
Optimal partition assignment in Garage

Mendes

September 13, 2022

1 Introduction

1.1 Context

Garage is an open-source distributed storage service blablabla. . .
Every object to be stored in the system falls in a partition given by the last k

bits of its hash. There are P = 2k partitions. Every partition will be stored on
distinct nodes of the system. The goal of the assignment of partitions to nodes
is to ensure (nodes and zone) redundancy and to be as efficient as possible.

1.2 Formal description of the problem

We are given a set of nodes N and a set of zones Z. Every node n has a non-
negative storage capacity cn ≥ 0 and belongs to a zone z ∈ Z. We are also given
a number of partition P > 0 (typically P = 256).

We would like to compute an assignment of nodes to partitions. We will
impose some redundancy constraints to this assignment, and under these con-
straints, we want our system to have the largest storage capacity possible. To
link storage capacity to partition assignment, we make the following assumption:

All partitions have the same size s. (H1)

This assumption is justified by the dispersion of the hashing function, when the
number of partitions is small relative to the number of stored large objects.

Every node n wille store some number kn of partitions. Hence the partitions
stored by n (and hence all partitions by our assumption) have there size bounded
by cn/kn. This remark leads us to define the optimal size that we will want to
maximize:

s∗ = min
n∈N

cn
kn
. (OPT)

When the capacities of the nodes are updated (this includes adding or remov-
ing a node), we want to update the assignment as well. However, transferring
the data between nodes has a cost and we would like to limit the number of
changes in the assignment. We make the following assumption:

Updates of capacity happens rarely relatively to object storing. (H2)

1

This assumption justifies that when we compute the new assignment, it is worth
to optimize the partition size (OPT) first, and then, among the possible optimal
solution, to try to minimize the number of partition transfers.

For now, in the following, we ask the following redundancy constraint:
Parametric node and zone redundancy: Given two integer parameters

1 ≤ ρZ ≤ ρN, we ask every partition to be stored on ρN distinct nodes, and
these nodes must belong to at least ρZ distinct zones.

Mode 3-strict: every partition needs to be assignated to three nodes be-
longing to three different zones.

Mode 3: every partition needs to be assignated to three nodes. We try to
spread the three nodes over different zones as much as possible.

Warning: This is a working document written incrementaly. The last ver-
sion of the algorithm is the parametric assignment described in the next
section.

2 Computation of a parametric assignment

Attention : We change notations in this section.
Notations : let P be the number of partitions, N the number of nodes, Z the

number of zones. Let P,N,Z be the label sets of, respectively, partitions, nodes
and zones. Let s∗ be the largest partition size achievable with the redundancy
constraints. Let (cn)n∈N be the storage capacity of every node.

In this section, we propose a third specification of the problem. The user
inputs two redundancy parameters 1 ≤ ρZ ≤ ρN. We compute an assignment
α = (α1

p, . . . , α
ρN
p)p∈P such that every partition p is associated to ρN distinct

nodes α1
p, . . . , α

ρN
p and these nodes belong to at least ρZ distinct zones.

If the layout contained a previous assignment α′, we try to minimize the
amount of data to transfer during the layout update by making α as close as
possible to α′.

In the following subsections, we describe the successive steps of the algorithm
we propose to compute α.

Algorithm

1: function Compute Layout(N, Z, P, (cn)n∈N, ρN, ρZ, α′)
2: s∗ ← Compute Partition Size(N, Z, P, (cn)n∈N, ρN, ρZ)
3: G← G(s∗)
4: f ← Compute Candidate Assignment(G, α′)
5: f∗ ← Minimize transfer load(G, f , α′)
6: Build α∗ from f∗

7: return α∗

8: end function

2

Complexity

As we will see in the next sections, the worst case complexity of this algorithm is
O(P 2N2). The minimization of transfer load is the most expensive step, and it
can run with a timeout since it is only an optimization step. Without this step
(or with a smart timeout), the worst cas complexity can be O((PN)3/2 logC)
where C is the total storage capacity of the cluster.

2.1 Determination of the partition size s∗

Again, we will represent an assignment α as a flow in a specific graph G. We
will not compute the optimal partition size s∗ a priori, but we will determine
it by dichotomy, as the largest size s such that the maximal flow achievable on
G = G(s) has value ρNP . We will assume that the capacities are given in a
small enough unit (say, Megabytes), and we will determine s∗ at the precision
of the given unit.

Given some candidate size value s, we describe the oriented weighted graph
G = (V,E) with vertex set V arc set E.

The set of vertices V contains the source s, the sink t, vertices p+,p− for
every partition p, vertices xp,z for every partition p and zone z, and vertices n
for every node n.

The set of arcs E contains:

� (s,p+, ρZ) for every partition p;

� (s,p−, ρN − ρZ) for every partition p;

� (p+,xp,z, 1) for every partition p and zone z;

� (p−,xp,z, ρN − ρZ) for every partition p and zone z;

� (xp,z,n, 1) for every partition p, zone z and node n ∈ z;

� (n, t, bcn/sc) for every node n.

In the following complexity calculations, we will use the number of vertices
and edges of G. Remark from now that #V = O(PZ) and #E = O(PN).

Proposition 1. An assignment α is realizable with partition size s and the
redundancy constraints (ρN, ρZ) if and only if there exists a maximal flow func-
tion f in G with total flow ρNP , such that the arcs (xp,z,n, 1) used are exactly
those for which p is associated to n in α.

Proof. Given such flow f , we can reconstruct a candidate α. In f , the flow
passing through p+ and p− is ρN, and since the outgoing capacity of every xp,z
is 1, every partition is associated to ρN distinct nodes. The fraction ρZ of the
flow passing through every p+ must be spread over as many distinct zones as
every arc outgoing from p+ has capacity 1. So the reconstructed α verifies the
redundancy constraints. For every node n, the flow between n and t corresponds

3

to the number of partitions associated to n. By construction of f , this does not
exceed bcn/sc. We assumed that the partition size is s, hence this association
does not exceed the storage capacity of the nodes.

In the other direction, given an assignment α, one can similarly check that
the facts that α respects the redundancy constraints, and the storage capacities
of the nodes, are necessary condition to construct a maximal flow function f .

Implementation remark: In the flow algorithm, while exploring the graph,
we explore the neighbours of every vertex in a random order to heuristically
spread the association between nodes and partitions.

Algorithm

With this result mind, we can describe the first step of our algorithm. All
divisions are supposed to be integer division.

1: function Compute Partition Size(N, Z, P, (cn)n∈N, ρN, ρZ)
2: Build the graph G = G(s = 1)
3: f ← Maximal flow(G)
4: if f.totalflow < ρNP then
5: return Error: capacities too small or constraints too strong.
6: end if
7: s− ← 1
8: s+ ← 1 + 1

ρN

∑
n∈N cn

9: while s− + 1 < s+ do
10: Build the graph G = G(s = (s− + s+)/2)
11: f ← Maximal flow(G)
12: if f.totalflow < ρNP then
13: s+ ← (s− + s+)/2
14: else
15: s− ← (s− + s+)/2
16: end if
17: end while
18: return s−

19: end function

Complexity

To compute the maximal flow, we use Dinic’s algorithm. Its complexity on
general graphs is O(#V 2#E), but on graphs with edge capacity bounded by a
constant, it turns out to be O(#E3/2). The graph G does not fall in this case
since the capacities of the arcs incoming to t are far from bounded. However, the
proof of this complexity works readily for graph where we only ask the edges not
incoming to the sink t to have their capacities bounded by a constant. One can
find the proof of this claim in [1, Section 2]. The dichotomy adds a logarithmic
factor log(C) where C =

∑
n∈N cn is the total capacity of the cluster. The total

complexity of this first function is hence O(#E3/2 logC) = O
(
(PN)3/2 logC

)
.

4

Metrics

We can display the discrepancy between the computed s∗ and the best size we
could hope for a given total capacity, that is C/ρN.

2.2 Computation of a candidate assignment

Now that we have the optimal partition size s∗, to compute a candidate assign-
ment, it would be enough to compute a maximal flow function f on G(s∗). This
is what we do if there was no previous assignment α′.

If there was some α′, we add a step that will heuristically help to obtain
a candidate α closer to α′. to do so, we fist compute a flow function f̃ that
uses only the partition-to-node association appearing in α′. Most likely, f̃ will
not be a maximal flow of G(s∗). In Dinic’s algorithm, we can start from a non
maximal flow function and then discover improving paths. This is what we do
in starting from f̃ . The hope1 is that the final flow function f will tend to keep
the associations appearing in f̃ .

More formally, we construct the graph G|α′ from G by removing all the arcs
(xp,z,n, 1) where p is not associated to n in α′. We compute a maximal flow

function f̃ in G|α′ . f̃ is also a valid (most likely non maximal) flow function in
G. We compute a maximal flow function f on G by starting Dinic’s algorithm
on f̃ .

Algorithm

1: function Compute Candidate Assignment(G, α′)
2: Build the graph G|α′

3: f̃ ← Maximal flow(G|α′)

4: f ← Maximal flow from flow(G, f̃)
5: return f
6: end function

Remark: The function “Maximal flow” can be just seen as the function
“Maximal flow from flow” called with the zero flow function as starting flow.

Complexity

From the consideration of the last section, we have the complexity of the Dinic’s
algorithm O(#E3/2) = O((PN)3/2).

Metrics

We can display the flow value of f̃ , which is an upper bound of the distance
between α and α′. It might be more a Debug level display than Info.

1This is only a hope, because one can find examples where the construction of f from f̃
produces an assignment α that is not as close as possible to α′.

5

2.3 Minimization of the transfer load

Now that we have a candidate flow function f , we want to modify it to make
its associated assignment as close as possible to α′. Denote by f ′ the maxi-
mal flow associated to α′, and let d(f, f ′) be distance between the associated
assignments2. We want to build a sequence f = f0, f1, f2 . . . of maximal flows
such that d(fi, α

′) decreases as i increases. The distance being a non-negative
integer, this sequence of flow functions must be finite. We now explain how to
find some improving fi+1 from fi.

For any maximal flow f in G, we define the oriented weighted graph Gf =
(V,Ef) as follows. The vertices of Gf are the same as the vertices of G. Ef
contains the arc (v1, v2, w) between vertices v1, v2 ∈ V with weight w if and
only if the arc (v1, v2) is not saturated in f (i.e. c(v1, v2) − f(v1, v2) ≥ 1, we
also consider reversed arcs). The weight w is:

� −1 if (v1, v2) is of type (xp,z,n) or (xp,z,n) and is saturated in only one
of the two flows f, f ′;

� +1 if (v1, v2) is of type (xp,z,n) or (xp,z,n) and is saturated in either both
or none of the two flows f, f ′;

� 0 otherwise.

If γ is a simple cycle of arcs in Gf , we define its weight w(γ) as the sum of
the weights of its arcs. We can add +1 to the value of f on the arcs of γ, and
by construction of Gf and the fact that γ is a cycle, the function that we get is
still a valid flow function on G, it is maximal as it has the same flow value as
f . We denote this new function f + γ.

Proposition 2. Given a maximal flow f and a simple cycle γ in Gf , we have
d(f + γ, f ′)− d(f, f ′) = w(γ).

Proof. Let X be the set of arcs of type (xp,z,n). Then we can express d(f, f ′)
as

d(f, f ′) = #{e ∈ X | f(e) 6= f ′(e)} =
∑
e∈X

1f(e) 6=f ′(e)

=
1

2

(
#X +

∑
e∈X

1f(e) 6=f ′(e) − 1f(e)=f ′(e)

)
.

We can express the cycle weight as

w(γ) =
∑

e∈X,e∈γ
−1f(e)6=f ′(e) + 1f(e)=f ′(e).

2It is the number of arcs of type (xp,z ,n) saturated in one flow and not in the other.

6

Remark that since we passed on unit of flow in γ to construct f + γ, we have
for any e ∈ X, f(e) = f ′(e) if and only if (f + γ)(e) 6= f ′(e). Hence

w(γ) =
1

2
(w(γ) + w(γ))

=
1

2

(∑
e∈X,e∈γ

−1f(e)6=f ′(e) + 1f(e)=f ′(e)

+
∑

e∈X,e∈γ
1(f+γ)(e)6=f ′(e) + 1(f+γ)(e)=f ′(e)

)
.

Plugging this in the previous equation, we find that

d(f, f ′) + w(γ) = d(f + γ, f ′).

This result suggests that given some flow fi, we just need to find a negative
cycle γ in Gfi to construct fi+1 as fi + γ. The following proposition ensures
that this greedy strategy reaches an optimal flow.

Proposition 3. For any maximal flow f , Gf contains a negative cycle if and
only if there exists a maximal flow f∗ in G such that d(f∗, f ′) < d(f, f ′).

Proof. Suppose that there is such flow f∗. Define the oriented multigraph
Mf,f∗ = (V,EM) with the same vertex set V as in G, and for every v1, v2 ∈ V ,
EM contains (f∗(v1, v2)−f(v1, v2))+ copies of the arc (v1, v2). For every vertex
v, its total degree (meaning its outer degree minus its inner degree) is equal to

deg v =
∑
u∈V

(f∗(v, u)− f(v, u))+ −
∑
u∈V

(f∗(u, v)− f(u, v))+

=
∑
u∈V

f∗(v, u)− f(v, u) =
∑
u∈V

f∗(v, u)−
∑
u∈V

f(v, u).

The last two sums are zero for any inner vertex since f, f∗ are flows, and they
are equal on the source and sink since the two flows are both maximal and have
hence the same value. Thus, deg v = 0 for every vertex v.

This implies that the multigraph Mf,f∗ is the union of disjoint simple cycles.
f can be transformed into f∗ by pushing a mass 1 along all these cycles in any
order. Since d(f∗, f ′) < d(f, f ′), there must exists one of these simple cycles γ
with d(f + γ, f ′) < d(f, f ′). Finally, since we can push a mass in f along γ, it
must appear in Gf . Hence γ is a cycle of Gf with negative weight.

In the next section we describe the corresponding algorithm. Instead of
discovering only one cycle, we are allowed to discover a set Γ of disjoint negative
cycles.

7

Algorithm

1: function Minimize transfer load(G, f , α′)
2: Build the graph Gf
3: Γ← Detect Negative Cycles(Gf)
4: while Γ 6= ∅ do
5: for all γ ∈ Γ do
6: f ← f + γ
7: end for
8: Update Gf
9: Γ← Detect Negative Cycles(Gf)

10: end while
11: return f
12: end function

Complexity

The distance d(f, f ′) is bounded by the maximal number of differences in the
associated assignment. If these assignment are totally disjoint, this distance is
2ρNP . At every iteration of the While loop, the distance decreases, so there is
at most O(ρNP) = O(P) iterations.

The detection of negative cycle is done with the Bellman-Ford algorithm,
whose complexity should normally be O(#E#V). In our case, it amounts
to O(P 2ZN). Multiplied by the complexity of the outer loop, it amounts to
O(P 3ZN) which is a lot when the number of partitions and nodes starts to be
large. To avoid that, we adapt the Bellman-Ford algorithm.

The Bellman-Ford algorithm runs #V iterations of an outer loop, and an
inner loop over E. The idea is to compute the shortest paths from a source
vertex v to all other vertices. After k iterations of the outer loop, the algorithm
has computed all shortest path of length at most k. All simple paths have length
at most #V −1, so if there is an update in the last iteration of the loop, it means
that there is a negative cycle in the graph. The observation that will enable us
to improve the complexity is the following:

Proposition 4. In the graph Gf (and G), all simple paths have a length at
most 4N .

Proof. Since f is a maximal flow, there is no outgoing edge from s in Gf . One
can thus check than any simple path of length 4 must contain at least two node
of type n. Hence on a path, at most 4 arcs separate two successive nodes of
type n.

Thus, in the absence of negative cycles, shortest paths in Gf have length at
most 4N . So we can do only 4N+1 iterations of the outer loop in Bellman-Ford
algorithm. This makes the complexity of the detection of one set of cycle to be
O(N#E) = O(N2P).

With this improvement, the complexity of the whole algorithm is, in the
worst case, O(N2P 2). However, since we detect several cycles at once and

8

we start with a flow that might be close to the previous one, the number of
iterations of the outer loop might be smaller in practice.

Metrics

We can display the node and zone utilization ratio, by dividing the flow passing
through them divided by their outgoing capacity. In particular, we can pinpoint
saturated nodes and zones (i.e. used at their full potential).

We can display the distance to the previous assignment, and the number of
partition transfers.

3 Properties of an optimal 3-strict assignment

3.1 Optimal assignment

For every zone z ∈ Z, define the zone capacity cz =
∑
v,zv=z cv and define

C =
∑
v cv =

∑
z cz.

One can check that the best we could be doing to maximize s∗ would be to use
the nodes proportionally to their capacity. This would yield s∗ = C/(3N). This
is not possible because of (i) redundancy constraints and (ii) integer rounding
but it gives and upper bound.

Optimal utilization

We call an utilization a collection of non-negative integers (nv)v∈V such that∑
v nv = 3N and for every zone z,

∑
v∈z nv ≤ N . We call such utilization

optimal if it maximizes s∗.
We start by computing a node sub-utilization (n̂v)v∈V such that for every

zone z,
∑
v∈z n̂v ≤ N and we show that there is an optimal utilization respecting

the constraints and such that n̂v ≤ nv for every node.
Assume that there is a zone z0 such that cz0/C ≥ 1/3. Then for any v ∈ z0,

we define

n̂v =

⌊
cv
cz0

N

⌋
.

This choice ensures for any such v that

cv
n̂v
≥ cz0

N
≥ C

3N

which is the universal upper bound on s∗. Hence any optimal utilization (nv)
can be modified to another optimal utilization such that nv ≥ n̂v

Because z0 cannot store more than N partition occurences, in any assign-
ment, at least 2N partitions must be assignated to the zones Z \ {z0}. Let
C0 = C− cz0 . Suppose that there exists a zone z1 6= z0 such that cz1/C0 ≥ 1/2.
Then, with the same argument as for z0, we can define

n̂v =

⌊
cv
cz1

N

⌋

9

for every v ∈ z1.
Now we can assign the remaining partitions. Let (N̂ , Ĉ) to be

� (3N,C) if we did not find any z0;

� (2N,C − cz0) if there was a z0 but no z1;

� (N,C − cz0 − cz1) if there was a z0 and a z1.

Then at least N̂ partitions must be spread among the remaining zones. Hence
s∗ is upper bounded by Ĉ/N̂ and without loss of generality, we can define, for
every node that is not in z0 nor z1,

n̂v =

⌊
cv

Ĉ
N̂

⌋
.

We constructed a sub-utilization n̂v. Now notice that 3N −
∑
v n̂v ≤ #V

where #V denotes the number of nodes. We can iteratively pick a node v∗ such
that

�

∑
v∈zv∗ n̂v < N where zv∗ is the zone of v∗;

� v∗ maximizes the quantity cv/(n̂v + 1) among the vertices satisfying the
first condition (i.e. not in a saturated zone).

We iterate these instructions until
∑
v n̂v = 3N , and at this stage we define

(nv) = (n̂v). It is easy to prove by induction that at every step, there is an
optimal utilization that is pointwise larger than n̂v, and in particular, that (nv)
is optimal.

Existence of an optimal assignment

As for now, the optimal utilization that we obtained is just a vector of numbers
and it is not clear that it can be realized as the utilization of some concrete
assignment. Here is a way to get a concrete assignment.

Define 3N tokens t1, . . . , t3N ∈ V as follows:

� Enumerate the zones z of Z in any order;

� enumerate the nodes v of z in any order;

� repeat nv times the token v.

Then for 1 ≤ i ≤ N , define the triplet Ti to be (ti, ti+N , ti+2N). Since the same
nodes of a zone appear contiguously, the three nodes of a triplet must belong
to three distinct zones.

However simple, this solution to go from an utilization to an assignment has
the drawback of not spreading the triplets: a node will tend to be associated to
the same two other nodes for many partitions. Hence, during data transfer, it
will tend to use only two link, instead of spreading the bandwith use over many
other links to other nodes. To achieve this goal, we will reframe the search of
an assignment as a flow problem. and in the flow algorithm, we will introduce
randomness in the order of exploration. This will be sufficient to obtain a good
dispersion of the triplets.

10

Figure 1: On the left, the creation of a concrete assignment with the naive
approach of repeating tokens. On the right, the zones containing the nodes.

Assignment as a maximum flow problem

We describe the flow problem via its graph (X,E) where X is a set of vertices,
and E are directed weighted edges between the vertices. For every zone z, define
nz =

∑
v∈z nv.

The set of vertices X contains the source s and the sink t; a vertex xz for
every zone z ∈ Z, and a vertex yi for every partition index 1 ≤ i ≤ N .

The set of edges E contains

� the edge (s,xz, nz) for every zone z ∈ Z;

� the edge (xz,yi, 1) for every zone z ∈ Z and partition 1 ≤ i ≤ N ;

� the edge (yi, t, 3) for every partition 1 ≤ i ≤ N .

We first show the equivalence between this problem and and the construction
of an assignment. Given some optimal assignment (nv), define the flow f : E →
N that saturates every edge from s or to t, takes value 1 on the edge between
xz and yi if partition i is stored in some node of the zone z, and 0 otherwise.
One can easily check that f thus defined is indeed a flow and is maximum.

Figure 2: Flow problem to compute and optimal assignment.

11

Reciprocally, by the existence of maximum flows constructed from optimal
assignments, any maximum flow must saturate the edges linked to the source
or the sink. It can only take value 0 or 1 on the other edge, and every parti-
tion vertex is associated to exactly three distinct zone vertices. Every zone is
associated to exactly nz partitions.

A maximum flow can be constructed using, for instance, Dinic’s algorithm.
This algorithm works by discovering augmenting path to iteratively increase
the flow. During the exploration of the graph to find augmenting path, we can
shuffle the order of enumeration of the neighbours to spread the associations
between zones and partitions.

Once we have such association, we can randomly distribute the nz edges
picked for every zone z to its nodes v ∈ z such that every such v gets nz edges.
This defines an optimal assignment of partitions to nodes.

3.2 Minimal transfer

Assume that there was a previous assignment (T ′i)1≤i≤N corresponding to uti-
lizations (n′v)v∈V . We would like the new computed assignment (Ti)1≤i≤N from
some (nv)v∈V to minimize the number of partitions that need to be transferred.
We can imagine two different objectives corresponding to different hypotheses:

Transfers between different zones cost much more than inside a zone. (H3A)

Changing zone is not the largest cost when transferring a partition. (H3B)

In case A, our goal will be to minimize the number of changes of zone in the
assignment of partitions to zone. More formally, we will maximize the quantity

QZ :=
∑

1≤i≤N

#{z ∈ Z | z ∩ Ti 6= ∅, z ∩ T ′i 6= ∅}.

In case B, our goal will be to minimize the number of changes of nodes in
the assignment of partitions to nodes. We will maximize the quantity

QV :=
∑

1≤i≤N

#(Ti ∩ T ′i).

It is tempting to hope that there is a way to maximize both quantity, that
having the least discrepancy in terms of nodes will lead to the least discrepancy
in terms of zones. But this is actually wrong! We propose the following counter-
example to convince the reader:

We consider eight nodes a, a′, b, c, d, d′, e, e′ belonging to five different zones
{a, a′}, {b}, {c}, {d, d′}, {e, e′}. We take three partitions (N = 3), that are orig-
inally assigned with some utilization (n′v)v∈V as follows:

T ′1 = (a, b, c) T ′2 = (a′, b, d) T ′3 = (b, c, e).

12

This assignment, with updated utilizations (nv)v∈V minimizes the number of
zone changes:

T1 = (d, b, c) T2 = (a, b, d) T3 = (b, c, e′).

This one, with the same utilization, minimizes the number of node changes:

T1 = (a, b, c) T2 = (e′, b, d) T3 = (b, c, d′).

One can check that in this case, it is impossible to minimize both the number
of zone and node changes.

Because of the redundancy constraint, we cannot use a greedy algorithm to
just replace nodes in the triplets to try to get the new utilization rate: this
could lead to blocking situation where there is still a hole to fill in a triplet but
no available node satisfies the zone separation constraint. To circumvent this
issue, we propose an algorithm based on finding cycles in a graph encoding of
the assignment. As in section 3.1, we can explore the neigbours in a random
order in the graph algorithms, to spread the triplets distribution.

A) Minimizing the zone discrepancy

First, notice that, given an assignment of partitions to zones, it is easy to deduce
an assignment to nodes that minimizes the number of transfers for this zone
assignment: For every zone z and every node v ∈ z, pick in any way a set Pv
of partitions that where assigned to v in T ′, to zv in T , with the cardinality of
Pv smaller than nv. Once all these sets are chosen, complement the assignment
to reach the right utilization for every node. If #Pv > nv, it means that all the
partitions that could stay in v (i.e. that were already in v and are still assigned
to its zone) do stay in v. If #Pv = nv, then nv partitions stay in v, which is the
number of partitions that need to be in v in the end. In both cases, we could
not hope for better given the partition to zone assignment.

Our goal now is to find a assignment of partitions to zones that minimizes
the number of zone transfers. To do so we are going to represent an assignment
as a graph.

Let GT = (X,ET) be the directed weighted graph with vertices (xi)1≤i≤N
and (yz)z∈Z . For any 1 ≤ i ≤ N and z ∈ Z, ET contains the arc:

� (xi,yz,+1), if z appears in T ′i and Ti;

� (xi,yz,−1), if z appears in Ti but not in T ′i ;

� (yz,xi,−1), if z appears in T ′i but not in Ti;

� (yz,xi,+1), if z does not appear in T ′i nor in Ti.

In other words, the orientation of the arc encodes whether partition i is stored in
zone z in the assignment T and the weight ±1 encodes whether this corresponds
to what happens in the assignment T ′.

13

Figure 3: On the left: the graph GT encoding an assignment to minimize the
zone discrepancy. On the right: the graph GT encoding an assignment to min-
imize the node discrepancy.

Notice that at every partition, there are three outgoing arcs, and at every
zone, there are nz incoming arcs. Moreover, if w(e) is the weight of an arc e,
define the weight of GT by

w(GT) :=
∑
e∈E

w(e) = #Z ×N − 4
∑

1≤i≤N

#{z ∈ Z | z ∩ Ti = ∅, z ∩ T ′i 6= ∅}

= #Z ×N − 4
∑

1≤i≤N

3−#{z ∈ Z | z ∩ Ti 6= ∅, z ∩ T ′i 6= ∅}

= (#Z − 12)N + 4QZ .

Hence maximizing QZ is equivalent to maximizing w(GT).
Assume that their exist some assignment T ∗ with the same utilization (nv)v∈V .

Define GT∗ similarly and consider the set EDiff = ET \ET∗ of arcs that appear
only in GT . Since all vertices have the same number of incoming arcs in GT and
GT∗ , the vertices of the graph (X,EDiff) must all have the same number num-
ber of incoming and outgoing arrows. So EDiff can be expressed as a union of
disjoint cycles. Moreover, the edges of EDiff must appear in ET∗ with reversed
orientation and opposite weight. Hence, we have

w(GT)− w(GT∗) = 2
∑

e∈EDiff

w(e).

Hence, if T is not optimal, there exists some T ∗ with w(GT) < w(GT∗), and by
the considerations above, there must exist a cycle in EDiff , and hence in GT , with
negative weight. If we reverse the edges and weights along this cycle, we obtain
some graph. Since we did not change the incoming degree of any vertex, this is
the graph encoding of some valid assignment T+ such that w(GT+) > w(GT).
We can iterate this operation until there is no other assignment T ∗ with larger
weight, that is until we obtain an optimal assignment.

14

B) Minimizing the node discrepancy

We will follow an approach similar to the one where we minimize the zone dis-
crepancy. Here we will directly obtain a node assignment from a graph encoding.

Let GT = (X,ET) be the directed weighted graph with vertices (xi)1≤i≤N ,
(yz,i)z∈Z,1≤i≤N and (uv)v∈V . For any 1 ≤ i ≤ N and z ∈ Z, ET contains the
arc:

� (xi,yz,i, 0), if z appears in Ti;

� (yz,i,xi, 0), if z does not appear in Ti.

For any 1 ≤ i ≤ N and v ∈ V , ET contains the arc:

� (yzv,i,uv,+1), if v appears in T ′i and Ti;

� (yzv,i,uv,−1), if v appears in Ti but not in T ′i ;

� (uv,yzv,i,−1), if v appears in T ′i but not in Ti;

� (uv,yzv,i,+1), if v does not appear in T ′i nor in Ti.

Every vertex xi has outgoing degree 3, every vertex yz,v has outgoing degree 1,
and every vertex uv has incoming degree nv. Remark that any graph respecting
these degree constraints is the encoding of a valid assignment with utilizations
(nv)v∈V , in particular no partition is stored in two nodes of the same zone.

We define w(GT) similarly:

w(GT) :=
∑
e∈ET

w(e) = #V ×N − 4
∑

1≤i≤N

3−#(Ti ∩ T ′i)

= (#V − 12)N + 4QV .

Exactly like in the previous section, the existence of an assignment with
larger weight implies the existence of a negatively weighted cycle in GT . Re-
versing this cycle gives us the encoding of a valid assignment with a larger
weight. Iterating this operation yields an optimal assignment.

C) Linear combination of both criteria

In the graph GT defined in the previous section, instead of having weights 0
and ±1, we could be having weights ±α between x and y vertices, and weights
±β between y and u vertices, for some α, β > 0 (we have positive weight if the
assignment corresponds to T ′ and negative otherwise). Then

w(GT) =
∑
e∈ET

w(e) = α
(
(#Z − 12)N + 4QZ

)
+ β

(
(#V − 12)N + 4QV

)
= const + 4(αQZ + βQV).

So maximizing the weight of such graph encoding would be equivalent to max-
imizing a linear combination of QZ and QV .

15

3.3 Algorithm

We give a high level description of the algorithm to compute an optimal 3-strict
assignment. The operations appearing at lines 1,2,4 are respectively described
by Algorithms 2,3 and 4.

Algorithm 1 Optimal 3-strict assignment

1: function Optimal 3-strict assignment(N , (cv)v∈V , T ′)
2: (nv)v∈V ← Compute optimal utilization(N , (cv)v∈V)
3: (Ti)1≤i≤N ← Compute candidate assignment(N , (nv)v∈V)
4: if there was a previous assignment T ′ then
5: T ← Minimization of transfers((Ti)1≤i≤N , (T ′i)1≤i≤N)
6: end if
7: return T .
8: end function

We give some considerations of worst case complexity for these algorithms.
In the following, we assume N > #V > #Z. The complexity of Algorithm 1 is
O(N3#Z) if we assume (H3A) and O(N3#Z#V) if we assume (H3B).

Algorithm 2 can be implemented with complexity O(#V 2). The complexity
of the function call at line 2 is O(#V). The difference between the sum of
the subutilizations and 3N is at most the sum of the rounding errors when
computing the n̂v. Hence it is bounded by #V and the loop at line 3 is iterated
at most #V times. Finding the minimizing v at line 4 takes O(#V) operations
(naively, we could also use a heap).

Algorithm 3 can be implemented with complexity O(N3 × #Z). The flow
graph has O(N + #Z) vertices and O(N × #Z) edges. Dinic’s algorithm has
complexity O(#Vertices2#Edges) hence in our case it is O(N3 ×#Z).

Algorithm 4 can be implented with complexity O(N3#Z) under (H3A) and
O(N3#Z#V) under (H3B). The graph GT has O(N) vertices and O(N ×
#Z) edges under assumption (H3A) and respectively O(N ×#Z) vertices and
O(N × #V) edges under assumption (H3B). The loop at line 3 is iterated at
most N times since the distance between T and T ′ decreases at every iteration.
Bellman-Ford algorithm has complexity O(#Vertices#Edges), which in our case
amounts to O(N2#Z) under (H3A) and O(N2#Z#V) under (H3B).

16

Algorithm 2 Computation of the optimal utilization

1: function Compute optimal utilization(N , (cv)v∈V)
2: (n̂v)v∈V ← Compute subutilization(N , (cv)v∈V)
3: while

∑
v∈V n̂v < 3N do

4: Pick v ∈ V minimizing cv
n̂v+1 and such that

∑
v′∈zv n̂v′ < N

5: n̂v ← n̂v + 1
6: end while
7: return (n̂v)v∈V
8: end function
9:

10: function Compute subutilization(N , (cv)v∈V)
11: R← 3
12: for v ∈ V do
13: n̂v ← unset
14: end for
15: for z ∈ Z do
16: cz ←

∑
v∈z cv

17: end for
18: C ←

∑
z∈Z cz

19: while ∃z ∈ Z such that R× cz > C do
20: for v ∈ z do
21: n̂v ←

⌊
cv
cz
N
⌋

22: end for
23: C ← C − cz
24: R← R− 1
25: end while
26: for v ∈ V do
27: if n̂v = unset then
28: n̂v ←

⌊
Rcv
C N

⌋
29: end if
30: end for
31: return (n̂v)v∈V
32: end function

Algorithm 3 Computation of a candidate assignment

1: function Compute candidate assignment(N , (nv)v∈V)
2: Compute the flow graph G
3: Compute the maximal flow f using Dinic’s algorithm with randomized

neighbours enumeration
4: Construct the assignment (Ti)1≤i≤N from f
5: return (Ti)1≤i≤N
6: end function

17

Algorithm 4 Minimization of the number of transfers

1: function Minimization of transfers((Ti)1≤i≤N , (T ′i)1≤i≤N)
2: Construct the graph encoding GT
3: repeat
4: Find a negative cycle γ using Bellman-Ford algorithm on GT
5: Reverse the orientations and weights of edges in γ
6: until no negative cycle is found
7: Update (Ti)1≤i≤N from GT
8: return (Ti)1≤i≤N
9: end function

4 Computation of a 3-non-strict assignment

4.1 Choices of optimality

In this mode, we primarily want to store every partition on three nodes, and
only secondarily try to spread the nodes among different zone. So we make the
choice of not taking the zone repartition in the criterion of optimality.

We try to maximize s∗ defined in (OPT). So we can compute the optimal
utilizations (nv)v∈V with the only constraint that nv ≤ N for every node v.
As in the previous section, we start with a sub-utilization proportional to cv
(and capped at N), and we iteratively increase the n̂v that is less than N and
maximizes the quantity cv/(n̂v + 1), until the total sum is 3N .

4.2 Computation of a candidate assignment

To compute a candidate assignment (that does not optimize zone spreading nor
distance to a previous assignment yet), we can use the folowing flow problem.

Define the oriented weighted graph (X,E). The set of vertices X contains
the source s, the sink t, vertices xp,u

+
p ,u

−
p for every partition p, vertices yp,z

for every partition p and zone z, and vertices zv for every node v.
The set of edges is composed of the following arcs:

� (s,xp, 3) for every partition p;

� (xp,u
+
p , 3) for every partition p;

� (xp,u
−
p , 2) for every partition p;

� (u+
p ,yp,z, 1) for every partition p and zone z;

� (u−p ,yp,z, 2) for every partition p and zone z;

� (yp,z,zv, 1) for every partition p, zone z and node v ∈ z;

� (zv, t, nv) for every node v;

18

One can check that any maximal flow in this graph corresponds to an as-
signment of partitions to nodes. In such a flow, all the arcs from s and to t are
saturated. The arc from yp,z to zv is saturated if and only if p is associated
to v. Finally the flow from xp to yp,z can go either through u+

p or u−p .

4.3 Maximal spread and minimal transfers

Notice that if the arc u+
p yp,z is not saturated but there is some flow in u−p yp,z,

then it is possible to transfer a unit of flow from the path xpu
−
p yp,z to the path

xpu
+
p yp,z. So we can always find an equivalent maximal flow f∗ that uses the

path through u−p only if the path through u+
p is saturated.

We will use this fact to consider the amount of flow going through the vertices
u+ as a measure of how well the partitions are spread over nodes belonging to
different zones. If the partition p is associated to 3 different zones, then a flow
of 3 will cross u+

p in f∗ (i.e. a flow of 0 will cross u+
p). If p is associated to two

zones, a flow of 2 will cross u+
p . If p is associated to a single zone, a flow of 1

will cross u+
p .

Let N1, N2, N3 be the number of partitions associated to respectively 1,2
and 3 distinct zones. We will optimize a linear combination of these variables
using the discovery of positively weighted circuits in a graph.

At the same step, we will also optimize the distance to a previous assignment
T ′. Let α > β > γ ≥ 0 be three parameters.

Given the flow f , letGf = (X ′, Ef) be the multi-graph whereX ′ = X\{s, t}.
The set Ef is composed of the arcs:

� As many arcs from (xp,u
+
p , α), (xp,u

+
p , β), (xp,u

+
p , γ) (selected in this or-

der) as there is flow crossing u+
p in f ;

� As many arcs from (u+
p ,xp,−γ), (u+

p ,xp,−β), (u+
p ,xp,−α) (selected in

this order) as there is flow crossing u−p in f ;

� As many copies of (xp,u
−
p , 0) as there is flow through u−p ;

� As many copies of (u−p ,xp, 0) so that the number of arcs between these
two vertices is 2;

� (u+
p ,yp,z, 0) if the flow between these vertices is 1, and the opposite arc

otherwise;

� as many copies of (u−p ,yp,z, 0) as the flow between these vertices, and as
many copies of the opposite arc as 2 − the flow;

� (yp,z, zv,±1) if it is saturated in f , with +1 if v ∈ T ′p and −1 otherwise;

� (zv,yp,z,±1) if it is not saturated in f , with +1 if v /∈ T ′p and−1 otherwise.

To summarize, arcs are oriented left to right if they correspond to a presence of
flow in f , and right to left if they correspond to an absence of flow. They are

19

positively weighted if we want them to stay at their current state, and negatively
if we want them to switch. Let us compute the weight of such graph.

w(Gf) =
∑
e∈Ef

w(ef)

= (α− β − γ)N1 + (α+ β − γ)N2 + (α+ β + γ)N3

+ #V ×N − 4
∑
p

3−#(Tp ∩ T ′p)

= (#V − 12 + α− β − γ)×N + 4QV + 2βN2 + 2(β + γ)N3

As for the mode 3-strict, one can check that the difference of two such graphs
corresponding to the same (nv) is always eulerian. Hence we can navigate in
this class with the same greedy algorithm that discovers positive cycles and flips
them.

The function that we optimize is

2QV + βN2 + (β + γ)N3.

The choice of parameters β and γ should be lead by the following question:
For β, where to put the tradeoff between zone dispersion and distance to the
previous configuration? For γ, do we prefer to have more partitions spread
between 2 zones, or have less between at least 2 zones but more between 3
zones.

The quantity QV varies between 0 and 3N , it should be of order N . The
quantity N2 +N3 should also be of order N (it is exactly N in the strict mode).
So the two terms of the function are comparable.

References

[1] S. Even and R. E. Tarjan, “Network flow and testing graph connectivity,”
SIAM journal on computing, vol. 4, no. 4, pp. 507–518, 1975.

20

