/* * This module deals with graph algorithm in complete bipartite * graphs. It is used in layout.rs to build the partition to node * assignation. * */ use rand::prelude::SliceRandom; use std::cmp::{max, min}; use std::collections::VecDeque; //Graph data structure for the flow algorithm. #[derive(Clone, Copy, Debug)] struct EdgeFlow { c: i32, flow: i32, v: usize, rev: usize, } //Graph data structure for the detection of positive cycles. #[derive(Clone, Copy, Debug)] struct WeightedEdge { w: i32, u: usize, v: usize, } /* This function takes two matchings (old_match and new_match) in a * complete bipartite graph. It returns a matching that has the * same degree as new_match at every vertex, and that is as close * as possible to old_match. * */ pub fn optimize_matching( old_match: &[Vec], new_match: &[Vec], nb_right: usize, ) -> Vec> { let nb_left = old_match.len(); let ed = WeightedEdge { w: -1, u: 0, v: 0 }; let mut edge_vec = vec![ed; nb_left * nb_right]; //We build the complete bipartite graph structure, represented //by the list of all edges. for i in 0..nb_left { for j in 0..nb_right { edge_vec[i * nb_right + j].u = i; edge_vec[i * nb_right + j].v = nb_left + j; } } for i in 0..edge_vec.len() { //We add the old matchings if old_match[edge_vec[i].u].contains(&(edge_vec[i].v - nb_left)) { edge_vec[i].w *= -1; } //We add the new matchings if new_match[edge_vec[i].u].contains(&(edge_vec[i].v - nb_left)) { (edge_vec[i].u, edge_vec[i].v) = (edge_vec[i].v, edge_vec[i].u); edge_vec[i].w *= -1; } } //Now edge_vec is a graph where edges are oriented LR if we //can add them to new_match, and RL otherwise. If //adding/removing them makes the matching closer to old_match //they have weight 1; and -1 otherwise. //We shuffle the edge list so that there is no bias depending in //partitions/zone label in the triplet dispersion let mut rng = rand::thread_rng(); edge_vec.shuffle(&mut rng); //Discovering and flipping a cycle with positive weight in this //graph will make the matching closer to old_match. //We use Bellman Ford algorithm to discover positive cycles while let Some(cycle) = positive_cycle(&edge_vec, nb_left, nb_right) { for i in cycle { //We flip the edges of the cycle. (edge_vec[i].u, edge_vec[i].v) = (edge_vec[i].v, edge_vec[i].u); edge_vec[i].w *= -1; } } //The optimal matching is build from the graph structure. let mut matching = vec![Vec::::new(); nb_left]; for e in edge_vec { if e.u > e.v { matching[e.v].push(e.u - nb_left); } } matching } //This function finds a positive cycle in a bipartite wieghted graph. fn positive_cycle( edge_vec: &[WeightedEdge], nb_left: usize, nb_right: usize, ) -> Option> { let nb_side_min = min(nb_left, nb_right); let nb_vertices = nb_left + nb_right; let weight_lowerbound = -((nb_left + nb_right) as i32) - 1; let mut accessed = vec![false; nb_left]; //We try to find a positive cycle accessible from the left //vertex i. for i in 0..nb_left { if accessed[i] { continue; } let mut weight = vec![weight_lowerbound; nb_vertices]; let mut prev = vec![edge_vec.len(); nb_vertices]; weight[i] = 0; //We compute largest weighted paths from i. //Since the graph is bipartite, any simple cycle has length //at most 2*nb_side_min. In the general Bellman-Ford //algorithm, the bound here is the number of vertices. Since //the number of partitions can be much larger than the //number of nodes, we optimize that. for _ in 0..(2 * nb_side_min) { for (j, e) in edge_vec.iter().enumerate() { if weight[e.v] < weight[e.u] + e.w { weight[e.v] = weight[e.u] + e.w; prev[e.v] = j; } } } //We update the accessed table for i in 0..nb_left { if weight[i] > weight_lowerbound { accessed[i] = true; } } //We detect positive cycle for e in edge_vec { if weight[e.v] < weight[e.u] + e.w { //it means e is on a path branching from a positive cycle let mut was_seen = vec![false; nb_vertices]; let mut curr = e.u; //We track back with prev until we reach the cycle. while !was_seen[curr] { was_seen[curr] = true; curr = edge_vec[prev[curr]].u; } //Now curr is on the cycle. We collect the edges ids. let mut cycle = vec![prev[curr]]; let mut cycle_vert = edge_vec[prev[curr]].u; while cycle_vert != curr { cycle.push(prev[cycle_vert]); cycle_vert = edge_vec[prev[cycle_vert]].u; } return Some(cycle); } } } None } // This function takes two arrays of capacity and computes the // maximal matching in the complete bipartite graph such that the // left vertex i is matched to left_cap_vec[i] right vertices, and // the right vertex j is matched to right_cap_vec[j] left vertices. // To do so, we use Dinic's maximum flow algorithm. pub fn dinic_compute_matching(left_cap_vec: Vec, right_cap_vec: Vec) -> Vec> { let mut graph = Vec::>::new(); let ed = EdgeFlow { c: 0, flow: 0, v: 0, rev: 0, }; // 0 will be the source graph.push(vec![ed; left_cap_vec.len()]); for (i, c) in left_cap_vec.iter().enumerate() { graph[0][i].c = *c as i32; graph[0][i].v = i + 2; graph[0][i].rev = 0; } //1 will be the sink graph.push(vec![ed; right_cap_vec.len()]); for (i, c) in right_cap_vec.iter().enumerate() { graph[1][i].c = *c as i32; graph[1][i].v = i + 2 + left_cap_vec.len(); graph[1][i].rev = 0; } //we add left vertices for i in 0..left_cap_vec.len() { graph.push(vec![ed; 1 + right_cap_vec.len()]); graph[i + 2][0].c = 0; //directed graph[i + 2][0].v = 0; graph[i + 2][0].rev = i; for j in 0..right_cap_vec.len() { graph[i + 2][j + 1].c = 1; graph[i + 2][j + 1].v = 2 + left_cap_vec.len() + j; graph[i + 2][j + 1].rev = i + 1; } } //we add right vertices for i in 0..right_cap_vec.len() { let lft_ln = left_cap_vec.len(); graph.push(vec![ed; 1 + lft_ln]); graph[i + lft_ln + 2][0].c = graph[1][i].c; graph[i + lft_ln + 2][0].v = 1; graph[i + lft_ln + 2][0].rev = i; for j in 0..left_cap_vec.len() { graph[i + 2 + lft_ln][j + 1].c = 0; //directed graph[i + 2 + lft_ln][j + 1].v = j + 2; graph[i + 2 + lft_ln][j + 1].rev = i + 1; } } //To ensure the dispersion of the triplets generated by the //assignation, we shuffle the neighbours of the nodes. Hence, //left vertices do not consider the right ones in the same order. let mut rng = rand::thread_rng(); for i in 0..graph.len() { graph[i].shuffle(&mut rng); //We need to update the ids of the reverse edges. for j in 0..graph[i].len() { let target_v = graph[i][j].v; let target_rev = graph[i][j].rev; graph[target_v][target_rev].rev = j; } } let nb_vertices = graph.len(); //We run Dinic's max flow algorithm loop { //We build the level array from Dinic's algorithm. let mut level = vec![-1; nb_vertices]; let mut fifo = VecDeque::new(); fifo.push_back((0, 0)); while !fifo.is_empty() { if let Some((id, lvl)) = fifo.pop_front() { if level[id] == -1 { level[id] = lvl; for e in graph[id].iter() { if e.c - e.flow > 0 { fifo.push_back((e.v, lvl + 1)); } } } } } if level[1] == -1 { //There is no residual flow break; } //Now we run DFS respecting the level array let mut next_nbd = vec![0; nb_vertices]; let mut lifo = VecDeque::new(); let flow_upper_bound = if let Some(x) = left_cap_vec.iter().max() { *x as i32 } else { panic!(); }; lifo.push_back((0, flow_upper_bound)); while let Some((id_tmp, f_tmp)) = lifo.back() { let id = *id_tmp; let f = *f_tmp; if id == 1 { //The DFS reached the sink, we can add a //residual flow. lifo.pop_back(); while !lifo.is_empty() { if let Some((id, _)) = lifo.pop_back() { let nbd = next_nbd[id]; graph[id][nbd].flow += f; let id_v = graph[id][nbd].v; let nbd_v = graph[id][nbd].rev; graph[id_v][nbd_v].flow -= f; } } lifo.push_back((0, flow_upper_bound)); continue; } //else we did not reach the sink let nbd = next_nbd[id]; if nbd >= graph[id].len() { //There is nothing to explore from id anymore lifo.pop_back(); if let Some((parent, _)) = lifo.back() { next_nbd[*parent] += 1; } continue; } //else we can try to send flow from id to its nbd let new_flow = min(f, graph[id][nbd].c - graph[id][nbd].flow); if level[graph[id][nbd].v] <= level[id] || new_flow == 0 { //We cannot send flow to nbd. next_nbd[id] += 1; continue; } //otherwise, we send flow to nbd. lifo.push_back((graph[id][nbd].v, new_flow)); } } //We return the association let assoc_table = (0..left_cap_vec.len()) .map(|id| { graph[id + 2] .iter() .filter(|e| e.flow > 0) .map(|e| e.v - 2 - left_cap_vec.len()) .collect() }) .collect(); //consistency check //it is a flow for i in 3..graph.len() { assert!(graph[i].iter().map(|e| e.flow).sum::() == 0); for e in graph[i].iter() { assert!(e.flow + graph[e.v][e.rev].flow == 0); } } //it solves the matching problem for i in 0..left_cap_vec.len() { assert!(left_cap_vec[i] as i32 == graph[i + 2].iter().map(|e| max(0, e.flow)).sum::()); } for i in 0..right_cap_vec.len() { assert!( right_cap_vec[i] as i32 == graph[i + 2 + left_cap_vec.len()] .iter() .map(|e| max(0, e.flow)) .sum::() ); } assoc_table } #[cfg(test)] mod tests { use super::*; #[test] fn test_flow() { let left_vec = vec![3; 8]; let right_vec = vec![0, 4, 8, 4, 8]; //There are asserts in the function that computes the flow let _ = dinic_compute_matching(left_vec, right_vec); } //maybe add tests relative to the matching optilization ? }