

img/logo.svg Content-Type: text/svg+xml

Content-Length: 13429

<binary blob>

download/index.html Content-Type: text/html; charset=utf-8

Content-Length: 26563

<binary blob>

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 10 / 46

Two big problems

1. How to place data on different nodes?

Constraints: heterogeneous hardware
Objective: n copies of everything, maximize usable capacity, maximize resilience

→ the Dynamo model + optimization algorithms

2. How to guarantee consistency?

Constraints: slow network (geographical distance), node unavailability/crashes
Objective: maximize availability, read-after-write guarantee

→ CRDTs, monotonicity, read and write quorums

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 11 / 46

Two big problems

1. How to place data on different nodes?

Constraints: heterogeneous hardware
Objective: n copies of everything, maximize usable capacity, maximize resilience

→ the Dynamo model + optimization algorithms

2. How to guarantee consistency?

Constraints: slow network (geographical distance), node unavailability/crashes
Objective: maximize availability, read-after-write guarantee

→ CRDTs, monotonicity, read and write quorums

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 11 / 46

Problem 1: placing data

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 12 / 46

Key-value stores, upgraded: the Dynamo model

Two keys:

▶ Partition key: used to divide data into partitions (shards)

▶ Sort key: used to identify items inside a partition

Partition key: bucket Sort key: filename Value

website index.html (file data)

website img/logo.svg (file data)

website download/index.html (file data)

backup borg/index.2822 (file data)

backup borg/data/2/2329 (file data)

backup borg/data/2/2680 (file data)

private qq3a2nbe1qjq0ebbvo6ocsp6co (file data)

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 13 / 46

Key-value stores, upgraded: the Dynamo model

▶ Data with different partition keys is stored independantly,
on a different set of nodes

→ no easy way to list all partition keys
→ no cross-shard transactions

▶ Placing data: hash the partition key, select nodes accordingly

→ distributed hash table (DHT)

▶ For a given value of the partition key, items can be listed using their sort keys

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 14 / 46

How to spread files over different cluster nodes?

Consistent hashing (Dynamo):

1

2

3

4

5

6

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 15 / 46

How to spread files over different cluster nodes?

Consistent hashing (Dynamo):

1

2

3

4

5

6

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 15 / 46

How to spread files over different cluster nodes?

Consistent hashing (Dynamo):

1

2

3

4

5

6

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 15 / 46

How to spread files over different cluster nodes?

Consistent hashing (Dynamo):

1

2

3

4

5

6

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 15 / 46

Constraint: location-awareness

Garage replicates data on different zones when possible

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 16 / 46

Constraint: location-awareness

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 17 / 46

Issues with consistent hashing

▶ Consistent hashing doesn’t dispatch data based on geographical location of nodes

▶ Geographically aware adaptation, try 1:
data quantities not well balanced between nodes

▶ Geographically aware adaptation, try 2:
too many reshuffles when adding/removing nodes

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 18 / 46

Issues with consistent hashing

▶ Consistent hashing doesn’t dispatch data based on geographical location of nodes

▶ Geographically aware adaptation, try 1:
data quantities not well balanced between nodes

▶ Geographically aware adaptation, try 2:
too many reshuffles when adding/removing nodes

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 18 / 46

Issues with consistent hashing

▶ Consistent hashing doesn’t dispatch data based on geographical location of nodes

▶ Geographically aware adaptation, try 1:
data quantities not well balanced between nodes

▶ Geographically aware adaptation, try 2:
too many reshuffles when adding/removing nodes

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 18 / 46

How to spread files over different cluster nodes?

Garage’s method: build an index table

Realization: we can actually precompute an optimal solution

Partition Node 1 Node 2 Node 3

Partition 0 Io (jupiter) Drosera (atuin) Courgette (neptune)

Partition 1 Datura (atuin) Courgette (neptune) Io (jupiter)

Partition 2 Io(jupiter) Celeri (neptune) Drosera (atuin)
...

...
...

...

Partition 255 Concombre (neptune) Io (jupiter) Drosera (atuin)

The index table is built centrally using an optimal algorithm,
then propagated to all nodes

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 19 / 46

How to spread files over different cluster nodes?

Garage’s method: build an index table

Realization: we can actually precompute an optimal solution

Partition Node 1 Node 2 Node 3

Partition 0 Io (jupiter) Drosera (atuin) Courgette (neptune)

Partition 1 Datura (atuin) Courgette (neptune) Io (jupiter)

Partition 2 Io(jupiter) Celeri (neptune) Drosera (atuin)
...

...
...

...

Partition 255 Concombre (neptune) Io (jupiter) Drosera (atuin)

The index table is built centrally using an optimal algorithm,
then propagated to all nodes

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 19 / 46

How to spread files over different cluster nodes?

Garage’s method: build an index table

Realization: we can actually precompute an optimal solution

Partition Node 1 Node 2 Node 3

Partition 0 Io (jupiter) Drosera (atuin) Courgette (neptune)

Partition 1 Datura (atuin) Courgette (neptune) Io (jupiter)

Partition 2 Io(jupiter) Celeri (neptune) Drosera (atuin)
...

...
...

...

Partition 255 Concombre (neptune) Io (jupiter) Drosera (atuin)

The index table is built centrally using an optimal algorithm,
then propagated to all nodes

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 19 / 46

The relationship between partition and partition key

Partition key Partition Sort key Value

website Partition 12 index.html (file data)

website Partition 12 img/logo.svg (file data)

website Partition 12 download/index.html (file data)

backup Partition 42 borg/index.2822 (file data)

backup Partition 42 borg/data/2/2329 (file data)

backup Partition 42 borg/data/2/2680 (file data)

private Partition 42 qq3a2nbe1qjq0ebbvo6ocsp6co (file data)

To read or write an item: hash partition key
→ determine partition number (first 8 bits)
→ find associated nodes

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 20 / 46

Garage’s internal data structures

Object

bucket

file path

= partition key

= sort key

Version 1

deleted

Version 2

id
size
MIME type
...

Version

id

h(block 1)
h(block 2)
...

Data block

hash

data

Objects table Versions table Blocks table

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 21 / 46

Storing and retrieving files

FILE

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5

the file is chunked,
each chunk is checksumed

KEY

User

puts a file

[0x00, 0x5F] [0x60, 0xBF] [0xC0, 0xFF]

A descriptor is built
with the key and the hashes

of the blocks

BLOCK 1BLOCK 2 BLOCK 1

BLOCK 2 BLOCK 3BLOCK 3

BLOCK 4 BLOCK 4

BLOCK 5

BLOCK 5

Servers are selected according to chunks' hashes
Each chunk is replicated on 2 servers in this example

The descriptor is stored
according to key's hash

descriptor

descriptor

descriptor

Storing a file over Garage,
a simplified example

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 22 / 46

Storing and retrieving files

Fetching a file over Garage,
a simplified example

User
asks for a file

KEY

[0x00, 0x5F] [0x60, 0xBF] [0xC0, 0xFF]

BLOCK 1BLOCK 2 BLOCK 1

BLOCK 2 BLOCK 3BLOCK 3

BLOCK 4 BLOCK 4

BLOCK 5

BLOCK 5

descriptor descriptor

The descriptor is fetched

by hashing the key

From the descriptor,
we get the list of blocks

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5

FILE

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 22 / 46

Problem 2: ensuring consistency

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 23 / 46

Consensus vs weak consistency

Consensus-based systems:

▶ Leader-based: a leader is elected to
coordinate all reads and writes

▶ Linearizability of all operations
(strongest consistency guarantee)

▶ Any sequential specification can be
implemented as a replicated state
machine

▶ Costly, the leader is a bottleneck;
leader elections on failure take time

Weakly consistent systems:

▶ Nodes are equivalent, any node can
originate a read or write operation

▶ Read-after-write consistency with
quorums, eventual consistency without

▶ Operations have to commute,
i.e. we can only implement CRDTs

▶ Fast, no single bottleneck;
works the same with offline nodes

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 24 / 46

Consensus vs weak consistency

Consensus-based systems:

▶ Leader-based: a leader is elected to
coordinate all reads and writes

▶ Linearizability of all operations
(strongest consistency guarantee)

▶ Any sequential specification can be
implemented as a replicated state
machine

▶ Costly, the leader is a bottleneck;
leader elections on failure take time

Weakly consistent systems:

▶ Nodes are equivalent, any node can
originate a read or write operation

▶ Read-after-write consistency with
quorums, eventual consistency without

▶ Operations have to commute,
i.e. we can only implement CRDTs

▶ Fast, no single bottleneck;
works the same with offline nodes

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 24 / 46

Consensus vs weak consistency

From a theoretical point of view:

Consensus-based systems:

Require additionnal assumptions such
as a fault detector or a strong RNG
(FLP impossibility theorem)

Weakly consistent systems:

Can be implemented in any
asynchronous message passing
distributed system with node crashes

They represent different classes of computational capability

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 25 / 46

Consensus vs weak consistency

The same objects cannot be implemented in both models.

Consensus-based systems:

Any sequential specification

Easier to program for: just write your
program as if it were sequential on a sin-
gle machine

Weakly consistent systems:

Only CRDTs
(conflict-free replicated data types)

Part of the complexity is reported to
the consumer of the API

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 26 / 46

Understanding the power of consensus

Consensus: an API with a single operation, propose(x)

1. nodes all call propose(x) with their proposed value;

2. nodes all receive the same value as a return value, which is one of the proposed values

Equivalent to a distributed algorithm that gives a total order on all requests

Implemented by this simple replicated state machine:

⊥ x
propose(x)/x

propose(y)/x

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 27 / 46

Understanding the power of consensus

Consensus: an API with a single operation, propose(x)

1. nodes all call propose(x) with their proposed value;

2. nodes all receive the same value as a return value, which is one of the proposed values

Equivalent to a distributed algorithm that gives a total order on all requests

Implemented by this simple replicated state machine:

⊥ x
propose(x)/x

propose(y)/x

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 27 / 46

Understanding the power of consensus

Consensus: an API with a single operation, propose(x)

1. nodes all call propose(x) with their proposed value;

2. nodes all receive the same value as a return value, which is one of the proposed values

Equivalent to a distributed algorithm that gives a total order on all requests

Implemented by this simple replicated state machine:

⊥ x
propose(x)/x

propose(y)/x

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 27 / 46

Can my object be implemented without consensus?

Given the specification of an API:

▶ Using this API, we can implement the consensus object (the propose function)
→ the API is equivalent to consensus/total ordering of messages
→ the API cannot be implemented in a weakly consistent system

▶ This API can be implemented using only weak primitives
(e.g. in the asynchronous message passing model with no further assumption)
→ the API is strictly weaker than consensus
→ we can implement it in Garage!

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 28 / 46

Why avoid consensus?

Consensus can be implemented reasonably well in practice, so why avoid it?

▶ Software complexity: RAFT and PAXOS are complex beasts;
harder to prove, harder to reason about

▶ Performance issues:

▶ Theoretical requirements (RNG, failure detector) translate into practical costs

▶ The leader is a bottleneck for all requests;
even in leaderless approaches, all nodes must process all operations in order

▶ Particularly sensitive to higher latency between nodes

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 29 / 46

Performance gains in practice

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 30 / 46

What can we implement without consensus?

▶ Any conflict-free replicated data type (CRDT)

▶ Non-transactional key-value stores such as S3 are equivalent to a simple CRDT:
a last-writer-wins registry

▶ Read-after-write consistency can be implemented using quorums on read and write
operations

▶ Monotonicity of reads can be implemented with repair-on-read
(makes reads more costly, not implemented in Garage)

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 31 / 46

CRDTs and quorums: read-after-write consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 32 / 46

CRDTs and quorums: read-after-write consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
̸⊒ {a}
̸⊒ {a}
̸⊒ {a}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 32 / 46

CRDTs and quorums: read-after-write consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
⊒ {a} → OK
̸⊒ {a}
̸⊒ {a}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 32 / 46

CRDTs and quorums: read-after-write consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
⊒ {a} → OK
⊒ {a} → OK
̸⊒ {a}

return OK

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 32 / 46

CRDTs and quorums: read-after-write consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):

read():

⊒ {a} → OK
⊒ {a} → OK
̸⊒ {a}

return OK

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 32 / 46

CRDTs and quorums: read-after-write consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):

read():

⊒ {a} → OK
⊒ {a} → OK
̸⊒ {a}

→ {}

return OK

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 32 / 46

CRDTs and quorums: read-after-write consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):

read():

⊒ {a} → OK
⊒ {a} → OK
̸⊒ {a}

→ {}

return OK

return {} ⊔ {a} = {a}
→ {a}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 32 / 46

CRDTs and quorums: read-after-write consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):

read():

⊒ {a} → OK
⊒ {a} → OK
⊒ {a}

→ {}

return OK

return {} ⊔ {a} = {a}
→ {a}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 32 / 46

CRDTs and quorums: read-after-write consistency

Property: If node A did an operation write(x) and received an OK response,
and node B starts an operation read() after A received OK,
then B will read a value x ′ ⊒ x .

Algorithm write(x):

1. Broadcast write(x) to all nodes

2. Wait for k > n/2 nodes to reply OK

3. Return OK

Algorithm read():

1. Broadcast read() to all nodes

2. Wait for k > n/2 nodes to reply
with values x1, . . . , xk

3. Return x1 ⊔ . . . ⊔ xk

Why does it work? There is at least one node at the intersection between the two sets of
nodes that replied to each request, that “saw” x before the read() started (xi ⊒ x).

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 33 / 46

CRDTs and quorums: monotonic-reads consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
̸⊒ {a}
̸⊒ {a}
̸⊒ {a}

write({b}):
̸⊒ {b}
̸⊒ {b}
̸⊒ {b}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 34 / 46

CRDTs and quorums: monotonic-reads consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
⊒ {a} → OK
̸⊒ {a}
̸⊒ {a}

write({b}):
̸⊒ {b}
̸⊒ {b}
̸⊒ {b}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 34 / 46

CRDTs and quorums: monotonic-reads consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
⊒ {a} → OK
̸⊒ {a}
̸⊒ {a}

write({b}):
̸⊒ {b}
⊒ {b} → OK
̸⊒ {b}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 34 / 46

CRDTs and quorums: monotonic-reads consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
⊒ {a} → OK
̸⊒ {a}
̸⊒ {a}

write({b}):

read():

̸⊒ {b}
⊒ {b} → OK
̸⊒ {b}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 34 / 46

CRDTs and quorums: monotonic-reads consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
⊒ {a} → OK
̸⊒ {a}
̸⊒ {a}

write({b}):

read():

̸⊒ {b}
⊒ {b} → OK
̸⊒ {b}

→ {a}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 34 / 46

CRDTs and quorums: monotonic-reads consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
⊒ {a} → OK
̸⊒ {a}
̸⊒ {a}

write({b}):

read():

̸⊒ {b}
⊒ {b} → OK
̸⊒ {b}

→ {a}

return {a}
→ {}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 34 / 46

CRDTs and quorums: monotonic-reads consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
⊒ {a} → OK
̸⊒ {a}
̸⊒ {a}

write({b}):

read():

̸⊒ {b}
⊒ {b} → OK
̸⊒ {b}

→ {a}

return {a}
→ {}

read():

;

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 34 / 46

CRDTs and quorums: monotonic-reads consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
⊒ {a} → OK
̸⊒ {a}
̸⊒ {a}

write({b}):

read():

̸⊒ {b}
⊒ {b} → OK
̸⊒ {b}

→ {a}

return {a}
→ {}

→ {}
read():

;

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 34 / 46

CRDTs and quorums: monotonic-reads consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
⊒ {a} → OK
̸⊒ {a}
̸⊒ {a}

write({b}):

read():

̸⊒ {b}
⊒ {b} → OK
̸⊒ {b}

→ {a}

return {a}
→ {}

→ {}
read():

;

return {b}
→ {b}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 34 / 46

CRDTs and quorums: monotonic-reads consistency

{}

{a, b, c}

{a} {b} {c}

{a, c}{a, b} {b, c}

write({a}):
⊒ {a} → OK
̸⊒ {a}
̸⊒ {a}

write({b}):

read():

̸⊒ {b}
⊒ {b} → OK
̸⊒ {b}

→ {a}

return {a}
→ {}

→ {}
read():

;

return {b}
→ {b} ??!

{a} ̸⊑ {b}

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 34 / 46

CRDTs and quorums: monotonic-reads consistency

Property: If node A did an operation read() and received x as a response,
and node B starts an operation read() after A received x ,
then B will read a value x ′ ⊒ x .

Algorithm read():

1. Broadcast read() to all nodes

2. Wait for k > n/2 nodes to reply with values x1, . . . , xk

3. If xi ̸= xj for some nodes i and j ,
then call write(x1 ⊔ . . . ⊔ xk) and wait for OK from k ′ > n/2 nodes

4. Return x1 ⊔ . . . ⊔ xk

This makes reads slower in some cases, and is not implemented in Garage.

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 35 / 46

A hard problem: layout changes

▶ We rely on quorums k > n/2 within each partition:

n = 3, k ≥ 2

▶ When rebalancing, the set of nodes responsible for a partition can change:

{nA, nB , nC} → {nA, nD , nE}

▶ During the rebalancing, D and E don’t yet have the data,
and B and C want to get rid of the data to free up space

→ quorums only within the new set of nodes don’t work
→ how to coordinate? currently, we don’t...

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 36 / 46

Going further than the S3 API

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 37 / 46

Further plans for Garage

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 38 / 46

Further plans for Garage

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 38 / 46

Further plans for Garage

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 38 / 46

K2V Design

▶ A new, custom, minimal API

▶ Single-item operations
▶ Operations on ranges and batches of items
▶ Polling operations to help implement a PubSub pattern

▶ Exposes the partitoning mechanism of Garage
K2V = partition key / sort key / value (like Dynamo)

▶ Weakly consistent, CRDT-friendly
→ no support for transactions (not ACID)

▶ Cryptography-friendly: values are binary blobs

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 39 / 46

K2V Design

▶ A new, custom, minimal API

▶ Single-item operations
▶ Operations on ranges and batches of items
▶ Polling operations to help implement a PubSub pattern

▶ Exposes the partitoning mechanism of Garage
K2V = partition key / sort key / value (like Dynamo)

▶ Weakly consistent, CRDT-friendly
→ no support for transactions (not ACID)

▶ Cryptography-friendly: values are binary blobs

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 39 / 46

K2V Design

▶ A new, custom, minimal API

▶ Single-item operations
▶ Operations on ranges and batches of items
▶ Polling operations to help implement a PubSub pattern

▶ Exposes the partitoning mechanism of Garage
K2V = partition key / sort key / value (like Dynamo)

▶ Weakly consistent, CRDT-friendly
→ no support for transactions (not ACID)

▶ Cryptography-friendly: values are binary blobs

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 39 / 46

K2V Design

▶ A new, custom, minimal API

▶ Single-item operations
▶ Operations on ranges and batches of items
▶ Polling operations to help implement a PubSub pattern

▶ Exposes the partitoning mechanism of Garage
K2V = partition key / sort key / value (like Dynamo)

▶ Weakly consistent, CRDT-friendly
→ no support for transactions (not ACID)

▶ Cryptography-friendly: values are binary blobs

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 39 / 46

Handling concurrent values

How to handle concurrency? Example:

1. Client A reads the initial value of a key, x0

2. Client B also reads the initial value x0 of that key

3. Client A modifies x0, and writes a new value x1

4. Client B also modifies x0, and writes a new value x ′1,
without having a chance to first read x1

→ what should the final state be?

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 40 / 46

Handling concurrent values

How to handle concurrency? Example:

1. Client A reads the initial value of a key, x0

2. Client B also reads the initial value x0 of that key

3. Client A modifies x0, and writes a new value x1

4. Client B also modifies x0, and writes a new value x ′1,
without having a chance to first read x1

→ what should the final state be?

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 40 / 46

Handling concurrent values

How to handle concurrency? Example:

1. Client A reads the initial value of a key, x0

2. Client B also reads the initial value x0 of that key

3. Client A modifies x0, and writes a new value x1

4. Client B also modifies x0, and writes a new value x ′1,
without having a chance to first read x1

→ what should the final state be?

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 40 / 46

Handling concurrent values

How to handle concurrency? Example:

1. Client A reads the initial value of a key, x0

2. Client B also reads the initial value x0 of that key

3. Client A modifies x0, and writes a new value x1

4. Client B also modifies x0, and writes a new value x ′1,
without having a chance to first read x1

→ what should the final state be?

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 40 / 46

Handling concurrent values

▶ If we keep only x1 or x ′1, we risk loosing application data

▶ Values are opaque binary blobs, K2V cannot resolve conflicts by itself
(e.g. by implementing a CRDT)

▶ Solution: we keep both!
→ the value of the key is now {x1, x ′1}
→ the client application can decide how to resolve conflicts on the next read

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 41 / 46

Keeping track of causality

How does K2V know that x1 and x ′1 are concurrent?

▶ read() returns a set of values and an associated causality token

▶ When calling write(), the client sends the causality token from its last read

▶ The causality token represents the set of values already seen by the client
→ those values are the causal past of the write operation
→ K2V can keep concurrent values and overwrite all ones in the causal past

▶ Internally, the causality token is a vector clock

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 42 / 46

Application: an e-mail storage server

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 43 / 46

A new model for building resilient software

1. Design a data model suited to K2V
(see Cassandra docs on porting SQL data models to Cassandra)

▶ Use CRDTs or other eventually consistent data types (see e.g. Bayou)

▶ Store opaque binary blobs to provide End-to-End Encryption

2. Store big blobs (files) using the S3 API

3. Let Garage manage sharding, replication, failover, etc.

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 44 / 46

Research perspectives

▶ TODO

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 45 / 46

Where to find us

https://garagehq.deuxfleurs.fr/

mailto:garagehq@deuxfleurs.fr

#garage:deuxfleurs.fr on Matrix

Alex Auvolat, Deuxfleurs Association Garage Inria, 2023-01-18 46 / 46

https://garagehq.deuxfleurs.fr/
mailto:garagehq@deuxfleurs.fr

	Problem 1: placing data
	Problem 2: ensuring consistency
	Going further than the S3 API

