//! This module deals with graph algorithms. //! It is used in layout.rs to build the partition to node assignation. use rand::prelude::SliceRandom; use std::cmp::{max, min}; use std::collections::VecDeque; use std::collections::HashMap; //Vertex data structures used in all the graphs used in layout.rs. //usize parameters correspond to node/zone/partitions ids. //To understand the vertex roles below, please refer to the formal description //of the layout computation algorithm. #[derive(Clone,Copy,Debug, PartialEq, Eq, Hash)] pub enum Vertex{ Source, Pup(usize), //The vertex p+ of partition p Pdown(usize), //The vertex p- of partition p PZ(usize,usize), //The vertex corresponding to x_(partition p, zone z) N(usize), //The vertex corresponding to node n Sink } //Edge data structure for the flow algorithm. //The graph is stored as an adjacency list #[derive(Clone, Copy, Debug)] pub struct FlowEdge { cap: u32, //flow maximal capacity of the edge flow: i32, //flow value on the edge dest: usize, //destination vertex id rev: usize, //index of the reversed edge (v, self) in the edge list of vertex v } //Edge data structure for the detection of negative cycles. //The graph is stored as a list of edges (u,v). #[derive(Clone, Copy, Debug)] pub struct WeightedEdge { w: i32, //weight of the edge dest: usize, } pub trait Edge: Clone + Copy {} impl Edge for FlowEdge {} impl Edge for WeightedEdge {} //Struct for the graph structure. We do encapsulation here to be able to both //provide user friendly Vertex enum to address vertices, and to use usize indices //and Vec instead of HashMap in the graph algorithm to optimize execution speed. pub struct Graph{ vertextoid : HashMap, idtovertex : Vec, graph : Vec< Vec > } pub type CostFunction = HashMap<(Vertex,Vertex), i32>; impl Graph{ pub fn new(vertices : &[Vertex]) -> Self { let mut map = HashMap::::new(); for i in 0..vertices.len() { map.insert(vertices[i] , i); } return Graph:: { vertextoid : map, idtovertex: vertices.to_vec(), graph : vec![Vec::< E >::new(); vertices.len() ] } } } impl Graph{ //This function adds a directed edge to the graph with capacity c, and the //corresponding reversed edge with capacity 0. pub fn add_edge(&mut self, u: Vertex, v:Vertex, c: u32) -> Result<(), String>{ if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) { return Err("The graph does not contain the provided vertex.".to_string()); } let idu = self.vertextoid[&u]; let idv = self.vertextoid[&v]; let rev_u = self.graph[idu].len(); let rev_v = self.graph[idv].len(); self.graph[idu].push( FlowEdge{cap: c , dest: idv , flow: 0, rev : rev_v} ); self.graph[idv].push( FlowEdge{cap: 0 , dest: idu , flow: 0, rev : rev_u} ); Ok(()) } //This function returns the list of vertices that receive a positive flow from //vertex v. pub fn get_positive_flow_from(&self , v:Vertex) -> Result< Vec , String>{ if !self.vertextoid.contains_key(&v) { return Err("The graph does not contain the provided vertex.".to_string()); } let idv = self.vertextoid[&v]; let mut result = Vec::::new(); for edge in self.graph[idv].iter() { if edge.flow > 0 { result.push(self.idtovertex[edge.dest]); } } return Ok(result); } //This function returns the value of the flow incoming to v. pub fn get_inflow(&self , v:Vertex) -> Result< i32 , String>{ if !self.vertextoid.contains_key(&v) { return Err("The graph does not contain the provided vertex.".to_string()); } let idv = self.vertextoid[&v]; let mut result = 0; for edge in self.graph[idv].iter() { result += max(0,self.graph[edge.dest][edge.rev].flow); } return Ok(result); } //This function returns the value of the flow outgoing from v. pub fn get_outflow(&self , v:Vertex) -> Result< i32 , String>{ if !self.vertextoid.contains_key(&v) { return Err("The graph does not contain the provided vertex.".to_string()); } let idv = self.vertextoid[&v]; let mut result = 0; for edge in self.graph[idv].iter() { result += max(0,edge.flow); } return Ok(result); } //This function computes the flow total value by computing the outgoing flow //from the source. pub fn get_flow_value(&mut self) -> Result { return self.get_outflow(Vertex::Source); } //This function shuffles the order of the edge lists. It keeps the ids of the //reversed edges consistent. fn shuffle_edges(&mut self) { let mut rng = rand::thread_rng(); for i in 0..self.graph.len() { self.graph[i].shuffle(&mut rng); //We need to update the ids of the reverse edges. for j in 0..self.graph[i].len() { let target_v = self.graph[i][j].dest; let target_rev = self.graph[i][j].rev; self.graph[target_v][target_rev].rev = j; } } } //Computes an upper bound of the flow n the graph pub fn flow_upper_bound(&self) -> u32{ let idsource = self.vertextoid[&Vertex::Source]; let mut flow_upper_bound = 0; for edge in self.graph[idsource].iter(){ flow_upper_bound += edge.cap; } return flow_upper_bound; } //This function computes the maximal flow using Dinic's algorithm. It starts with //the flow values already present in the graph. So it is possible to add some edge to //the graph, compute a flow, add other edges, update the flow. pub fn compute_maximal_flow(&mut self) -> Result<(), String> { if !self.vertextoid.contains_key(&Vertex::Source) { return Err("The graph does not contain a source.".to_string()); } if !self.vertextoid.contains_key(&Vertex::Sink) { return Err("The graph does not contain a sink.".to_string()); } let idsource = self.vertextoid[&Vertex::Source]; let idsink = self.vertextoid[&Vertex::Sink]; let nb_vertices = self.graph.len(); let flow_upper_bound = self.flow_upper_bound(); //To ensure the dispersion of the associations generated by the //assignation, we shuffle the neighbours of the nodes. Hence, //the vertices do not consider their neighbours in the same order. self.shuffle_edges(); //We run Dinic's max flow algorithm loop { //We build the level array from Dinic's algorithm. let mut level = vec![None; nb_vertices]; let mut fifo = VecDeque::new(); fifo.push_back((idsource, 0)); while !fifo.is_empty() { if let Some((id, lvl)) = fifo.pop_front() { if level[id] == None { //it means id has not yet been reached level[id] = Some(lvl); for edge in self.graph[id].iter() { if edge.cap as i32 - edge.flow > 0 { fifo.push_back((edge.dest, lvl + 1)); } } } } } if level[idsink] == None { //There is no residual flow break; } //Now we run DFS respecting the level array let mut next_nbd = vec![0; nb_vertices]; let mut lifo = VecDeque::new(); lifo.push_back((idsource, flow_upper_bound)); while let Some((id_tmp, f_tmp)) = lifo.back() { let id = *id_tmp; let f = *f_tmp; if id == idsink { //The DFS reached the sink, we can add a //residual flow. lifo.pop_back(); while !lifo.is_empty() { if let Some((id, _)) = lifo.pop_back() { let nbd = next_nbd[id]; self.graph[id][nbd].flow += f as i32; let id_rev = self.graph[id][nbd].dest; let nbd_rev = self.graph[id][nbd].rev; self.graph[id_rev][nbd_rev].flow -= f as i32; } } lifo.push_back((idsource, flow_upper_bound)); continue; } //else we did not reach the sink let nbd = next_nbd[id]; if nbd >= self.graph[id].len() { //There is nothing to explore from id anymore lifo.pop_back(); if let Some((parent, _)) = lifo.back() { next_nbd[*parent] += 1; } continue; } //else we can try to send flow from id to its nbd let new_flow = min(f, self.graph[id][nbd].cap - self.graph[id][nbd].flow as u32 ); if let (Some(lvldest), Some(lvlid)) = (level[self.graph[id][nbd].dest], level[id]){ if lvldest <= lvlid || new_flow == 0 { //We cannot send flow to nbd. next_nbd[id] += 1; continue; } } //otherwise, we send flow to nbd. lifo.push_back((self.graph[id][nbd].dest, new_flow)); } } Ok(()) } //This function takes a flow, and a cost function on the edges, and tries to find an // equivalent flow with a better cost, by finding improving overflow cycles. It uses // as subroutine the Bellman Ford algorithm run up to path_length. // We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and only // one needs to be present in the cost function. pub fn optimize_flow_with_cost(&mut self , cost: &CostFunction, path_length: usize ) -> Result<(),String>{ //We build the weighted graph g where we will look for negative cycle let mut gf = self.build_cost_graph(cost)?; let mut cycles = gf.list_negative_cycles(path_length); while cycles.len() > 0 { //we enumerate negative cycles for c in cycles.iter(){ for i in 0..c.len(){ //We add one flow unit to the edge (u,v) of cycle c let idu = self.vertextoid[&c[i]]; let idv = self.vertextoid[&c[(i+1)%c.len()]]; for j in 0..self.graph[idu].len(){ //since idu appears at most once in the cycles, we enumerate every //edge at most once. let edge = self.graph[idu][j]; if edge.dest == idv { self.graph[idu][j].flow += 1; self.graph[idv][edge.rev].flow -=1; break; } } } } gf = self.build_cost_graph(cost)?; cycles = gf.list_negative_cycles(path_length); } return Ok(()); } //Construct the weighted graph G_f from the flow and the cost function fn build_cost_graph(&self , cost: &CostFunction) -> Result,String>{ let mut g = Graph::::new(&self.idtovertex); let nb_vertices = self.idtovertex.len(); for i in 0..nb_vertices { for edge in self.graph[i].iter() { if edge.cap as i32 -edge.flow > 0 { //It is possible to send overflow through this edge let u = self.idtovertex[i]; let v = self.idtovertex[edge.dest]; if cost.contains_key(&(u,v)) { g.add_edge(u,v, cost[&(u,v)])?; } else if cost.contains_key(&(v,u)) { g.add_edge(u,v, -cost[&(v,u)])?; } else{ g.add_edge(u,v, 0)?; } } } } return Ok(g); } } impl Graph{ //This function adds a single directed weighted edge to the graph. pub fn add_edge(&mut self, u: Vertex, v:Vertex, w: i32) -> Result<(), String>{ if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) { return Err("The graph does not contain the provided vertex.".to_string()); } let idu = self.vertextoid[&u]; let idv = self.vertextoid[&v]; self.graph[idu].push( WeightedEdge{w: w , dest: idv} ); Ok(()) } //This function lists the negative cycles it manages to find after path_length //iterations of the main loop of the Bellman-Ford algorithm. For the classical //algorithm, path_length needs to be equal to the number of vertices. However, //for particular graph structures like our case, the algorithm is still correct //when path_length is the length of the longest possible simple path. //See the formal description of the algorithm for more details. fn list_negative_cycles(&self, path_length: usize) -> Vec< Vec > { let nb_vertices = self.graph.len(); //We start with every vertex at distance 0 of some imaginary extra -1 vertex. let mut distance = vec![0 ; nb_vertices]; //The prev vector collects for every vertex from where does the shortest path come let mut prev = vec![None; nb_vertices]; for _ in 0..path_length +1 { for id in 0..nb_vertices{ for e in self.graph[id].iter(){ if distance[id] + e.w < distance[e.dest] { distance[e.dest] = distance[id] + e.w; prev[e.dest] = Some(id); } } } } //If self.graph contains a negative cycle, then at this point the graph described //by prev (which is a directed 1-forest/functional graph) //must contain a cycle. We list the cycles of prev. let cycles_prev = cycles_of_1_forest(&prev); //Remark that the cycle in prev is in the reverse order compared to the cycle //in the graph. Thus the .rev(). return cycles_prev.iter().map(|cycle| cycle.iter().rev().map( |id| self.idtovertex[*id] ).collect() ).collect(); } } //This function returns the list of cycles of a directed 1 forest. It does not //check for the consistency of the input. fn cycles_of_1_forest(forest: &[Option]) -> Vec> { let mut cycles = Vec::>::new(); let mut time_of_discovery = vec![None; forest.len()]; for t in 0..forest.len(){ let mut id = t; //while we are on a valid undiscovered node while time_of_discovery[id] == None { time_of_discovery[id] = Some(t); if let Some(i) = forest[id] { id = i; } else{ break; } } if forest[id] != None && time_of_discovery[id] == Some(t) { //We discovered an id that we explored at this iteration t. //It means we are on a cycle let mut cy = vec![id; 1]; let id2 = id; while let Some(id2) = forest[id2] { if id2 != id { cy.push(id2); } else { break; } } cycles.push(cy); } } return cycles; } //==================================================================================== //==================================================================================== //==================================================================================== //==================================================================================== //==================================================================================== //==================================================================================== #[cfg(test)] mod tests { use super::*; #[test] fn test_flow() { let left_vec = vec![3; 8]; let right_vec = vec![0, 4, 8, 4, 8]; //There are asserts in the function that computes the flow } //maybe add tests relative to the matching optilization ? }