/* * This module deals with graph algorithm in complete bipartite * graphs. It is used in layout.rs to build the partition to node * assignation. * */ use std::cmp::{min,max}; use std::collections::VecDeque; use rand::prelude::SliceRandom; //Graph data structure for the flow algorithm. #[derive(Clone,Copy,Debug)] struct EdgeFlow{ c : i32, flow : i32, v : usize, rev : usize, } //Graph data structure for the detection of positive cycles. #[derive(Clone,Copy,Debug)] struct WeightedEdge{ w : i32, u : usize, v : usize, } /* This function takes two matchings (old_match and new_match) in a * complete bipartite graph. It returns a matching that has the * same degree as new_match at every vertex, and that is as close * as possible to old_match. * */ pub fn optimize_matching( old_match : &Vec> , new_match : &Vec> , nb_right : usize ) -> Vec> { let nb_left = old_match.len(); let ed = WeightedEdge{w:-1,u:0,v:0}; let mut edge_vec = vec![ed ; nb_left*nb_right]; //We build the complete bipartite graph structure, represented //by the list of all edges. for i in 0..nb_left { for j in 0..nb_right{ edge_vec[i*nb_right + j].u = i; edge_vec[i*nb_right + j].v = nb_left+j; } } for i in 0..edge_vec.len() { //We add the old matchings if old_match[edge_vec[i].u].contains(&(edge_vec[i].v-nb_left)) { edge_vec[i].w *= -1; } //We add the new matchings if new_match[edge_vec[i].u].contains(&(edge_vec[i].v-nb_left)) { (edge_vec[i].u,edge_vec[i].v) = (edge_vec[i].v,edge_vec[i].u); edge_vec[i].w *= -1; } } //Now edge_vec is a graph where edges are oriented LR if we //can add them to new_match, and RL otherwise. If //adding/removing them makes the matching closer to old_match //they have weight 1; and -1 otherwise. //We shuffle the edge list so that there is no bias depending in //partitions/zone label in the triplet dispersion let mut rng = rand::thread_rng(); edge_vec.shuffle(&mut rng); //Discovering and flipping a cycle with positive weight in this //graph will make the matching closer to old_match. //We use Bellman Ford algorithm to discover positive cycles loop{ if let Some(cycle) = positive_cycle(&edge_vec, nb_left, nb_right) { for i in cycle { //We flip the edges of the cycle. (edge_vec[i].u,edge_vec[i].v) = (edge_vec[i].v,edge_vec[i].u); edge_vec[i].w *= -1; } } else { //If there is no cycle, we return the optimal matching. break; } } //The optimal matching is build from the graph structure. let mut matching = vec![Vec::::new() ; nb_left]; for e in edge_vec { if e.u > e.v { matching[e.v].push(e.u-nb_left); } } matching } //This function finds a positive cycle in a bipartite wieghted graph. fn positive_cycle( edge_vec : &Vec, nb_left : usize, nb_right : usize) -> Option> { let nb_side_min = min(nb_left, nb_right); let nb_vertices = nb_left+nb_right; let weight_lowerbound = -((nb_left +nb_right) as i32) -1; let mut accessed = vec![false ; nb_left]; //We try to find a positive cycle accessible from the left //vertex i. for i in 0..nb_left{ if accessed[i] { continue; } let mut weight =vec![weight_lowerbound ; nb_vertices]; let mut prev =vec![ edge_vec.len() ; nb_vertices]; weight[i] = 0; //We compute largest weighted paths from i. //Since the graph is bipartite, any simple cycle has length //at most 2*nb_side_min. In the general Bellman-Ford //algorithm, the bound here is the number of vertices. Since //the number of partitions can be much larger than the //number of nodes, we optimize that. for _ in 0..(2*nb_side_min) { for j in 0..edge_vec.len() { let e = edge_vec[j]; if weight[e.v] < weight[e.u]+e.w { weight[e.v] = weight[e.u]+e.w; prev[e.v] = j; } } } //We update the accessed table for i in 0..nb_left { if weight[i] > weight_lowerbound { accessed[i] = true; } } //We detect positive cycle for e in edge_vec { if weight[e.v] < weight[e.u]+e.w { //it means e is on a path branching from a positive cycle let mut was_seen = vec![false ; nb_vertices]; let mut curr = e.u; //We track back with prev until we reach the cycle. while !was_seen[curr]{ was_seen[curr] = true; curr = edge_vec[prev[curr]].u; } //Now curr is on the cycle. We collect the edges ids. let mut cycle = Vec::::new(); cycle.push(prev[curr]); let mut cycle_vert = edge_vec[prev[curr]].u; while cycle_vert != curr { cycle.push(prev[cycle_vert]); cycle_vert = edge_vec[prev[cycle_vert]].u; } return Some(cycle); } } } None } // This function takes two arrays of capacity and computes the // maximal matching in the complete bipartite graph such that the // left vertex i is matched to left_cap_vec[i] right vertices, and // the right vertex j is matched to right_cap_vec[j] left vertices. // To do so, we use Dinic's maximum flow algorithm. pub fn dinic_compute_matching( left_cap_vec : Vec, right_cap_vec : Vec) -> Vec< Vec > { let mut graph = Vec:: >::new(); let ed = EdgeFlow{c:0,flow:0,v:0, rev:0}; // 0 will be the source graph.push(vec![ed ; left_cap_vec.len()]); for i in 0..left_cap_vec.len() { graph[0][i].c = left_cap_vec[i] as i32; graph[0][i].v = i+2; graph[0][i].rev = 0; } //1 will be the sink graph.push(vec![ed ; right_cap_vec.len()]); for i in 0..right_cap_vec.len() { graph[1][i].c = right_cap_vec[i] as i32; graph[1][i].v = i+2+left_cap_vec.len(); graph[1][i].rev = 0; } //we add left vertices for i in 0..left_cap_vec.len() { graph.push(vec![ed ; 1+right_cap_vec.len()]); graph[i+2][0].c = 0; //directed graph[i+2][0].v = 0; graph[i+2][0].rev = i; for j in 0..right_cap_vec.len() { graph[i+2][j+1].c = 1; graph[i+2][j+1].v = 2+left_cap_vec.len()+j; graph[i+2][j+1].rev = i+1; } } //we add right vertices for i in 0..right_cap_vec.len() { let lft_ln = left_cap_vec.len(); graph.push(vec![ed ; 1+lft_ln]); graph[i+lft_ln+2][0].c = graph[1][i].c; graph[i+lft_ln+2][0].v = 1; graph[i+lft_ln+2][0].rev = i; for j in 0..left_cap_vec.len() { graph[i+2+lft_ln][j+1].c = 0; //directed graph[i+2+lft_ln][j+1].v = j+2; graph[i+2+lft_ln][j+1].rev = i+1; } } //To ensure the dispersion of the triplets generated by the //assignation, we shuffle the neighbours of the nodes. Hence, //left vertices do not consider the right ones in the same order. let mut rng = rand::thread_rng(); for i in 0..graph.len() { graph[i].shuffle(&mut rng); //We need to update the ids of the reverse edges. for j in 0..graph[i].len() { let target_v = graph[i][j].v; let target_rev = graph[i][j].rev; graph[target_v][target_rev].rev = j; } } let nb_vertices = graph.len(); //We run Dinic's max flow algorithm loop{ //We build the level array from Dinic's algorithm. let mut level = vec![-1; nb_vertices]; let mut fifo = VecDeque::new(); fifo.push_back((0,0)); while !fifo.is_empty() { if let Some((id,lvl)) = fifo.pop_front(){ if level[id] == -1 { level[id] = lvl; for e in graph[id].iter(){ if e.c-e.flow > 0{ fifo.push_back((e.v,lvl+1)); } } } } } if level[1] == -1 { //There is no residual flow break; } //Now we run DFS respecting the level array let mut next_nbd = vec![0; nb_vertices]; let mut lifo = VecDeque::new(); let flow_upper_bound; if let Some(x) = left_cap_vec.iter().max() { flow_upper_bound=*x as i32; } else { flow_upper_bound = 0; assert!(false); } lifo.push_back((0,flow_upper_bound)); loop { if let Some((id_tmp, f_tmp)) = lifo.back() { let id = *id_tmp; let f = *f_tmp; if id == 1 { //The DFS reached the sink, we can add a //residual flow. lifo.pop_back(); while !lifo.is_empty() { if let Some((id,_)) = lifo.pop_back(){ let nbd=next_nbd[id]; graph[id][nbd].flow += f; let id_v = graph[id][nbd].v; let nbd_v = graph[id][nbd].rev; graph[id_v][nbd_v].flow -= f; } } lifo.push_back((0,flow_upper_bound)); continue; } //else we did not reach the sink let nbd = next_nbd[id]; if nbd >= graph[id].len() { //There is nothing to explore from id anymore lifo.pop_back(); if let Some((parent, _)) = lifo.back(){ next_nbd[*parent] +=1; } continue; } //else we can try to send flow from id to its nbd let new_flow = min(f,graph[id][nbd].c - graph[id][nbd].flow); if level[graph[id][nbd].v] <= level[id] || new_flow == 0 { //We cannot send flow to nbd. next_nbd[id] += 1; continue; } //otherwise, we send flow to nbd. lifo.push_back((graph[id][nbd].v, new_flow)); } else { break; } } } //We return the association let assoc_table = (0..left_cap_vec.len()).map( |id| graph[id+2].iter() .filter(|e| e.flow > 0) .map( |e| e.v-2-left_cap_vec.len()) .collect()).collect(); //consistency check //it is a flow for i in 3..graph.len(){ assert!( graph[i].iter().map(|e| e.flow).sum::() == 0); for e in graph[i].iter(){ assert!(e.flow + graph[e.v][e.rev].flow == 0); } } //it solves the matching problem for i in 0..left_cap_vec.len(){ assert!(left_cap_vec[i] as i32 == graph[i+2].iter().map(|e| max(0,e.flow)).sum::()); } for i in 0..right_cap_vec.len(){ assert!(right_cap_vec[i] as i32 == graph[i+2+left_cap_vec.len()].iter() .map(|e| max(0,e.flow)).sum::()); } assoc_table } #[cfg(test)] mod tests { use super::*; #[test] fn test_flow() { let left_vec = vec![3;8]; let right_vec = vec![0,4,8,4,8]; //There are asserts in the function that computes the flow let _ = dinic_compute_matching(left_vec, right_vec); } //maybe add tests relative to the matching optilization ? }