package iradix // rawIterator visits each of the nodes in the tree, even the ones that are not // leaves. It keeps track of the effective path (what a leaf at a given node // would be called), which is useful for comparing trees. type rawIterator struct { // node is the starting node in the tree for the iterator. node *Node // stack keeps track of edges in the frontier. stack []rawStackEntry // pos is the current position of the iterator. pos *Node // path is the effective path of the current iterator position, // regardless of whether the current node is a leaf. path string } // rawStackEntry is used to keep track of the cumulative common path as well as // its associated edges in the frontier. type rawStackEntry struct { path string edges edges } // Front returns the current node that has been iterated to. func (i *rawIterator) Front() *Node { return i.pos } // Path returns the effective path of the current node, even if it's not actually // a leaf. func (i *rawIterator) Path() string { return i.path } // Next advances the iterator to the next node. func (i *rawIterator) Next() { // Initialize our stack if needed. if i.stack == nil && i.node != nil { i.stack = []rawStackEntry{ rawStackEntry{ edges: edges{ edge{node: i.node}, }, }, } } for len(i.stack) > 0 { // Inspect the last element of the stack. n := len(i.stack) last := i.stack[n-1] elem := last.edges[0].node // Update the stack. if len(last.edges) > 1 { i.stack[n-1].edges = last.edges[1:] } else { i.stack = i.stack[:n-1] } // Push the edges onto the frontier. if len(elem.edges) > 0 { path := last.path + string(elem.prefix) i.stack = append(i.stack, rawStackEntry{path, elem.edges}) } i.pos = elem i.path = last.path + string(elem.prefix) return } i.pos = nil i.path = "" }