
An algorithm for geo-distributed and redundant

storage in Garage

Mendes Oulamara
mendes@deuxfleurs.fr

Abstract

Garage

1 Introduction

Garage1 is an open-source distributed object storage service tailored for self-
hosting. It was designed by the Deuxfleurs association2 to enable small struc-
tures (associations, collectives, small companies) to share storage resources to
reliably self-host their data, possibly with old and non-reliable machines.

To achieve these reliability and availability goals, the data is broken into
partitions and every partition is replicated over 3 different machines (that we
call nodes). When the data is queried, a consensus algorithm allows to fetch it
from one of the nodes. A replication factor of 3 ensures the best guarantees in
the consensus algorithm [?], but this parameter can be different.

Moreover, if the nodes are spread over different zones (different houses, of-
fices, cities. . .), we can ask the data to be replicated over nodes belonging to
different zones, to improve the storage robustness against zone failure (such
as power outage). To do so, we set a redundancy parameter, that is no more
than the replication factor, and we ask that any partition is replicated over this
number of zones at least.

In this work, we propose a repartition algorithm that, given the nodes spec-
ifications and the replication and redundancy parameters, computes an optimal
assignation of partitions to nodes. We say that the assignation is optimal in
the sense that it maximizes the size of the partitions, and hence the effective
storage capacity of the system.

Moreover, when a former assignation exists, which is not optimal anymore
due to nodes or zones updates, our algorithm computes a new optimal assigna-
tion that minimizes the amount of data to be transferred during the assignation
update (the transfer load).

1https://garagehq.deuxfleurs.fr/
2https://deuxfleurs.fr/

1

https://garagehq.deuxfleurs.fr/
https://deuxfleurs.fr/

We call the set of nodes cooperating to store the data a cluster, and a
description of the nodes, zones and the assignation of partitions to nodes a
cluster layout

1.1 Notations

Let k be some fixed parameter value, typically 8, that we call the “partition
bits”. Every object to be stored in the system is split into data blocks of fixed
size. We compute a hash h(b) of every such block b, and we define the k last
bits of this hash to be the partition number p(b) of the block. This label can
take P = 2k different values, and hence there are P different partitions. We
denote P the set of partition labels (i.e. P = J1, P K).

We are given a set N of N nodes and a set Z of Z zones. Every node n
has a non-negative storage capacity cn ≥ 0 and belongs to a zone zn ∈ Z. We
are also given a replication parameter ρN and a redundancy parameter ρZ such
that 1 ≤ ρZ ≤ ρN (typical values would be ρN = 3 and ρZ = 2).

Our goal is to compute an assignment α = (α1
p, . . . , α

ρN
p)p∈P such that ev-

ery partition p is associated to ρN distinct nodes α1
p, . . . , α

ρN
p ∈ N and these

nodes belong to at least ρZ distinct zones. Among the possible assignations, we
choose one that maximizes the effective storage capacity of the cluster. If the
layout contained a previous assignment α′, we minimize the amount of data to
transfer during the layout update by making α as close as possible to α′. These
maximization and minimization are described more formally in the following
section.

1.2 Optimization parameters

To link the effective storage capacity of the cluster to partition assignment, we
make the following assumption:

All partitions have the same size s. (H1)

This assumption is justified by the dispersion of the hashing function, when the
number of partitions is small relative to the number of stored blocks.

Every node n wille store some number pn of partitions (it is the number of
partitions p such that n appears in the αp). Hence the partitions stored by n
(and hence all partitions by our assumption) have there size bounded by cn/pn.
This remark leads us to define the optimal size that we will want to maximize:

s∗ = min
n∈N

cn
pn
. (OPT)

When the capacities of the nodes are updated (this includes adding or remov-
ing a node), we want to update the assignment as well. However, transferring
the data between nodes has a cost and we would like to limit the number of
changes in the assignment. We make the following assumption:

Nodes updates happen rarely relatively to block operations. (H2)

2

This assumption justifies that when we compute the new assignment α, it is
worth to optimize the partition size (OPT) first, and then, among the possible
optimal solution, to try to minimize the number of partition transfers. More
formally, we minimize the distance between two assignments defined by

d(α, α′) := #{(n, p) ∈ N×P | n ∈ αp4α′p} (1)

where the symmetric difference αp4α′p denotes the nodes appearing in one of
the assignations but not in both.

2 Computation of an optimal assignment

The algorithm that we propose takes as inputs the cluster layout parameters N,
Z, P, (cn)n∈N, ρN, ρZ, that we defined in the introduction, together with the
former assignation α′ (if any). The computation of the new optimal assignation
α∗ is done in three successive steps that will be detailed in the following sections.
The first step computes the largest partition size s∗ that an assignation can
achieve. The second step computes an optimal candidate assignment α that
achieves s∗ and a heuristic is used in the computation to make it hopefully close
to α′. The third steps modifies α iteratively to reduces d(α, α′) and yields an
assignation α∗ achieving s∗, and minimizing d(·, α′) among such assignations.

We will explain in the next section how to represent an assignment α by a
flow f on a weighted graph G to enable the use of flow and graph algorithms.
The main function of the algorithm can be written as follows.

Algorithm

1: function Compute Layout(N, Z, P, (cn)n∈N, ρN, ρZ, α′)
2: s∗ ← Compute Partition Size(N, Z, P, (cn)n∈N, ρN, ρZ)
3: G← G(s∗)
4: f ← Compute Candidate Assignment(G, α′)
5: f∗ ← Minimize transfer load(G, f , α′)
6: Build α∗ from f∗

7: return α∗

8: end function

Complexity

As we will see in the next sections, the worst case complexity of this algorithm is
O(P 2N2). The minimization of transfer load is the most expensive step, and it
can run with a timeout since it is only an optimization step. Without this step
(or with a smart timeout), the worst cas complexity can be O((PN)3/2 logC)
where C is the total storage capacity of the cluster.

3

Figure 1: An example of graph G(s). Arcs are oriented from left to right, and
unlabeled arcs have capacity 1. In this example, nodes n1, n2, n3 belong to zone
z1, and nodes n4, n5 belong to zone z2.

2.1 Determination of the partition size s∗

We will represent an assignment α as a flow in a specific graph G. We will
not compute the optimal partition size s∗ a priori, but we will determine it
by dichotomy, as the largest size s such that the maximal flow achievable on
G = G(s) has value ρNP . We will assume that the capacities are given in a
small enough unit (say, Megabytes), and we will determine s∗ at the precision
of the given unit.

Given some candidate size value s, we describe the oriented weighted graph
G = (V,E) with vertex set V arc set E (see Figure 1).

The set of vertices V contains the source s, the sink t, vertices p+,p− for
every partition p, vertices xp,z for every partition p and zone z, and vertices n
for every node n.

The set of arcs E contains:

� (s,p+, ρZ) for every partition p;

� (s,p−, ρN − ρZ) for every partition p;

� (p+,xp,z, 1) for every partition p and zone z;

� (p−,xp,z, ρN − ρZ) for every partition p and zone z;

� (xp,z,n, 1) for every partition p, zone z and node n ∈ z;

� (n, t, bcn/sc) for every node n.

4

In the following complexity calculations, we will use the number of vertices
and edges of G. Remark from now that #V = O(PZ) and #E = O(PN).

Proposition 1. An assignment α is realizable with partition size s and the
redundancy constraints (ρN, ρZ) if and only if there exists a maximal flow func-
tion f in G with total flow ρNP , such that the arcs (xp,z,n, 1) used are exactly
those for which p is associated to n in α.

Proof. Given such flow f , we can reconstruct a candidate α. In f , the flow
passing through p+ and p− is ρN, and since the outgoing capacity of every xp,z
is 1, every partition is associated to ρN distinct nodes. The fraction ρZ of the
flow passing through every p+ must be spread over as many distinct zones as
every arc outgoing from p+ has capacity 1. So the reconstructed α verifies the
redundancy constraints. For every node n, the flow between n and t corresponds
to the number of partitions associated to n. By construction of f , this does not
exceed bcn/sc. We assumed that the partition size is s, hence this association
does not exceed the storage capacity of the nodes.

In the other direction, given an assignment α, one can similarly check that
the facts that α respects the redundancy constraints, and the storage capacities
of the nodes, are necessary condition to construct a maximal flow function f .

Implementation remark: In the flow algorithm, while exploring the graph,
we explore the neighbours of every vertex in a random order to heuristically
spread the associations between nodes and partitions.

Algorithm

With this result mind, we can describe the first step of our algorithm. All
divisions are supposed to be integer divisions.

1: function Compute Partition Size(N, Z, P, (cn)n∈N, ρN, ρZ)
2: Build the graph G = G(s = 1)
3: f ← Maximal flow(G)
4: if f.totalflow < ρNP then
5: return Error: capacities too small or constraints too strong.
6: end if
7: s− ← 1
8: s+ ← 1 + 1

ρN

∑
n∈N cn

9: while s− + 1 < s+ do
10: Build the graph G = G(s = (s− + s+)/2)
11: f ← Maximal flow(G)
12: if f.totalflow < ρNP then
13: s+ ← (s− + s+)/2
14: else
15: s− ← (s− + s+)/2
16: end if
17: end while
18: return s−

5

19: end function

Complexity

To compute the maximal flow, we use Dinic’s algorithm. Its complexity on
general graphs is O(#V 2#E), but on graphs with edge capacity bounded by a
constant, it turns out to be O(#E3/2). The graph G does not fall in this case
since the capacities of the arcs incoming to t are far from bounded. However,
the proof of this complexity function works readily for graphs where we only
ask the edges not incoming to the sink t to have their capacities bounded by a
constant. One can find the proof of this claim in [1, Section 2]. The dichotomy
adds a logarithmic factor log(C) where C =

∑
n∈N cn is the total capacity of the

cluster. The total complexity of this first function is hence O(#E3/2 logC) =
O
(
(PN)3/2 logC

)
.

Metrics

We can display the discrepancy between the computed s∗ and the best size we
could have hoped for the given total capacity, that is C/ρN.

2.2 Computation of a candidate assignment

Now that we have the optimal partition size s∗, to compute a candidate assign-
ment it would be enough to compute a maximal flow function f on G(s∗). This
is what we do if there is no former assignation α′.

If there is some α′, we add a step that will heuristically help to obtain a
candidate α closer to α′. We fist compute a flow function f̃ that uses only
the partition-to-node associations appearing in α′. Most likely, f̃ will not be a
maximal flow of G(s∗). In Dinic’s algorithm, we can start from a non maximal
flow function and then discover improving paths. This is what we do by starting
from f̃ . The hope3 is that the final flow function f will tend to keep the
associations appearing in f̃ .

More formally, we construct the graph G|α′ from G by removing all the arcs
(xp,z,n, 1) where p is not associated to n in α′. We compute a maximal flow

function f̃ in G|α′ . The flow f̃ is also a valid (most likely non maximal) flow
function on G. We compute a maximal flow function f on G by starting Dinic’s
algorithm on f̃ .

Algorithm

1: function Compute Candidate Assignment(G, α′)
2: Build the graph G|α′

3: f̃ ← Maximal flow(G|α′)

4: f ← Maximal flow from flow(G, f̃)

3This is only a hope, because one can find examples where the construction of f from f̃
produces an assignment α that is not as close as possible to α′.

6

5: return f
6: end function

Remark: The function “Maximal flow” can be just seen as the function
“Maximal flow from flow” called with the zero flow function as starting flow.

Complexity

With the considerations of the last section, we have the complexity of the Dinic’s
algorithm O(#E3/2) = O((PN)3/2).

Metrics

We can display the flow value of f̃ , which is an upper bound of the distance
between α and α′. It might be more a Debug level display than Info.

2.3 Minimization of the transfer load

Now that we have a candidate flow function f , we want to modify it to make its
corresponding assignation α as close as possible to α′. Denote by f ′ the maximal
flow corresponding to α′, and let d(f, α′) = d(f, f ′) := d(α, α′)4. We want to
build a sequence f = f0, f1, f2 . . . of maximal flows such that d(fi, α

′) decreases
as i increases. The distance being a non-negative integer, this sequence of flow
functions must be finite. We now explain how to find some improving fi+1 from
fi.

For any maximal flow f in G, we define the oriented weighted graph Gf =
(V,Ef) as follows. The vertices of Gf are the same as the vertices of G. Ef
contains the arc (v1, v2, w) between vertices v1, v2 ∈ V with weight w if and
only if the arc (v1, v2) is not saturated in f (i.e. c(v1, v2) − f(v1, v2) ≥ 1, we
also consider reversed arcs). The weight w is:

� −1 if (v1, v2) is of type (xp,z,n) or (xp,z,n) and is saturated in only one
of the two flows f, f ′;

� +1 if (v1, v2) is of type (xp,z,n) or (xp,z,n) and is saturated in either both
or none of the two flows f, f ′;

� 0 otherwise.

If γ is a simple cycle of arcs in Gf , we define its weight w(γ) as the sum of
the weights of its arcs. We can add +1 to the value of f on the arcs of γ, and
by construction of Gf and the fact that γ is a cycle, the function that we get is
still a valid flow function on G, it is maximal as it has the same flow value as
f . We denote this new function f + γ.

Proposition 2. Given a maximal flow f and a simple cycle γ in Gf , we have
d(f + γ, f ′)− d(f, f ′) = w(γ).

4It is the number of arcs of type (xp,z ,n) saturated in one flow and not in the other.

7

Proof. Let X be the set of arcs of type (xp,z,n). Then we can express d(f, f ′)
as

d(f, f ′) = #{e ∈ X | f(e) 6= f ′(e)} =
∑
e∈X

1f(e) 6=f ′(e)

=
1

2

(
#X +

∑
e∈X

1f(e) 6=f ′(e) − 1f(e)=f ′(e)
)
.

We can express the cycle weight as

w(γ) =
∑

e∈X,e∈γ
−1f(e)6=f ′(e) + 1f(e)=f ′(e).

Remark that since we passed on unit of flow in γ to construct f + γ, we have
for any e ∈ X, f(e) = f ′(e) if and only if (f + γ)(e) 6= f ′(e). Hence

w(γ) =
1

2
(w(γ) + w(γ))

=
1

2

(∑
e∈X,e∈γ

−1f(e)6=f ′(e) + 1f(e)=f ′(e)

+
∑

e∈X,e∈γ
1(f+γ)(e)6=f ′(e) + 1(f+γ)(e)=f ′(e)

)
.

Plugging this in the previous equation, we find that

d(f, f ′) + w(γ) = d(f + γ, f ′).

This result suggests that given some flow fi, we just need to find a negative
cycle γ in Gfi to construct fi+1 as fi + γ. The following proposition ensures
that this greedy strategy reaches an optimal flow.

Proposition 3. For any maximal flow f , Gf contains a negative cycle if and
only if there exists a maximal flow f∗ in G such that d(f∗, f ′) < d(f, f ′).

Proof. Suppose that there is such flow f∗. Define the oriented multigraph
Mf,f∗ = (V,EM) with the same vertex set V as in G, and for every v1, v2 ∈ V ,
EM contains (f∗(v1, v2)−f(v1, v2))+ copies of the arc (v1, v2). For every vertex
v, its total degree (meaning its outer degree minus its inner degree) is equal to

deg v =
∑
u∈V

(f∗(v, u)− f(v, u))+ −
∑
u∈V

(f∗(u, v)− f(u, v))+

=
∑
u∈V

f∗(v, u)− f(v, u) =
∑
u∈V

f∗(v, u)−
∑
u∈V

f(v, u).

The last two sums are zero for any inner vertex since f, f∗ are flows, and they
are equal on the source and sink since the two flows are both maximal and have
hence the same value. Thus, deg v = 0 for every vertex v.

8

This implies that the multigraph Mf,f∗ is the union of disjoint simple cycles.
f can be transformed into f∗ by pushing a mass 1 along all these cycles in any
order. Since d(f∗, f ′) < d(f, f ′), there must exists one of these simple cycles γ
with d(f + γ, f ′) < d(f, f ′). Finally, since we can push a mass in f along γ, it
must appear in Gf . Hence γ is a cycle of Gf with negative weight.

In the next section we describe the corresponding algorithm. Instead of
discovering only one cycle, we are allowed to discover a set Γ of disjoint negative
cycles.

Algorithm

1: function Minimize transfer load(G, f , α′)
2: Build the graph Gf
3: Γ← Detect Negative Cycles(Gf)
4: while Γ 6= ∅ do
5: for all γ ∈ Γ do
6: f ← f + γ
7: end for
8: Update Gf
9: Γ← Detect Negative Cycles(Gf)

10: end while
11: return f
12: end function

Complexity

The distance d(f, f ′) is bounded by the maximal number of differences in the
associated assignment. If these assignment are totally disjoint, this distance is
2ρNP . At every iteration of the While loop, the distance decreases, so there is
at most O(ρNP) = O(P) iterations.

The detection of negative cycle is done with the Bellman-Ford algorithm,
whose complexity should normally be O(#E#V). In our case, it amounts
to O(P 2ZN). Multiplied by the complexity of the outer loop, it amounts to
O(P 3ZN) which is a lot when the number of partitions and nodes starts to be
large. To avoid that, we adapt the Bellman-Ford algorithm.

The Bellman-Ford algorithm runs #V iterations of an outer loop, and an
inner loop over E. The idea is to compute the shortest paths from a source
vertex v to all other vertices. After k iterations of the outer loop, the algorithm
has computed all shortest path of length at most k. All simple paths have length
at most #V −1, so if there is an update in the last iteration of the loop, it means
that there is a negative cycle in the graph. The observation that will enable us
to improve the complexity is the following:

Proposition 4. In the graph Gf (and G), all simple paths have a length at
most 4N .

9

Proof. Since f is a maximal flow, there is no outgoing edge from s in Gf . One
can thus check than any simple path of length 4 must contain at least two node
of type n. Hence on a path, at most 4 arcs separate two successive nodes of
type n.

Thus, in the absence of negative cycles, shortest paths in Gf have length at
most 4N . So we can do only 4N +1 iterations of the outer loop in the Bellman-
Ford algorithm. This makes the complexity of the detection of one set of cycle
to be O(N#E) = O(N2P).

With this improvement, the complexity of the whole algorithm is, in the
worst case, O(N2P 2). However, since we detect several cycles at once and
we start with a flow that might be close to the previous one, the number of
iterations of the outer loop might be smaller in practice.

Metrics

We can display the node and zone utilization ratio, by dividing the flow passing
through them divided by their outgoing capacity. In particular, we can pinpoint
saturated nodes and zones (i.e. used at their full potential).

We can display the distance to the previous assignment, and the number of
partition transfers.

References

[1] S. Even and R. E. Tarjan, “Network flow and testing graph connectivity,”
SIAM journal on computing, vol. 4, no. 4, pp. 507–518, 1975.

10

	Introduction
	Notations
	Optimization parameters

	Computation of an optimal assignment
	Determination of the partition size s*
	Computation of a candidate assignment
	Minimization of the transfer load

	Properties of an optimal 3-strict assignment
	Optimal assignment
	Minimal transfer
	Minimizing the zone discrepancy
	Minimizing the node discrepancy
	Linear combination of both criteria

	Algorithm

	Computation of a 3-non-strict assignment
	Choices of optimality
	Computation of a candidate assignment
	Maximal spread and minimal transfers

