//! Module containing types related to computing nodes which should receive a copy of data blocks //! and metadata use std::collections::{HashMap, HashSet}; use std::convert::TryInto; use serde::{Deserialize, Serialize}; use garage_util::data::*; /// A partition id, which is stored on 16 bits /// i.e. we have up to 2**16 partitions. /// (in practice we have exactly 2**PARTITION_BITS partitions) pub type Partition = u16; // TODO: make this constant parametrizable in the config file // For deployments with many nodes it might make sense to bump // it up to 10. // Maximum value : 16 /// How many bits from the hash are used to make partitions. Higher numbers means more fairness in /// presence of numerous nodes, but exponentially bigger ring. Max 16 pub const PARTITION_BITS: usize = 8; const PARTITION_MASK_U16: u16 = ((1 << PARTITION_BITS) - 1) << (16 - PARTITION_BITS); /// The user-defined configuration of the cluster's nodes #[derive(Clone, Debug, Serialize, Deserialize)] pub struct NetworkConfig { /// Map of each node's id to it's configuration pub members: HashMap, /// Version of this config pub version: u64, } impl NetworkConfig { pub(crate) fn new() -> Self { Self { members: HashMap::new(), version: 0, } } } /// The overall configuration of one (possibly remote) node #[derive(Clone, Debug, Serialize, Deserialize)] pub struct NetworkConfigEntry { /// Datacenter at which this entry belong. This infromation might be used to perform a better /// geodistribution pub zone: String, /// The (relative) capacity of the node /// If this is set to None, the node does not participate in storing data for the system /// and is only active as an API gateway to other nodes pub capacity: Option, /// A tag to recognize the entry, not used for other things than display pub tag: String, } impl NetworkConfigEntry { pub fn capacity_string(&self) -> String { match self.capacity { Some(c) => format!("{}", c), None => "gateway".to_string(), } } } /// A ring distributing fairly objects to nodes #[derive(Clone)] pub struct Ring { /// The replication factor for this ring pub replication_factor: usize, /// The network configuration used to generate this ring pub config: NetworkConfig, // Internal order of nodes used to make a more compact representation of the ring nodes: Vec, // The list of entries in the ring ring: Vec, } // Type to store compactly the id of a node in the system // Change this to u16 the day we want to have more than 256 nodes in a cluster type CompactNodeType = u8; // The maximum number of times an object might get replicated // This must be at least 3 because Garage supports 3-way replication // Here we use 6 so that the size of a ring entry is 8 bytes // (2 bytes partition id, 6 bytes node numbers as u8s) const MAX_REPLICATION: usize = 6; /// An entry in the ring #[derive(Clone, Debug)] struct RingEntry { // The two first bytes of the first hash that goes in this partition // (the next bytes are zeroes) hash_prefix: u16, // The nodes that store this partition, stored as a list of positions in the `nodes` // field of the Ring structure // Only items 0 up to ring.replication_factor - 1 are used, others are zeros nodes_buf: [CompactNodeType; MAX_REPLICATION], } impl Ring { // TODO this function MUST be refactored, it's 100 lines long, with a 50 lines loop, going up to 6 // levels of imbrication. It is basically impossible to test, maintain, or understand for an // outsider. pub(crate) fn new(config: NetworkConfig, replication_factor: usize) -> Self { // Create a vector of partition indices (0 to 2**PARTITION_BITS-1) let partitions_idx = (0usize..(1usize << PARTITION_BITS)).collect::>(); let zones = config .members .iter() .filter(|(_id, info)| info.capacity.is_some()) .map(|(_id, info)| info.zone.as_str()) .collect::>(); let n_zones = zones.len(); // Prepare ring let mut partitions: Vec> = partitions_idx .iter() .map(|_i| Vec::new()) .collect::>(); // Create MagLev priority queues for each node let mut queues = config .members .iter() .filter(|(_id, info)| info.capacity.is_some()) .map(|(node_id, node_info)| { let mut parts = partitions_idx .iter() .map(|i| { let part_data = [&u16::to_be_bytes(*i as u16)[..], node_id.as_slice()].concat(); (*i, fasthash(&part_data[..])) }) .collect::>(); parts.sort_by_key(|(_i, h)| *h); let parts_i = parts.iter().map(|(i, _h)| *i).collect::>(); (node_id, node_info, parts_i, 0) }) .collect::>(); let max_capacity = config .members .iter() .filter_map(|(_, node_info)| node_info.capacity) .fold(0, std::cmp::max); assert!(replication_factor <= MAX_REPLICATION); // Fill up ring for rep in 0..replication_factor { queues.sort_by_key(|(ni, _np, _q, _p)| { let queue_data = [&u16::to_be_bytes(rep as u16)[..], ni.as_slice()].concat(); fasthash(&queue_data[..]) }); for (_, _, _, pos) in queues.iter_mut() { *pos = 0; } let mut remaining = partitions_idx.len(); while remaining > 0 { let remaining0 = remaining; for i_round in 0..max_capacity { for (node_id, node_info, q, pos) in queues.iter_mut() { if i_round >= node_info.capacity.unwrap() { continue; } for (pos2, &qv) in q.iter().enumerate().skip(*pos) { if partitions[qv].len() != rep { continue; } let p_zns = partitions[qv] .iter() .map(|(_id, info)| info.zone.as_str()) .collect::>(); if (p_zns.len() < n_zones && !p_zns.contains(&node_info.zone.as_str())) || (p_zns.len() == n_zones && !partitions[qv].iter().any(|(id, _i)| id == node_id)) { partitions[qv].push((node_id, node_info)); remaining -= 1; *pos = pos2 + 1; break; } } } } if remaining == remaining0 { // No progress made, exit warn!("Could not build ring, not enough nodes configured."); return Self { replication_factor, config, nodes: vec![], ring: vec![], }; } } } // Make a canonical order for nodes let nodes = config .members .iter() .filter(|(_id, info)| info.capacity.is_some()) .map(|(id, _)| *id) .collect::>(); let nodes_rev = nodes .iter() .enumerate() .map(|(i, id)| (*id, i as CompactNodeType)) .collect::>(); let ring = partitions .iter() .enumerate() .map(|(i, nodes)| { let top = (i as u16) << (16 - PARTITION_BITS); let nodes = nodes .iter() .map(|(id, _info)| *nodes_rev.get(id).unwrap()) .collect::>(); assert!(nodes.len() == replication_factor); let mut nodes_buf = [0u8; MAX_REPLICATION]; nodes_buf[..replication_factor].copy_from_slice(&nodes[..]); RingEntry { hash_prefix: top, nodes_buf, } }) .collect::>(); Self { replication_factor, config, nodes, ring, } } /// Get the partition in which data would fall on pub fn partition_of(&self, position: &Hash) -> Partition { let top = u16::from_be_bytes(position.as_slice()[0..2].try_into().unwrap()); top >> (16 - PARTITION_BITS) } /// Get the list of partitions and the first hash of a partition key that would fall in it pub fn partitions(&self) -> Vec<(Partition, Hash)> { let mut ret = vec![]; for (i, entry) in self.ring.iter().enumerate() { let mut location = [0u8; 32]; location[..2].copy_from_slice(&u16::to_be_bytes(entry.hash_prefix)[..]); ret.push((i as u16, location.into())); } if !ret.is_empty() { assert_eq!(ret[0].1, [0u8; 32].into()); } ret } /// Walk the ring to find the n servers in which data should be replicated pub fn get_nodes(&self, position: &Hash, n: usize) -> Vec { if self.ring.len() != 1 << PARTITION_BITS { warn!("Ring not yet ready, read/writes will be lost!"); return vec![]; } let partition_idx = self.partition_of(position) as usize; let partition = &self.ring[partition_idx]; let top = u16::from_be_bytes(position.as_slice()[0..2].try_into().unwrap()); // Check that we haven't messed up our partition table, i.e. that this partition // table entrey indeed corresponds to the item we are storing assert_eq!( partition.hash_prefix & PARTITION_MASK_U16, top & PARTITION_MASK_U16 ); assert!(n <= self.replication_factor); partition.nodes_buf[..n] .iter() .map(|i| self.nodes[*i as usize]) .collect::>() } } #[cfg(test)] mod tests { use super::*; #[test] fn test_ring_entry_size() { assert_eq!(std::mem::size_of::(), 8); } }