use std::cmp::Ordering; use std::collections::HashMap; use std::collections::HashSet; use hex::ToHex; use serde::{Deserialize, Serialize}; use garage_util::crdt::{AutoCrdt, Crdt, LwwMap}; use garage_util::data::*; use crate::graph_algo::*; use crate::ring::*; use std::convert::TryInto; //The Message type will be used to collect information on the algorithm. type Message = Vec; /// The layout of the cluster, i.e. the list of roles /// which are assigned to each cluster node #[derive(Clone, Debug, Serialize, Deserialize)] pub struct ClusterLayout { pub version: u64, pub replication_factor: usize, #[serde(default="default_one")] pub zone_redundancy: usize, //This attribute is only used to retain the previously computed partition size, //to know to what extent does it change with the layout update. #[serde(default="default_zero")] pub partition_size: u32, pub roles: LwwMap, /// node_id_vec: a vector of node IDs with a role assigned /// in the system (this includes gateway nodes). /// The order here is different than the vec stored by `roles`, because: /// 1. non-gateway nodes are first so that they have lower numbers holding /// in u8 (the number of non-gateway nodes is at most 256). /// 2. nodes that don't have a role are excluded (but they need to /// stay in the CRDT as tombstones) pub node_id_vec: Vec, /// the assignation of data partitions to node, the values /// are indices in node_id_vec #[serde(with = "serde_bytes")] pub ring_assignation_data: Vec, /// Role changes which are staged for the next version of the layout pub staging: LwwMap, pub staging_hash: Hash, } fn default_one() -> usize{ return 1; } fn default_zero() -> u32{ return 0; } const NB_PARTITIONS : usize = 1usize << PARTITION_BITS; #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)] pub struct NodeRoleV(pub Option); impl AutoCrdt for NodeRoleV { const WARN_IF_DIFFERENT: bool = true; } /// The user-assigned roles of cluster nodes #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)] pub struct NodeRole { /// Datacenter at which this entry belong. This information might be used to perform a better /// geodistribution pub zone: String, /// The (relative) capacity of the node /// If this is set to None, the node does not participate in storing data for the system /// and is only active as an API gateway to other nodes pub capacity: Option, /// A set of tags to recognize the node pub tags: Vec, } impl NodeRole { pub fn capacity_string(&self) -> String { match self.capacity { Some(c) => format!("{}", c), None => "gateway".to_string(), } } pub fn tags_string(&self) -> String { let mut tags = String::new(); if self.tags.len() == 0 { return tags } tags.push_str(&self.tags[0].clone()); for t in 1..self.tags.len(){ tags.push_str(","); tags.push_str(&self.tags[t].clone()); } return tags; } } impl ClusterLayout { pub fn new(replication_factor: usize, zone_redundancy: usize) -> Self { let empty_lwwmap = LwwMap::new(); let empty_lwwmap_hash = blake2sum(&rmp_to_vec_all_named(&empty_lwwmap).unwrap()[..]); ClusterLayout { version: 0, replication_factor, zone_redundancy, partition_size: 0, roles: LwwMap::new(), node_id_vec: Vec::new(), ring_assignation_data: Vec::new(), staging: empty_lwwmap, staging_hash: empty_lwwmap_hash, } } pub fn merge(&mut self, other: &ClusterLayout) -> bool { match other.version.cmp(&self.version) { Ordering::Greater => { *self = other.clone(); true } Ordering::Equal => { self.staging.merge(&other.staging); let new_staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]); let changed = new_staging_hash != self.staging_hash; self.staging_hash = new_staging_hash; changed } Ordering::Less => false, } } /// Returns a list of IDs of nodes that currently have /// a role in the cluster pub fn node_ids(&self) -> &[Uuid] { &self.node_id_vec[..] } pub fn num_nodes(&self) -> usize { self.node_id_vec.len() } /// Returns the role of a node in the layout pub fn node_role(&self, node: &Uuid) -> Option<&NodeRole> { match self.roles.get(node) { Some(NodeRoleV(Some(v))) => Some(v), _ => None, } } ///Returns the uuids of the non_gateway nodes in self.node_id_vec. pub fn useful_nodes(&self) -> Vec { let mut result = Vec::::new(); for uuid in self.node_id_vec.iter() { match self.node_role(uuid) { Some(role) if role.capacity != None => result.push(*uuid), _ => () } } return result; } ///Given a node uuids, this function returns the label of its zone pub fn get_node_zone(&self, uuid : &Uuid) -> Result { match self.node_role(uuid) { Some(role) => return Ok(role.zone.clone()), _ => return Err("The Uuid does not correspond to a node present in the cluster.".to_string()) } } ///Given a node uuids, this function returns its capacity or fails if it does not have any pub fn get_node_capacity(&self, uuid : &Uuid) -> Result { match self.node_role(uuid) { Some(NodeRole{capacity : Some(cap), zone: _, tags: _}) => return Ok(*cap), _ => return Err("The Uuid does not correspond to a node present in the cluster or this node does not have a positive capacity.".to_string()) } } ///Returns the sum of capacities of non gateway nodes in the cluster pub fn get_total_capacity(&self) -> Result { let mut total_capacity = 0; for uuid in self.useful_nodes().iter() { total_capacity += self.get_node_capacity(uuid)?; } return Ok(total_capacity); } /// Check a cluster layout for internal consistency /// returns true if consistent, false if error pub fn check(&self) -> bool { // Check that the hash of the staging data is correct let staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]); if staging_hash != self.staging_hash { return false; } // Check that node_id_vec contains the correct list of nodes let mut expected_nodes = self .roles .items() .iter() .filter(|(_, _, v)| v.0.is_some()) .map(|(id, _, _)| *id) .collect::>(); expected_nodes.sort(); let mut node_id_vec = self.node_id_vec.clone(); node_id_vec.sort(); if expected_nodes != node_id_vec { return false; } // Check that the assignation data has the correct length if self.ring_assignation_data.len() != (1 << PARTITION_BITS) * self.replication_factor { return false; } // Check that the assigned nodes are correct identifiers // of nodes that are assigned a role // and that role is not the role of a gateway nodes for x in self.ring_assignation_data.iter() { if *x as usize >= self.node_id_vec.len() { return false; } let node = self.node_id_vec[*x as usize]; match self.roles.get(&node) { Some(NodeRoleV(Some(x))) if x.capacity.is_some() => (), _ => return false, } } true } } impl ClusterLayout { /// This function calculates a new partition-to-node assignation. /// The computed assignation respects the node replication factor /// and the zone redundancy parameter It maximizes the capacity of a /// partition (assuming all partitions have the same size). /// Among such optimal assignation, it minimizes the distance to /// the former assignation (if any) to minimize the amount of /// data to be moved. pub fn calculate_partition_assignation(&mut self, replication:usize, redundancy:usize) -> Result { //The nodes might have been updated, some might have been deleted. //So we need to first update the list of nodes and retrieve the //assignation. //We update the node ids, since the node list might have changed with the staged //changes in the layout. We retrieve the old_assignation reframed with the new ids let old_assignation_opt = self.update_node_id_vec()?; self.replication_factor = replication; self.zone_redundancy = redundancy; let mut msg = Message::new(); msg.push(format!("Computation of a new cluster layout where partitions are replicated {} times on at least {} distinct zones.", replication, redundancy)); //We generate for once numerical ids for the zone, to use them as indices in the //flow graphs. let (id_to_zone , zone_to_id) = self.generate_zone_ids()?; msg.push(format!("The cluster contains {} nodes spread over {} zones.", self.useful_nodes().len(), id_to_zone.len())); //We compute the optimal partition size let partition_size = self.compute_optimal_partition_size(&zone_to_id)?; if old_assignation_opt != None { msg.push(format!("Given the replication and redundancy constraint, the optimal size of a partition is {}. In the previous layout, it used to be {}.", partition_size, self.partition_size)); } else { msg.push(format!("Given the replication and redundancy constraints, the optimal size of a partition is {}.", partition_size)); } self.partition_size = partition_size; //We compute a first flow/assignment that is heuristically close to the previous //assignment let mut gflow = self.compute_candidate_assignment( &zone_to_id, &old_assignation_opt)?; if let Some(assoc) = &old_assignation_opt { //We minimize the distance to the previous assignment. self.minimize_rebalance_load(&mut gflow, &zone_to_id, &assoc)?; } msg.append(&mut self.output_stat(&gflow, &old_assignation_opt, &zone_to_id,&id_to_zone)?); //We update the layout structure self.update_ring_from_flow(id_to_zone.len() , &gflow)?; return Ok(msg); } /// The LwwMap of node roles might have changed. This function updates the node_id_vec /// and returns the assignation given by ring, with the new indices of the nodes, and /// None if the node is not present anymore. /// We work with the assumption that only this function and calculate_new_assignation /// do modify assignation_ring and node_id_vec. fn update_node_id_vec(&mut self) -> Result< Option< Vec > > ,String> { // (1) We compute the new node list //Non gateway nodes should be coded on 8bits, hence they must be first in the list //We build the new node ids let mut new_non_gateway_nodes: Vec = self.roles.items().iter() .filter(|(_, _, v)| match &v.0 {Some(r) if r.capacity != None => true, _=> false }) .map(|(k, _, _)| *k).collect(); if new_non_gateway_nodes.len() > MAX_NODE_NUMBER { return Err(format!("There are more than {} non-gateway nodes in the new layout. This is not allowed.", MAX_NODE_NUMBER).to_string()); } let mut new_gateway_nodes: Vec = self.roles.items().iter() .filter(|(_, _, v)| match v {NodeRoleV(Some(r)) if r.capacity == None => true, _=> false }) .map(|(k, _, _)| *k).collect(); let nb_useful_nodes = new_non_gateway_nodes.len(); let mut new_node_id_vec = Vec::::new(); new_node_id_vec.append(&mut new_non_gateway_nodes); new_node_id_vec.append(&mut new_gateway_nodes); // (2) We retrieve the old association //We rewrite the old association with the new indices. We only consider partition //to node assignations where the node is still in use. let nb_partitions = 1usize << PARTITION_BITS; let mut old_assignation = vec![ Vec::::new() ; nb_partitions]; if self.ring_assignation_data.len() == 0 { //This is a new association return Ok(None); } if self.ring_assignation_data.len() != nb_partitions * self.replication_factor { return Err("The old assignation does not have a size corresponding to the old replication factor or the number of partitions.".to_string()); } //We build a translation table between the uuid and new ids let mut uuid_to_new_id = HashMap::::new(); //We add the indices of only the new non-gateway nodes that can be used in the //association ring for i in 0..nb_useful_nodes { uuid_to_new_id.insert(new_node_id_vec[i], i ); } let rf= self.replication_factor; for p in 0..nb_partitions { for old_id in &self.ring_assignation_data[p*rf..(p+1)*rf] { let uuid = self.node_id_vec[*old_id as usize]; if uuid_to_new_id.contains_key(&uuid) { old_assignation[p].push(uuid_to_new_id[&uuid]); } } } //We write the results self.node_id_vec = new_node_id_vec; self.ring_assignation_data = Vec::::new(); return Ok(Some(old_assignation)); } ///This function generates ids for the zone of the nodes appearing in ///self.node_id_vec. fn generate_zone_ids(&self) -> Result<(Vec, HashMap),String>{ let mut id_to_zone = Vec::::new(); let mut zone_to_id = HashMap::::new(); for uuid in self.node_id_vec.iter() { if self.roles.get(uuid) == None { return Err("The uuid was not found in the node roles (this should not happen, it might be a critical error).".to_string()); } match self.node_role(&uuid) { Some(r) => if !zone_to_id.contains_key(&r.zone) && r.capacity != None { zone_to_id.insert(r.zone.clone() , id_to_zone.len()); id_to_zone.push(r.zone.clone()); } _ => () } } return Ok((id_to_zone, zone_to_id)); } ///This function computes by dichotomy the largest realizable partition size, given ///the layout. fn compute_optimal_partition_size(&self, zone_to_id: &HashMap) -> Result{ let nb_partitions = 1usize << PARTITION_BITS; let empty_set = HashSet::<(usize,usize)>::new(); let mut g = self.generate_flow_graph(1, zone_to_id, &empty_set)?; g.compute_maximal_flow()?; if g.get_flow_value()? < (nb_partitions*self.replication_factor).try_into().unwrap() { return Err("The storage capacity of he cluster is to small. It is impossible to store partitions of size 1.".to_string()); } let mut s_down = 1; let mut s_up = self.get_total_capacity()?; while s_down +1 < s_up { g = self.generate_flow_graph((s_down+s_up)/2, zone_to_id, &empty_set)?; g.compute_maximal_flow()?; if g.get_flow_value()? < (nb_partitions*self.replication_factor).try_into().unwrap() { s_up = (s_down+s_up)/2; } else { s_down = (s_down+s_up)/2; } } return Ok(s_down); } fn generate_graph_vertices(nb_zones : usize, nb_nodes : usize) -> Vec { let mut vertices = vec![Vertex::Source, Vertex::Sink]; for p in 0..NB_PARTITIONS { vertices.push(Vertex::Pup(p)); vertices.push(Vertex::Pdown(p)); for z in 0..nb_zones { vertices.push(Vertex::PZ(p, z)); } } for n in 0..nb_nodes { vertices.push(Vertex::N(n)); } return vertices; } fn generate_flow_graph(&self, size: u32, zone_to_id: &HashMap, exclude_assoc : &HashSet<(usize,usize)>) -> Result, String> { let vertices = ClusterLayout::generate_graph_vertices(zone_to_id.len(), self.useful_nodes().len()); let mut g= Graph::::new(&vertices); let nb_zones = zone_to_id.len(); for p in 0..NB_PARTITIONS { g.add_edge(Vertex::Source, Vertex::Pup(p), self.zone_redundancy as u32)?; g.add_edge(Vertex::Source, Vertex::Pdown(p), (self.replication_factor - self.zone_redundancy) as u32)?; for z in 0..nb_zones { g.add_edge(Vertex::Pup(p) , Vertex::PZ(p,z) , 1)?; g.add_edge(Vertex::Pdown(p) , Vertex::PZ(p,z) , self.replication_factor as u32)?; } } for n in 0..self.useful_nodes().len() { let node_capacity = self.get_node_capacity(&self.node_id_vec[n])?; let node_zone = zone_to_id[&self.get_node_zone(&self.node_id_vec[n])?]; g.add_edge(Vertex::N(n), Vertex::Sink, node_capacity/size)?; for p in 0..NB_PARTITIONS { if !exclude_assoc.contains(&(p,n)) { g.add_edge(Vertex::PZ(p, node_zone), Vertex::N(n), 1)?; } } } return Ok(g); } fn compute_candidate_assignment(&self, zone_to_id: &HashMap, old_assoc_opt : &Option >>) -> Result, String > { //We list the edges that are not used in the old association let mut exclude_edge = HashSet::<(usize,usize)>::new(); if let Some(old_assoc) = old_assoc_opt { let nb_nodes = self.useful_nodes().len(); for p in 0..NB_PARTITIONS { for n in 0..nb_nodes { exclude_edge.insert((p,n)); } for n in old_assoc[p].iter() { exclude_edge.remove(&(p,*n)); } } } //We compute the best flow using only the edges used in the old assoc let mut g = self.generate_flow_graph(self.partition_size, zone_to_id, &exclude_edge )?; g.compute_maximal_flow()?; for (p,n) in exclude_edge.iter() { let node_zone = zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?]; g.add_edge(Vertex::PZ(*p,node_zone), Vertex::N(*n), 1)?; } g.compute_maximal_flow()?; return Ok(g); } fn minimize_rebalance_load(&self, gflow: &mut Graph, zone_to_id: &HashMap, old_assoc : &Vec< Vec >) -> Result<(), String > { let mut cost = CostFunction::new(); for p in 0..NB_PARTITIONS { for n in old_assoc[p].iter() { let node_zone = zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?]; cost.insert((Vertex::PZ(p,node_zone), Vertex::N(*n)), -1); } } let nb_nodes = self.useful_nodes().len(); let path_length = 4*nb_nodes; gflow.optimize_flow_with_cost(&cost, path_length)?; return Ok(()); } fn update_ring_from_flow(&mut self, nb_zones : usize, gflow: &Graph ) -> Result<(), String>{ self.ring_assignation_data = Vec::::new(); for p in 0..NB_PARTITIONS { for z in 0..nb_zones { let assoc_vertex = gflow.get_positive_flow_from(Vertex::PZ(p,z))?; for vertex in assoc_vertex.iter() { match vertex{ Vertex::N(n) => self.ring_assignation_data.push((*n).try_into().unwrap()), _ => () } } } } if self.ring_assignation_data.len() != NB_PARTITIONS*self.replication_factor { return Err("Critical Error : the association ring we produced does not have the right size.".to_string()); } return Ok(()); } //This function returns a message summing up the partition repartition of the new //layout. fn output_stat(&self , gflow : &Graph, old_assoc_opt : &Option< Vec> >, zone_to_id: &HashMap, id_to_zone : &Vec) -> Result{ let mut msg = Message::new(); let nb_partitions = 1usize << PARTITION_BITS; let used_cap = self.partition_size * nb_partitions as u32 * self.replication_factor as u32; let total_cap = self.get_total_capacity()?; let percent_cap = 100.0*(used_cap as f32)/(total_cap as f32); msg.push(format!("Available capacity / Total cluster capacity: {} / {} ({:.1} %)", used_cap , total_cap , percent_cap )); msg.push(format!("If the percentage is to low, it might be that the replication/redundancy constraints force the use of nodes/zones with small storage capacities. You might want to rebalance the storage capacities or relax the constraints. See the detailed statistics below and look for saturated nodes/zones.")); msg.push(format!("Recall that because of the replication, the actual available storage capacity is {} / {} = {}.", used_cap , self.replication_factor , used_cap/self.replication_factor as u32)); //We define and fill in the following tables let storing_nodes = self.useful_nodes(); let mut new_partitions = vec![0; storing_nodes.len()]; let mut stored_partitions = vec![0; storing_nodes.len()]; let mut new_partitions_zone = vec![0; id_to_zone.len()]; let mut stored_partitions_zone = vec![0; id_to_zone.len()]; for p in 0..nb_partitions { for z in 0..id_to_zone.len() { let pz_nodes = gflow.get_positive_flow_from(Vertex::PZ(p,z))?; if pz_nodes.len() > 0 { stored_partitions_zone[z] += 1; } for vert in pz_nodes.iter() { if let Vertex::N(n) = *vert { stored_partitions[n] += 1; if let Some(old_assoc) = old_assoc_opt { if !old_assoc[p].contains(&n) { new_partitions[n] += 1; } } } } if let Some(old_assoc) = old_assoc_opt { let mut old_zones_of_p = Vec::::new(); for n in old_assoc[p].iter() { old_zones_of_p.push( zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?]); } if !old_zones_of_p.contains(&z) { new_partitions_zone[z] += 1; } } } } //We display the statistics if *old_assoc_opt != None { let total_new_partitions : usize = new_partitions.iter().sum(); msg.push(format!("A total of {} new copies of partitions need to be \ transferred.", total_new_partitions)); } msg.push(format!("")); msg.push(format!("Detailed statistics by zones and nodes.")); for z in 0..id_to_zone.len(){ let mut nodes_of_z = Vec::::new(); for n in 0..storing_nodes.len(){ if self.get_node_zone(&self.node_id_vec[n])? == id_to_zone[z] { nodes_of_z.push(n); } } let replicated_partitions : usize = nodes_of_z.iter() .map(|n| stored_partitions[*n]).sum(); msg.push(format!("")); if *old_assoc_opt != None { msg.push(format!("Zone {}: {} distinct partitions stored ({} new, \ {} partition copies) ", id_to_zone[z], stored_partitions_zone[z], new_partitions_zone[z], replicated_partitions)); } else{ msg.push(format!("Zone {}: {} distinct partitions stored ({} partition \ copies) ", id_to_zone[z], stored_partitions_zone[z], replicated_partitions)); } let available_cap_z : u32 = self.partition_size*replicated_partitions as u32; let mut total_cap_z = 0; for n in nodes_of_z.iter() { total_cap_z += self.get_node_capacity(&self.node_id_vec[*n])?; } let percent_cap_z = 100.0*(available_cap_z as f32)/(total_cap_z as f32); msg.push(format!(" Available capacity / Total capacity: {}/{} ({:.1}%).", available_cap_z, total_cap_z, percent_cap_z)); msg.push(format!("")); for n in nodes_of_z.iter() { let available_cap_n = stored_partitions[*n] as u32 *self.partition_size; let total_cap_n =self.get_node_capacity(&self.node_id_vec[*n])?; let tags_n = (self.node_role(&self.node_id_vec[*n]) .ok_or("Node not found."))?.tags_string(); msg.push(format!(" Node {}: {} partitions ({} new) ; \ available/total capacity: {} / {} ({:.1}%) ; tags:{}", &self.node_id_vec[*n].to_vec().encode_hex::(), stored_partitions[*n], new_partitions[*n], available_cap_n, total_cap_n, (available_cap_n as f32)/(total_cap_n as f32)*100.0 , tags_n)); } } return Ok(msg); } } //==================================================================================== #[cfg(test)] mod tests { use super::*; use itertools::Itertools; fn check_assignation(cl: &ClusterLayout) { //Check that input data has the right format let nb_partitions = 1usize << PARTITION_BITS; assert!([1, 2, 3].contains(&cl.replication_factor)); assert!(cl.ring_assignation_data.len() == nb_partitions * cl.replication_factor); let (node_zone, node_capacity) = cl.get_node_zone_capacity(); //Check that is is a correct assignation with zone redundancy let rf = cl.replication_factor; for i in 0..nb_partitions { assert!( rf == cl.ring_assignation_data[rf * i..rf * (i + 1)] .iter() .map(|nod| node_zone[*nod as usize].clone()) .unique() .count() ); } let nb_nodes = cl.node_id_vec.len(); //Check optimality let node_nb_part = (0..nb_nodes) .map(|i| { cl.ring_assignation_data .iter() .filter(|x| **x == i as u8) .count() }) .collect::>(); let zone_vec = node_zone.iter().unique().collect::>(); let zone_nb_part = zone_vec .iter() .map(|z| { cl.ring_assignation_data .iter() .filter(|x| node_zone[**x as usize] == **z) .count() }) .collect::>(); //Check optimality of the zone assignation : would it be better for the //node_capacity/node_partitions ratio to change the assignation of a partition if let Some(idmin) = (0..nb_nodes).min_by(|i, j| { (node_capacity[*i] * node_nb_part[*j] as u32) .cmp(&(node_capacity[*j] * node_nb_part[*i] as u32)) }) { if let Some(idnew) = (0..nb_nodes) .filter(|i| { if let Some(p) = zone_vec.iter().position(|z| **z == node_zone[*i]) { zone_nb_part[p] < nb_partitions } else { false } }) .max_by(|i, j| { (node_capacity[*i] * (node_nb_part[*j] as u32 + 1)) .cmp(&(node_capacity[*j] * (node_nb_part[*i] as u32 + 1))) }) { assert!( node_capacity[idmin] * (node_nb_part[idnew] as u32 + 1) >= node_capacity[idnew] * node_nb_part[idmin] as u32 ); } } //In every zone, check optimality of the nod assignation for z in zone_vec { let node_of_z_iter = (0..nb_nodes).filter(|id| node_zone[*id] == *z); if let Some(idmin) = node_of_z_iter.clone().min_by(|i, j| { (node_capacity[*i] * node_nb_part[*j] as u32) .cmp(&(node_capacity[*j] * node_nb_part[*i] as u32)) }) { if let Some(idnew) = node_of_z_iter.min_by(|i, j| { (node_capacity[*i] * (node_nb_part[*j] as u32 + 1)) .cmp(&(node_capacity[*j] * (node_nb_part[*i] as u32 + 1))) }) { assert!( node_capacity[idmin] * (node_nb_part[idnew] as u32 + 1) >= node_capacity[idnew] * node_nb_part[idmin] as u32 ); } } } } fn update_layout( cl: &mut ClusterLayout, node_id_vec: &Vec, node_capacity_vec: &Vec, node_zone_vec: &Vec, ) { for i in 0..node_id_vec.len() { if let Some(x) = FixedBytes32::try_from(&[i as u8; 32]) { cl.node_id_vec.push(x); } let update = cl.roles.update_mutator( cl.node_id_vec[i], NodeRoleV(Some(NodeRole { zone: (node_zone_vec[i].to_string()), capacity: (Some(node_capacity_vec[i])), tags: (vec![]), })), ); cl.roles.merge(&update); } } #[test] fn test_assignation() { let mut node_id_vec = vec![1, 2, 3]; let mut node_capacity_vec = vec![4000, 1000, 2000]; let mut node_zone_vec = vec!["A", "B", "C"] .into_iter() .map(|x| x.to_string()) .collect(); let mut cl = ClusterLayout { node_id_vec: vec![], roles: LwwMap::new(), replication_factor: 3, ring_assignation_data: vec![], version: 0, staging: LwwMap::new(), staging_hash: sha256sum(&[1; 32]), }; update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec); cl.calculate_partition_assignation(); check_assignation(&cl); node_id_vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9]; node_capacity_vec = vec![4000, 1000, 1000, 3000, 1000, 1000, 2000, 10000, 2000]; node_zone_vec = vec!["A", "B", "C", "C", "C", "B", "G", "H", "I"] .into_iter() .map(|x| x.to_string()) .collect(); update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec); cl.calculate_partition_assignation(); check_assignation(&cl); node_capacity_vec = vec![4000, 1000, 2000, 7000, 1000, 1000, 2000, 10000, 2000]; update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec); cl.calculate_partition_assignation(); check_assignation(&cl); node_capacity_vec = vec![4000, 4000, 2000, 7000, 1000, 9000, 2000, 10, 2000]; update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec); cl.calculate_partition_assignation(); check_assignation(&cl); } }