Merge branch 'master' of git.deuxfleurs.fr:Deuxfleurs/site

This commit is contained in:
Quentin 2021-02-03 11:28:51 +01:00
commit 9343712ee7
15 changed files with 63 additions and 378 deletions

2
deploy
View file

@ -4,4 +4,4 @@ shopt -s expand_aliases
source .awsclirc source .awsclirc
npm install npm install
node render.js node render.js
awsdf s3 sync static s3://deuxfleurs.fr awsdf s3 sync --size-only static s3://deuxfleurs.fr

View file

@ -24,7 +24,7 @@ const walk = async (path, filename) => {
} }
} }
const ext_static = ['.css', '.js', '.otf', '.png', '.svg', '.txt', '.png', '.jpg', '.webp', 'client', 'server', '.pdf', '.ttf'] const ext_static = ['.css', '.js', '.otf', '.png', '.svg', '.txt', '.png', '.jpg', '.webp', 'client', 'server', '.pdf', '.ttf', '.xml']
const ext_md = ['.md', '.markdown'] const ext_md = ['.md', '.markdown']
const ext_pug = ['.pug', '.jade'] const ext_pug = ['.pug', '.jade']

View file

@ -0,0 +1,27 @@
<?xml version="1.0" encoding="UTF-8"?>
<clientConfig version="1.1">
<emailProvider id="deuxfleurs.fr">
<domain>deuxfleurs.fr</domain>
<displayName>Deuxfleurs Mail</displayName>
<displayShortName>Deuxfleurs</displayShortName>
<incomingServer type="imap">
<hostname>imap.deuxfleurs.fr</hostname>
<port>993</port>
<socketType>SSL</socketType>
<authentication>plain</authentication>
<username>%EMAILADDRESS%</username>
</incomingServer>
<outgoingServer type="smtp">
<hostname>smtp.deuxfleurs.fr</hostname>
<port>465</port>
<socketType>SSL</socketType>
<authentication>plain</authentication>
<username>%EMAILADDRESS%</username>
</outgoingServer>
<documentation url="https://deuxfleurs.fr/Guide/Email.html">
<descr lang="fr">Documentation générique pour la configuration</descr>
<descr lang="en">Generic settings page</descr>
</documentation>
</emailProvider>
</clientConfig>

View file

@ -10,16 +10,17 @@ Ladite AG se tiendra virtuellement le dimanche 7 février à 16h, sur notre serv
Seul.e.s les membres à jour de leur cotisation en 2020 ont le droit de candidater et de voter pour le nouveau bureau de l'association (ce qui n'empêche pas les autres d'assister à l'élection). Si un.e membre a envie de proposer sa candidature, qu'iel prépare quelques phrases pour se présenter ! Seul.e.s les membres à jour de leur cotisation en 2020 ont le droit de candidater et de voter pour le nouveau bureau de l'association (ce qui n'empêche pas les autres d'assister à l'élection). Si un.e membre a envie de proposer sa candidature, qu'iel prépare quelques phrases pour se présenter !
### Programme (durée : 1h30-2h) ### Programme (durée prévisionnelle : 1h30-2h)
*Nous avons organisé l'AG de sorte que le début soit intéressant pour tout le monde, et que les formalités moins amusantes (bilan financer, élection du nouveau bureau etc.) aient lieu à la fin. Si vous êtes seulement intéressé.e par qui nous sommes et ce qu'on trafique, vous devriez pouvoir vous échapper à 17h sans manquer grand-chose.*
* Courte présentation de Deuxfleurs et des membres du bureau qui animeront l'assemblée ; * Courte présentation de Deuxfleurs et des membres du bureau qui animeront l'assemblée ;
* Keynote (présentation appétissante) : notre guide spirituel, Quentin, parlera de notre vision avec plus de verve que Steve Jobs à ses heures les plus excitées ; * Keynote (présentation appétissante) : notre guide spirituel, Quentin, parlera de notre vision avec plus de verve que Steve Jobs à ses heures les plus excitées ;
* Comment adhérer à Deuxfleurs ?
* Bilan moral : présentation des activités de Deuxfleurs en 2020 ; * Bilan moral : présentation des activités de Deuxfleurs en 2020 ;
* Bilan financier : comment vont les finances ? * Bilan financier : comment vont les finances ?
* Élection du bureau 2021 : présentation des candidat.e.s, et vote ; * Élection du bureau 2021 : présentation des candidat.e.s, et vote ;
* Proposition d'objectifs pour l'année à venir ; * Proposition d'objectifs pour l'année à venir ;
* Comment adhérer à Deuxfleurs ?
* Discussions libres. * Discussions libres.
Vous savez tout ! Nous espérons vous voir nombreux.ses et motivé.e.s à l'AG. En vous attendant, on cultive le jardin, Vous savez tout ! Nous espérons vous voir nombreux.ses et motivé.e.s à l'AG. En vous attendant, on cultive le jardin,

0
src/Guide/index.md Normal file
View file

View file

@ -1,372 +0,0 @@
# Garage: a S3-like object storage
Store pile of bytes in your garage.
## Quickstart on an existing deployment
First, chances are that your garage deployment is secured by TLS.
All your commands must be prefixed with their certificates.
I will define an alias once and for all to ease future commands.
Please adapt the path of the binary and certificates to your installation!
```
alias grg="/garage/garage --ca-cert /secrets/garage-ca.crt --client-cert /secrets/garage.crt --client-key /secrets/garage.key"
```
Now we can check that everything is going well by checking our cluster status:
```
grg status
```
Don't forget that `help` command and `--help` subcommands can help you anywhere, the CLI tool is self-documented! Two examples:
```
grg help
grg bucket allow --help
```
Fine, now let's create a bucket (we imagine that you want to deploy nextcloud):
```
grg bucket create nextcloud-bucket
```
Check that everything went well:
```
grg bucket list
grg bucket info nextcloud-bucket
```
Now we will generate an API key to access this bucket.
Note that API keys are independent of buckets: one key can access multiple buckets, multiple keys can access one bucket.
Now, let's start by creating a key only for our PHP application:
```
grg key new --name nextcloud-app-key
```
You will have the following output (this one is fake, `key_id` and `secret_key` were generated with the openssl CLI tool):
```
Key { key_id: "GK3515373e4c851ebaad366558", secret_key: "7d37d093435a41f2aab8f13c19ba067d9776c90215f56614adad6ece597dbb34", name: "nextcloud-app-key", name_timestamp: 1603280506694, deleted: false, authorized_buckets: [] }
```
Check that everything works as intended (be careful, info works only with your key identifier and not with its friendly name!):
```
grg key list
grg key info GK3515373e4c851ebaad366558
```
Now that we have a bucket and a key, we need to give permissions to the key on the bucket!
```
grg bucket allow --read --write nextcloud-bucket --key GK3515373e4c851ebaad366558
```
You can check at any times allowed keys on your bucket with:
```
grg bucket info nextcloud-bucket
```
Now, let's move to the S3 API!
We will use the `s3cmd` CLI tool.
You can install it via your favorite package manager.
Otherwise, check [their website](https://s3tools.org/s3cmd)
We will configure `s3cmd` with its interactive configuration tool, be careful not all endpoints are implemented!
Especially, the test run at the end does not work (yet).
```
$ s3cmd --configure
Enter new values or accept defaults in brackets with Enter.
Refer to user manual for detailed description of all options.
Access key and Secret key are your identifiers for Amazon S3. Leave them empty for using the env variables.
Access Key: GK3515373e4c851ebaad366558
Secret Key: 7d37d093435a41f2aab8f13c19ba067d9776c90215f56614adad6ece597dbb34
Default Region [US]: garage
Use "s3.amazonaws.com" for S3 Endpoint and not modify it to the target Amazon S3.
S3 Endpoint [s3.amazonaws.com]: garage.deuxfleurs.fr
Use "%(bucket)s.s3.amazonaws.com" to the target Amazon S3. "%(bucket)s" and "%(location)s" vars can be used
if the target S3 system supports dns based buckets.
DNS-style bucket+hostname:port template for accessing a bucket [%(bucket)s.s3.amazonaws.com]: garage.deuxfleurs.fr
Encryption password is used to protect your files from reading
by unauthorized persons while in transfer to S3
Encryption password:
Path to GPG program [/usr/bin/gpg]:
When using secure HTTPS protocol all communication with Amazon S3
servers is protected from 3rd party eavesdropping. This method is
slower than plain HTTP, and can only be proxied with Python 2.7 or newer
Use HTTPS protocol [Yes]:
On some networks all internet access must go through a HTTP proxy.
Try setting it here if you can't connect to S3 directly
HTTP Proxy server name:
New settings:
Access Key: GK3515373e4c851ebaad366558
Secret Key: 7d37d093435a41f2aab8f13c19ba067d9776c90215f56614adad6ece597dbb34
Default Region: garage
S3 Endpoint: garage.deuxfleurs.fr
DNS-style bucket+hostname:port template for accessing a bucket: garage.deuxfleurs.fr
Encryption password:
Path to GPG program: /usr/bin/gpg
Use HTTPS protocol: True
HTTP Proxy server name:
HTTP Proxy server port: 0
Test access with supplied credentials? [Y/n] n
Save settings? [y/N] y
Configuration saved to '/home/quentin/.s3cfg'
```
Now, if everything works, the following commands should work:
```
echo hello world > hello.txt
s3cmd put hello.txt s3://nextcloud-bucket
s3cmd ls s3://nextcloud-bucket
s3cmd rm s3://nextcloud-bucket/hello.txt
```
That's all for now!
## Context
Data storage is critical: it can lead to data loss if done badly and/or on hardware failure.
Filesystems + RAID can help on a single machine but a machine failure can put the whole storage offline.
Moreover, it put a hard limit on scalability. Often this limit can be pushed back far away by buying expensive machines.
But here we consider non specialized off the shelf machines that can be as low powered and subject to failures as a raspberry pi.
Distributed storage may help to solve both availability and scalability problems on these machines.
Many solutions were proposed, they can be categorized as block storage, file storage and object storage depending on the abstraction they provide.
## Related work
Block storage is the most low level one, it's like exposing your raw hard drive over the network.
It requires very low latencies and stable network, that are often dedicated.
However it provides disk devices that can be manipulated by the operating system with the less constraints: it can be partitioned with any filesystem, meaning that it supports even the most exotic features.
We can cite [iSCSI](https://en.wikipedia.org/wiki/ISCSI) or [Fibre Channel](https://en.wikipedia.org/wiki/Fibre_Channel).
Openstack Cinder proxy previous solution to provide an uniform API.
File storage provides a higher abstraction, they are one filesystem among others, which means they don't necessarily have all the exotic features of every filesystem.
Often, they relax some POSIX constraints while many applications will still be compatible without any modification.
As an example, we are able to run MariaDB (very slowly) over GlusterFS...
We can also mention CephFS (read [RADOS](https://ceph.com/wp-content/uploads/2016/08/weil-rados-pdsw07.pdf) whitepaper), Lustre, LizardFS, MooseFS, etc.
OpenStack Manila proxy previous solutions to provide an uniform API.
Finally object storages provide the highest level abstraction.
They are the testimony that the POSIX filesystem API is not adapted to distributed filesystems.
Especially, the strong concistency has been dropped in favor of eventual consistency which is way more convenient and powerful in presence of high latencies and unreliability.
We often read about S3 that pioneered the concept that it's a filesystem for the WAN.
Applications must be adapted to work for the desired object storage service.
Today, the S3 HTTP REST API acts as a standard in the industry.
However, Amazon S3 source code is not open but alternatives were proposed.
We identified Minio, Pithos, Swift and Ceph.
Minio/Ceph enforces a total order, so properties similar to a (relaxed) filesystem.
Swift and Pithos are probably the most similar to AWS S3 with their consistent hashing ring.
There were many attempts in research too. I am only thinking to [LBFS](https://pdos.csail.mit.edu/papers/lbfs:sosp01/lbfs.pdf) that was used as a basis for Seafile.
----
## Random notes
- Cassandra (ScyllaDB) for metadata
- Own system using consistent hashing for data chunks
**Quentin:**
- pas d'erasure coding mais des checksums à côté des fichiers (ou dans les meta données)
- 2 ou 3 copies, configurable, potentiellement on a per bucket or per file basis
- on ne setup pas à la main en effet, je pensais au système qui scan sa partition de stockage et qui fait stockage géré = min(stockage de la partition - stockage que je ne gère pas, stockage alloué)
- La DHT/Ring à la dynamo, on doit pouvoir repomper un millier de truc sur leur papier. Surtout que je me le suis déja cogné deux fois. Le nombre d'entrées que tu mets est un multiple de ton stockage. eg: 500 Go, on fait des tranches de 10 Go --> 50 entrées dans le ring.
- un protocole de maintenance pompé sur le papier dynamo avec de l'anti entropy qui vérifie les blobs et leurs checksums (en plus de la vérification réalisée à la lecture)
- une interface web qui te donne en presque direct la santé de ton cluster (noeuds en vie, états de la réplication des données, problèmes de checksums)
**Other ideas:**
- split objects in constant size blocks or use the SeaFile strategy for better de-duplication? (Content Defined Chunking, Rabin's algorithm etc)
_Remark 1_ I really like the Rabin fingerprinting approach however deduplication means we need to implement reference counting. How do we implement it? If we suppose a CRDT counter, if we do +1, +1, -1 but counter is registered as +1, -1, +1, we are at zero at one point and lost ou chunk. ---> we need to be careful in our implementation if we want to play.
_Remark 2_ Seafile idea has been stolen from this article: https://pdos.csail.mit.edu/papers/lbfs:sosp01/lbfs.pdf
--> we should not talk about block. It is the abstraction that manipulate your FS to interact with your hard drive. "Chunk" is probably more appropriate. Block storage are a class of distributed storage where you expose the abstraction of your hard drive over the network, mainly SATA over ethernet, thinking to SCSI, FiberChannel, and so on
### Questions à résoudre
1. est-ce que cassandra support de mettre certaines tables sur un SSD et d'autres sur un disque rotatif ?
2. est-ce que cassandra/scylladb a un format de table on disk qui ne s'écroule pas complètement losque tu as des gros blobs ? (les devs de sqlite ont écrit tout un article pour dire que même avec leur lib qui est quand même sacrément optimisés, ils considèrent qu'à partir de je crois 4ko c'est plus efficace de mettre les blobs dans des fichiers séparés) - https://www.sqlite.org/intern-v-extern-blob.html
3. Quelle taille de blocs ? L'idée c'est qu'on a quand même des liens en WAN avec des débits pas forcéments incroyables. Et ça serait bien que le temps de répliquer un bloc soit de l'ordre de la seconde maxi. En cas de retry, pour pouvoir mieux monitorer la progression, etc. Exoscale utilise 16Mo. LX propose 1Mo.
#### Modules
- `membership/`: configuration, membership management (gossip of node's presence and status), ring generation --> what about Serf (used by Consul/Nomad) : https://www.serf.io/? Seems a huge library with many features so maybe overkill/hard to integrate
- `metadata/`: metadata management
- `blocks/`: block management, writing, GC and rebalancing
- `internal/`: server to server communication (HTTP server and client that reuses connections, TLS if we want, etc)
- `api/`: S3 API
- `web/`: web management interface
#### Metadata tables
**Objects:**
- *Hash key:* Bucket name (string)
- *Sort key:* Object key (string)
- *Sort key:* Version timestamp (int)
- *Sort key:* Version UUID (string)
- Complete: bool
- Inline: bool, true for objects < threshold (say 1024)
- Object size (int)
- Mime type (string)
- Data for inlined objects (blob)
- Hash of first block otherwise (string)
*Having only a hash key on the bucket name will lead to storing all file entries of this table for a specific bucket on a single node. At the same time, it is the only way I see to rapidly being able to list all bucket entries...*
**Blocks:**
- *Hash key:* Version UUID (string)
- *Sort key:* Offset of block in total file (int)
- Hash of data block (string)
A version is defined by the existence of at least one entry in the blocks table for a certain version UUID.
We must keep the following invariant: if a version exists in the blocks table, it has to be referenced in the objects table.
We explicitly manage concurrent versions of an object: the version timestamp and version UUID columns are index columns, thus we may have several concurrent versions of an object.
Important: before deleting an older version from the objects table, we must make sure that we did a successfull delete of the blocks of that version from the blocks table.
Thus, the workflow for reading an object is as follows:
1. Check permissions (LDAP)
2. Read entry in object table. If data is inline, we have its data, stop here.
-> if several versions, take newest one and launch deletion of old ones in background
3. Read first block from cluster. If size <= 1 block, stop here.
4. Simultaneously with previous step, if size > 1 block: query the Blocks table for the IDs of the next blocks
5. Read subsequent blocks from cluster
Workflow for PUT:
1. Check write permission (LDAP)
2. Select a new version UUID
3. Write a preliminary entry for the new version in the objects table with complete = false
4. Send blocks to cluster and write entries in the blocks table
5. Update the version with complete = true and all of the accurate information (size, etc)
6. Return success to the user
7. Launch a background job to check and delete older versions
Workflow for DELETE:
1. Check write permission (LDAP)
2. Get current version (or versions) in object table
3. Do the deletion of those versions NOT IN A BACKGROUND JOB THIS TIME
4. Return succes to the user if we were able to delete blocks from the blocks table and entries from the object table
To delete a version:
1. List the blocks from Cassandra
2. For each block, delete it from cluster. Don't care if some deletions fail, we can do GC.
3. Delete all of the blocks from the blocks table
4. Finally, delete the version from the objects table
Known issue: if someone is reading from a version that we want to delete and the object is big, the read might be interrupted. I think it is ok to leave it like this, we just cut the connection if data disappears during a read.
("Soit P un problème, on s'en fout est une solution à ce problème")
#### Block storage on disk
**Blocks themselves:**
- file path = /blobs/(first 3 hex digits of hash)/(rest of hash)
**Reverse index for GC & other block-level metadata:**
- file path = /meta/(first 3 hex digits of hash)/(rest of hash)
- map block hash -> set of version UUIDs where it is referenced
Usefull metadata:
- list of versions that reference this block in the Casandra table, so that we can do GC by checking in Cassandra that the lines still exist
- list of other nodes that we know have acknowledged a write of this block, usefull in the rebalancing algorithm
Write strategy: have a single thread that does all write IO so that it is serialized (or have several threads that manage independent parts of the hash space). When writing a blob, write it to a temporary file, close, then rename so that a concurrent read gets a consistent result (either not found or found with whole content).
Read strategy: the only read operation is get(hash) that returns either the data or not found (can do a corruption check as well and return corrupted state if it is the case). Can be done concurrently with writes.
**Internal API:**
- get(block hash) -> ok+data/not found/corrupted
- put(block hash & data, version uuid + offset) -> ok/error
- put with no data(block hash, version uuid + offset) -> ok/not found plz send data/error
- delete(block hash, version uuid + offset) -> ok/error
GC: when last ref is deleted, delete block.
Long GC procedure: check in Cassandra that version UUIDs still exist and references this block.
Rebalancing: takes as argument the list of newly added nodes.
- List all blocks that we have. For each block:
- If it hits a newly introduced node, send it to them.
Use put with no data first to check if it has to be sent to them already or not.
Use a random listing order to avoid race conditions (they do no harm but we might have two nodes sending the same thing at the same time thus wasting time).
- If it doesn't hit us anymore, delete it and its reference list.
Only one balancing can be running at a same time. It can be restarted at the beginning with new parameters.
#### Membership management
Two sets of nodes:
- set of nodes from which a ping was recently received, with status: number of stored blocks, request counters, error counters, GC%, rebalancing%
(eviction from this set after say 30 seconds without ping)
- set of nodes that are part of the system, explicitly modified by the operator using the web UI (persisted to disk),
is a CRDT using a version number for the value of the whole set
Thus, three states for nodes:
- healthy: in both sets
- missing: not pingable but part of desired cluster
- unused/draining: currently present but not part of the desired cluster, empty = if contains nothing, draining = if still contains some blocks
Membership messages between nodes:
- ping with current state + hash of current membership info -> reply with same info
- send&get back membership info (the ids of nodes that are in the two sets): used when no local membership change in a long time and membership info hash discrepancy detected with first message (passive membership fixing with full CRDT gossip)
- inform of newly pingable node(s) -> no result, when receive new info repeat to all (reliable broadcast)
- inform of operator membership change -> no result, when receive new info repeat to all (reliable broadcast)
Ring: generated from the desired set of nodes, however when doing read/writes on the ring, skip nodes that are known to be not pingable.
The tokens are generated in a deterministic fashion from node IDs (hash of node id + token number from 1 to K).
Number K of tokens per node: decided by the operator & stored in the operator's list of nodes CRDT. Default value proposal: with node status information also broadcast disk total size and free space, and propose a default number of tokens equal to 80%Free space / 10Gb. (this is all user interface)
#### Constants
- Block size: around 1MB ? --> Exoscale use 16MB chunks
- Number of tokens in the hash ring: one every 10Gb of allocated storage
- Threshold for storing data directly in Cassandra objects table: 1kb bytes (maybe up to 4kb?)
- Ping timeout (time after which a node is registered as unresponsive/missing): 30 seconds
- Ping interval: 10 seconds
- ??
#### Links
- CDC: <https://www.usenix.org/system/files/conference/atc16/atc16-paper-xia.pdf>
- Erasure coding: <http://web.eecs.utk.edu/~jplank/plank/papers/CS-08-627.html>
- [Openstack Storage Concepts](https://docs.openstack.org/arch-design/design-storage/design-storage-concepts.html)
- [RADOS](https://ceph.com/wp-content/uploads/2016/08/weil-rados-pdsw07.pdf)

View file

@ -0,0 +1,28 @@
# Garage
Garage is a lightweight AWS S3-compatible distributed object store, with the following goals:
- As self-contained as possible
- Easy to set up
- Highly resilient to network failures, network latency, disk failures, sysadmin failures
- Relatively simple
- Made for multi-datacenter deployments
Non-goals include:
- Extremely high performance
- Complete implementation of the S3 API
- Erasure coding (our replication model is simply to copy the data as is on several nodes)
Currently, Garage is deployed on our cluster (this very website is hosted on garage!) but must be considered as a technical preview.
If you want to learn more about Garage, you can check our [documentation](https://git.deuxfleurs.fr/Deuxfleurs/garage/src/branch/master/doc):
- [Quickstart](https://git.deuxfleurs.fr/Deuxfleurs/garage/src/branch/master/doc/Internals.md), learn how to quickly interact with garage.
- [Related Work](https://git.deuxfleurs.fr/Deuxfleurs/garage/src/branch/master/doc/Related%20Work.md), understand why we decided to build a new software instead of using existing ones.
- [Internals](https://git.deuxfleurs.fr/Deuxfleurs/garage/src/branch/master/doc/Internals.md), contains a quick description of the data models that are used in Garage.
External links:
- [Repository](https://git.deuxfleurs.fr/Deuxfleurs/garage/), Garage is a free software, developed on our own Gitea instance
Talks:
- [(fr, informal) 2020-12-02 Why we decided to reinvent the wheel](https://git.deuxfleurs.fr/Deuxfleurs/garage/src/branch/master/doc/20201202_talk/talk.pdf)

View file

View file

@ -7,6 +7,7 @@ mixin menu(o, element)
a(href=val.url, class=val.index.url == element.url ? 'selected' : null)= val.nice_name a(href=val.url, class=val.index.url == element.url ? 'selected' : null)= val.nice_name
- else - else
span= val.nice_name span= val.nice_name
- if (element.url.includes(val.url))
+menu(val, element) +menu(val, element)
- else if (val.type == 'file' && val.tags.includes('document') && !val.tags.includes('is_index')) - else if (val.type == 'file' && val.tags.includes('document') && !val.tags.includes('is_index'))
li li

View file

Before

Width:  |  Height:  |  Size: 550 KiB

After

Width:  |  Height:  |  Size: 550 KiB

View file

Before

Width:  |  Height:  |  Size: 26 KiB

After

Width:  |  Height:  |  Size: 26 KiB