//! This module deals with graph algorithms. //! It is used in layout.rs to build the partition to node assignation. use rand::prelude::SliceRandom; use std::cmp::{max, min}; use std::collections::HashMap; use std::collections::VecDeque; ///Vertex data structures used in all the graphs used in layout.rs. ///usize parameters correspond to node/zone/partitions ids. ///To understand the vertex roles below, please refer to the formal description ///of the layout computation algorithm. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum Vertex { Source, Pup(usize), //The vertex p+ of partition p Pdown(usize), //The vertex p- of partition p PZ(usize, usize), //The vertex corresponding to x_(partition p, zone z) N(usize), //The vertex corresponding to node n Sink, } ///Edge data structure for the flow algorithm. #[derive(Clone, Copy, Debug)] pub struct FlowEdge { cap: u32, //flow maximal capacity of the edge flow: i32, //flow value on the edge dest: usize, //destination vertex id rev: usize, //index of the reversed edge (v, self) in the edge list of vertex v } ///Edge data structure for the detection of negative cycles. #[derive(Clone, Copy, Debug)] pub struct WeightedEdge { w: i32, //weight of the edge dest: usize, } pub trait Edge: Clone + Copy {} impl Edge for FlowEdge {} impl Edge for WeightedEdge {} ///Struct for the graph structure. We do encapsulation here to be able to both ///provide user friendly Vertex enum to address vertices, and to use internally usize ///indices and Vec instead of HashMap in the graph algorithm to optimize execution speed. pub struct Graph { vertextoid: HashMap, idtovertex: Vec, //The graph is stored as an adjacency list graph: Vec>, } pub type CostFunction = HashMap<(Vertex, Vertex), i32>; impl Graph { pub fn new(vertices: &[Vertex]) -> Self { let mut map = HashMap::::new(); for (i, vert) in vertices.iter().enumerate() { map.insert(*vert, i); } Graph:: { vertextoid: map, idtovertex: vertices.to_vec(), graph: vec![Vec::::new(); vertices.len()], } } } impl Graph { ///This function adds a directed edge to the graph with capacity c, and the ///corresponding reversed edge with capacity 0. pub fn add_edge(&mut self, u: Vertex, v: Vertex, c: u32) -> Result<(), String> { if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) { return Err("The graph does not contain the provided vertex.".to_string()); } let idu = self.vertextoid[&u]; let idv = self.vertextoid[&v]; let rev_u = self.graph[idu].len(); let rev_v = self.graph[idv].len(); self.graph[idu].push(FlowEdge { cap: c, dest: idv, flow: 0, rev: rev_v, }); self.graph[idv].push(FlowEdge { cap: 0, dest: idu, flow: 0, rev: rev_u, }); Ok(()) } ///This function returns the list of vertices that receive a positive flow from ///vertex v. pub fn get_positive_flow_from(&self, v: Vertex) -> Result, String> { if !self.vertextoid.contains_key(&v) { return Err("The graph does not contain the provided vertex.".to_string()); } let idv = self.vertextoid[&v]; let mut result = Vec::::new(); for edge in self.graph[idv].iter() { if edge.flow > 0 { result.push(self.idtovertex[edge.dest]); } } Ok(result) } ///This function returns the value of the flow incoming to v. pub fn get_inflow(&self, v: Vertex) -> Result { if !self.vertextoid.contains_key(&v) { return Err("The graph does not contain the provided vertex.".to_string()); } let idv = self.vertextoid[&v]; let mut result = 0; for edge in self.graph[idv].iter() { result += max(0, self.graph[edge.dest][edge.rev].flow); } Ok(result) } ///This function returns the value of the flow outgoing from v. pub fn get_outflow(&self, v: Vertex) -> Result { if !self.vertextoid.contains_key(&v) { return Err("The graph does not contain the provided vertex.".to_string()); } let idv = self.vertextoid[&v]; let mut result = 0; for edge in self.graph[idv].iter() { result += max(0, edge.flow); } Ok(result) } ///This function computes the flow total value by computing the outgoing flow ///from the source. pub fn get_flow_value(&mut self) -> Result { self.get_outflow(Vertex::Source) } ///This function shuffles the order of the edge lists. It keeps the ids of the ///reversed edges consistent. fn shuffle_edges(&mut self) { let mut rng = rand::thread_rng(); for i in 0..self.graph.len() { self.graph[i].shuffle(&mut rng); //We need to update the ids of the reverse edges. for j in 0..self.graph[i].len() { let target_v = self.graph[i][j].dest; let target_rev = self.graph[i][j].rev; self.graph[target_v][target_rev].rev = j; } } } ///Computes an upper bound of the flow on the graph pub fn flow_upper_bound(&self) -> u32 { let idsource = self.vertextoid[&Vertex::Source]; let mut flow_upper_bound = 0; for edge in self.graph[idsource].iter() { flow_upper_bound += edge.cap; } flow_upper_bound } ///This function computes the maximal flow using Dinic's algorithm. It starts with ///the flow values already present in the graph. So it is possible to add some edge to ///the graph, compute a flow, add other edges, update the flow. pub fn compute_maximal_flow(&mut self) -> Result<(), String> { if !self.vertextoid.contains_key(&Vertex::Source) { return Err("The graph does not contain a source.".to_string()); } if !self.vertextoid.contains_key(&Vertex::Sink) { return Err("The graph does not contain a sink.".to_string()); } let idsource = self.vertextoid[&Vertex::Source]; let idsink = self.vertextoid[&Vertex::Sink]; let nb_vertices = self.graph.len(); let flow_upper_bound = self.flow_upper_bound(); //To ensure the dispersion of the associations generated by the //assignation, we shuffle the neighbours of the nodes. Hence, //the vertices do not consider their neighbours in the same order. self.shuffle_edges(); //We run Dinic's max flow algorithm loop { //We build the level array from Dinic's algorithm. let mut level = vec![None; nb_vertices]; let mut fifo = VecDeque::new(); fifo.push_back((idsource, 0)); while !fifo.is_empty() { if let Some((id, lvl)) = fifo.pop_front() { if level[id] == None { //it means id has not yet been reached level[id] = Some(lvl); for edge in self.graph[id].iter() { if edge.cap as i32 - edge.flow > 0 { fifo.push_back((edge.dest, lvl + 1)); } } } } } if level[idsink] == None { //There is no residual flow break; } //Now we run DFS respecting the level array let mut next_nbd = vec![0; nb_vertices]; let mut lifo = VecDeque::new(); lifo.push_back((idsource, flow_upper_bound)); while let Some((id_tmp, f_tmp)) = lifo.back() { let id = *id_tmp; let f = *f_tmp; if id == idsink { //The DFS reached the sink, we can add a //residual flow. lifo.pop_back(); while let Some((id, _)) = lifo.pop_back() { let nbd = next_nbd[id]; self.graph[id][nbd].flow += f as i32; let id_rev = self.graph[id][nbd].dest; let nbd_rev = self.graph[id][nbd].rev; self.graph[id_rev][nbd_rev].flow -= f as i32; } lifo.push_back((idsource, flow_upper_bound)); continue; } //else we did not reach the sink let nbd = next_nbd[id]; if nbd >= self.graph[id].len() { //There is nothing to explore from id anymore lifo.pop_back(); if let Some((parent, _)) = lifo.back() { next_nbd[*parent] += 1; } continue; } //else we can try to send flow from id to its nbd let new_flow = min( f as i32, self.graph[id][nbd].cap as i32 - self.graph[id][nbd].flow, ) as u32; if new_flow == 0 { next_nbd[id] += 1; continue; } if let (Some(lvldest), Some(lvlid)) = (level[self.graph[id][nbd].dest], level[id]) { if lvldest <= lvlid { //We cannot send flow to nbd. next_nbd[id] += 1; continue; } } //otherwise, we send flow to nbd. lifo.push_back((self.graph[id][nbd].dest, new_flow)); } } Ok(()) } ///This function takes a flow, and a cost function on the edges, and tries to find an /// equivalent flow with a better cost, by finding improving overflow cycles. It uses /// as subroutine the Bellman Ford algorithm run up to path_length. /// We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and /// only one needs to be present in the cost function. pub fn optimize_flow_with_cost( &mut self, cost: &CostFunction, path_length: usize, ) -> Result<(), String> { //We build the weighted graph g where we will look for negative cycle let mut gf = self.build_cost_graph(cost)?; let mut cycles = gf.list_negative_cycles(path_length); while !cycles.is_empty() { //we enumerate negative cycles for c in cycles.iter() { for i in 0..c.len() { //We add one flow unit to the edge (u,v) of cycle c let idu = self.vertextoid[&c[i]]; let idv = self.vertextoid[&c[(i + 1) % c.len()]]; for j in 0..self.graph[idu].len() { //since idu appears at most once in the cycles, we enumerate every //edge at most once. let edge = self.graph[idu][j]; if edge.dest == idv { self.graph[idu][j].flow += 1; self.graph[idv][edge.rev].flow -= 1; break; } } } } gf = self.build_cost_graph(cost)?; cycles = gf.list_negative_cycles(path_length); } Ok(()) } ///Construct the weighted graph G_f from the flow and the cost function fn build_cost_graph(&self, cost: &CostFunction) -> Result, String> { let mut g = Graph::::new(&self.idtovertex); let nb_vertices = self.idtovertex.len(); for i in 0..nb_vertices { for edge in self.graph[i].iter() { if edge.cap as i32 - edge.flow > 0 { //It is possible to send overflow through this edge let u = self.idtovertex[i]; let v = self.idtovertex[edge.dest]; if cost.contains_key(&(u, v)) { g.add_edge(u, v, cost[&(u, v)])?; } else if cost.contains_key(&(v, u)) { g.add_edge(u, v, -cost[&(v, u)])?; } else { g.add_edge(u, v, 0)?; } } } } Ok(g) } } impl Graph { ///This function adds a single directed weighted edge to the graph. pub fn add_edge(&mut self, u: Vertex, v: Vertex, w: i32) -> Result<(), String> { if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) { return Err("The graph does not contain the provided vertex.".to_string()); } let idu = self.vertextoid[&u]; let idv = self.vertextoid[&v]; self.graph[idu].push(WeightedEdge { w, dest: idv }); Ok(()) } ///This function lists the negative cycles it manages to find after path_length ///iterations of the main loop of the Bellman-Ford algorithm. For the classical ///algorithm, path_length needs to be equal to the number of vertices. However, ///for particular graph structures like in our case, the algorithm is still correct ///when path_length is the length of the longest possible simple path. ///See the formal description of the algorithm for more details. fn list_negative_cycles(&self, path_length: usize) -> Vec> { let nb_vertices = self.graph.len(); //We start with every vertex at distance 0 of some imaginary extra -1 vertex. let mut distance = vec![0; nb_vertices]; //The prev vector collects for every vertex from where does the shortest path come let mut prev = vec![None; nb_vertices]; for _ in 0..path_length + 1 { for id in 0..nb_vertices { for e in self.graph[id].iter() { if distance[id] + e.w < distance[e.dest] { distance[e.dest] = distance[id] + e.w; prev[e.dest] = Some(id); } } } } //If self.graph contains a negative cycle, then at this point the graph described //by prev (which is a directed 1-forest/functional graph) //must contain a cycle. We list the cycles of prev. let cycles_prev = cycles_of_1_forest(&prev); //Remark that the cycle in prev is in the reverse order compared to the cycle //in the graph. Thus the .rev(). return cycles_prev .iter() .map(|cycle| cycle.iter().rev().map(|id| self.idtovertex[*id]).collect()) .collect(); } } ///This function returns the list of cycles of a directed 1 forest. It does not ///check for the consistency of the input. fn cycles_of_1_forest(forest: &[Option]) -> Vec> { let mut cycles = Vec::>::new(); let mut time_of_discovery = vec![None; forest.len()]; for t in 0..forest.len() { let mut id = t; //while we are on a valid undiscovered node while time_of_discovery[id] == None { time_of_discovery[id] = Some(t); if let Some(i) = forest[id] { id = i; } else { break; } } if forest[id] != None && time_of_discovery[id] == Some(t) { //We discovered an id that we explored at this iteration t. //It means we are on a cycle let mut cy = vec![id; 1]; let mut id2 = id; while let Some(id_next) = forest[id2] { id2 = id_next; if id2 != id { cy.push(id2); } else { break; } } cycles.push(cy); } } cycles }