garage/src/block/resync.rs

605 lines
18 KiB
Rust
Raw Normal View History

use std::collections::HashSet;
use std::convert::TryInto;
use std::sync::{Arc, Mutex};
use std::time::Duration;
use arc_swap::ArcSwap;
use async_trait::async_trait;
use serde::{Deserialize, Serialize};
use tokio::select;
use tokio::sync::{watch, Notify};
use opentelemetry::{
trace::{FutureExt as OtelFutureExt, TraceContextExt, Tracer},
Context, KeyValue,
};
use garage_db as db;
use garage_db::counted_tree_hack::CountedTree;
use garage_util::background::*;
use garage_util::data::*;
use garage_util::error::*;
use garage_util::metrics::RecordDuration;
use garage_util::persister::Persister;
use garage_util::time::*;
use garage_util::tranquilizer::Tranquilizer;
use garage_rpc::system::System;
use garage_rpc::*;
use garage_table::replication::TableReplication;
use crate::manager::*;
// The delay between the time where a resync operation fails
// and the time when it is retried, with exponential backoff
// (multiplied by 2, 4, 8, 16, etc. for every consecutive failure).
pub(crate) const RESYNC_RETRY_DELAY: Duration = Duration::from_secs(60);
// The minimum retry delay is 60 seconds = 1 minute
// The maximum retry delay is 60 seconds * 2^6 = 60 seconds << 6 = 64 minutes (~1 hour)
pub(crate) const RESYNC_RETRY_DELAY_MAX_BACKOFF_POWER: u64 = 6;
// No more than 4 resync workers can be running in the system
pub(crate) const MAX_RESYNC_WORKERS: usize = 4;
// Resync tranquility is initially set to 2, but can be changed in the CLI
// and the updated version is persisted over Garage restarts
const INITIAL_RESYNC_TRANQUILITY: u32 = 2;
pub struct BlockResyncManager {
pub(crate) queue: CountedTree,
pub(crate) notify: Notify,
pub(crate) errors: CountedTree,
busy_set: BusySet,
persister: Persister<ResyncPersistedConfig>,
persisted: ArcSwap<ResyncPersistedConfig>,
}
#[derive(Serialize, Deserialize, Clone, Copy)]
struct ResyncPersistedConfig {
n_workers: usize,
tranquility: u32,
}
enum ResyncIterResult {
BusyDidSomething,
BusyDidNothing,
IdleFor(Duration),
}
type BusySet = Arc<Mutex<HashSet<Vec<u8>>>>;
struct BusyBlock {
time_bytes: Vec<u8>,
hash_bytes: Vec<u8>,
busy_set: BusySet,
}
impl BlockResyncManager {
pub(crate) fn new(db: &db::Db, system: &System) -> Self {
let queue = db
.open_tree("block_local_resync_queue")
.expect("Unable to open block_local_resync_queue tree");
let queue = CountedTree::new(queue).expect("Could not count block_local_resync_queue");
let errors = db
.open_tree("block_local_resync_errors")
.expect("Unable to open block_local_resync_errors tree");
let errors = CountedTree::new(errors).expect("Could not count block_local_resync_errors");
let persister = Persister::new(&system.metadata_dir, "resync_cfg");
let persisted = match persister.load() {
Ok(v) => v,
Err(_) => ResyncPersistedConfig {
n_workers: 1,
tranquility: INITIAL_RESYNC_TRANQUILITY,
},
};
Self {
queue,
notify: Notify::new(),
errors,
busy_set: Arc::new(Mutex::new(HashSet::new())),
persister,
persisted: ArcSwap::new(Arc::new(persisted)),
}
}
/// Get lenght of resync queue
pub fn queue_len(&self) -> Result<usize, Error> {
// This currently can't return an error because the CountedTree hack
// doesn't error on .len(), but this will change when we remove the hack
// (hopefully someday!)
Ok(self.queue.len())
}
/// Get number of blocks that have an error
pub fn errors_len(&self) -> Result<usize, Error> {
// (see queue_len comment)
Ok(self.errors.len())
}
/// Clear the error counter for a block and put it in queue immediately
pub fn clear_backoff(&self, hash: &Hash) -> Result<(), Error> {
let now = now_msec();
if let Some(ec) = self.errors.get(hash)? {
let mut ec = ErrorCounter::decode(&ec);
if ec.errors > 0 {
ec.last_try = now - ec.delay_msec();
self.errors.insert(hash, ec.encode())?;
self.put_to_resync_at(hash, now)?;
return Ok(());
}
}
Err(Error::Message(format!(
"Block {:?} was not in an errored state",
hash
)))
}
// ---- Resync loop ----
// This part manages a queue of blocks that need to be
// "resynchronized", i.e. that need to have a check that
// they are at present if we need them, or that they are
// deleted once the garbage collection delay has passed.
//
// Here are some explanations on how the resync queue works.
// There are two Sled trees that are used to have information
// about the status of blocks that need to be resynchronized:
//
// - resync.queue: a tree that is ordered first by a timestamp
// (in milliseconds since Unix epoch) that is the time at which
// the resync must be done, and second by block hash.
// The key in this tree is just:
// concat(timestamp (8 bytes), hash (32 bytes))
// The value is the same 32-byte hash.
//
// - resync.errors: a tree that indicates for each block
// if the last resync resulted in an error, and if so,
// the following two informations (see the ErrorCounter struct):
// - how many consecutive resync errors for this block?
// - when was the last try?
// These two informations are used to implement an
// exponential backoff retry strategy.
// The key in this tree is the 32-byte hash of the block,
// and the value is the encoded ErrorCounter value.
//
// We need to have these two trees, because the resync queue
// is not just a queue of items to process, but a set of items
// that are waiting a specific delay until we can process them
// (the delay being necessary both internally for the exponential
// backoff strategy, and exposed as a parameter when adding items
// to the queue, e.g. to wait until the GC delay has passed).
// This is why we need one tree ordered by time, and one
// ordered by identifier of item to be processed (block hash).
//
// When the worker wants to process an item it takes from
// resync.queue, it checks in resync.errors that if there is an
// exponential back-off delay to await, it has passed before we
// process the item. If not, the item in the queue is skipped
// (but added back for later processing after the time of the
// delay).
//
// An alternative that would have seemed natural is to
// only add items to resync.queue with a processing time that is
// after the delay, but there are several issues with this:
// - This requires to synchronize updates to resync.queue and
// resync.errors (with the current model, there is only one thread,
// the worker thread, that accesses resync.errors,
// so no need to synchronize) by putting them both in a lock.
// This would mean that block_incref might need to take a lock
// before doing its thing, meaning it has much more chances of
// not completing successfully if something bad happens to Garage.
// Currently Garage is not able to recover from block_incref that
// doesn't complete successfully, because it is necessary to ensure
// the consistency between the state of the block manager and
// information in the BlockRef table.
// - If a resync fails, we put that block in the resync.errors table,
// and also add it back to resync.queue to be processed after
// the exponential back-off delay,
// but maybe the block is already scheduled to be resynced again
// at another time that is before the exponential back-off delay,
// and we have no way to check that easily. This means that
// in all cases, we need to check the resync.errors table
// in the resync loop at the time when a block is popped from
// the resync.queue.
// Overall, the current design is therefore simpler and more robust
// because it tolerates inconsistencies between the resync.queue
// and resync.errors table (items being scheduled in resync.queue
// for times that are earlier than the exponential back-off delay
// is a natural condition that is handled properly).
pub(crate) fn put_to_resync(&self, hash: &Hash, delay: Duration) -> db::Result<()> {
let when = now_msec() + delay.as_millis() as u64;
self.put_to_resync_at(hash, when)
}
pub(crate) fn put_to_resync_at(&self, hash: &Hash, when: u64) -> db::Result<()> {
trace!("Put resync_queue: {} {:?}", when, hash);
let mut key = u64::to_be_bytes(when).to_vec();
key.extend(hash.as_ref());
self.queue.insert(key, hash.as_ref())?;
self.notify.notify_waiters();
Ok(())
}
async fn resync_iter(&self, manager: &BlockManager) -> Result<ResyncIterResult, db::Error> {
if let Some(block) = self.get_block_to_resync()? {
let time_msec = u64::from_be_bytes(block.time_bytes[0..8].try_into().unwrap());
let now = now_msec();
if now >= time_msec {
let hash = Hash::try_from(&block.hash_bytes[..]).unwrap();
if let Some(ec) = self.errors.get(hash.as_slice())? {
let ec = ErrorCounter::decode(&ec);
if now < ec.next_try() {
// if next retry after an error is not yet,
// don't do resync and return early, but still
// make sure the item is still in queue at expected time
self.put_to_resync_at(&hash, ec.next_try())?;
// ec.next_try() > now >= time_msec, so this remove
// is not removing the one we added just above
// (we want to do the remove after the insert to ensure
// that the item is not lost if we crash in-between)
self.queue.remove(&block.time_bytes)?;
return Ok(ResyncIterResult::BusyDidNothing);
}
}
let tracer = opentelemetry::global::tracer("garage");
let trace_id = gen_uuid();
let span = tracer
.span_builder("Resync block")
.with_trace_id(
opentelemetry::trace::TraceId::from_hex(&hex::encode(
&trace_id.as_slice()[..16],
))
.unwrap(),
)
.with_attributes(vec![KeyValue::new("block", format!("{:?}", hash))])
.start(&tracer);
let res = self
.resync_block(manager, &hash)
.with_context(Context::current_with_span(span))
.bound_record_duration(&manager.metrics.resync_duration)
.await;
manager.metrics.resync_counter.add(1);
if let Err(e) = &res {
manager.metrics.resync_error_counter.add(1);
2022-12-13 11:24:30 +00:00
error!("Error when resyncing {:?}: {}", hash, e);
let err_counter = match self.errors.get(hash.as_slice())? {
Some(ec) => ErrorCounter::decode(&ec).add1(now + 1),
None => ErrorCounter::new(now + 1),
};
self.errors.insert(hash.as_slice(), err_counter.encode())?;
self.put_to_resync_at(&hash, err_counter.next_try())?;
// err_counter.next_try() >= now + 1 > now,
// the entry we remove from the queue is not
// the entry we inserted with put_to_resync_at
self.queue.remove(&block.time_bytes)?;
} else {
self.errors.remove(hash.as_slice())?;
self.queue.remove(&block.time_bytes)?;
}
Ok(ResyncIterResult::BusyDidSomething)
} else {
Ok(ResyncIterResult::IdleFor(Duration::from_millis(
time_msec - now,
)))
}
} else {
// Here we wait either for a notification that an item has been
// added to the queue, or for a constant delay of 10 secs to expire.
// The delay avoids a race condition where the notification happens
// between the time we checked the queue and the first poll
// to resync_notify.notified(): if that happens, we'll just loop
// back 10 seconds later, which is fine.
Ok(ResyncIterResult::IdleFor(Duration::from_secs(10)))
}
}
fn get_block_to_resync(&self) -> Result<Option<BusyBlock>, db::Error> {
let mut busy = self.busy_set.lock().unwrap();
for it in self.queue.iter()? {
let (time_bytes, hash_bytes) = it?;
if !busy.contains(&time_bytes) {
busy.insert(time_bytes.clone());
return Ok(Some(BusyBlock {
time_bytes,
hash_bytes,
busy_set: self.busy_set.clone(),
}));
}
}
2022-09-02 15:24:26 +00:00
Ok(None)
}
async fn resync_block(&self, manager: &BlockManager, hash: &Hash) -> Result<(), Error> {
let BlockStatus { exists, needed } = manager.check_block_status(hash).await?;
if exists != needed.is_needed() || exists != needed.is_nonzero() {
debug!(
"Resync block {:?}: exists {}, nonzero rc {}, deletable {}",
hash,
exists,
needed.is_nonzero(),
needed.is_deletable(),
);
}
if exists && needed.is_deletable() {
info!("Resync block {:?}: offloading and deleting", hash);
let mut who = manager.replication.write_nodes(hash);
if who.len() < manager.replication.write_quorum() {
return Err(Error::Message("Not trying to offload block because we don't have a quorum of nodes to write to".to_string()));
}
who.retain(|id| *id != manager.system.id);
let who_needs_resps = manager
.system
.rpc
.call_many(
&manager.endpoint,
&who,
BlockRpc::NeedBlockQuery(*hash),
RequestStrategy::with_priority(PRIO_BACKGROUND),
)
.await?;
let mut need_nodes = vec![];
for (node, needed) in who_needs_resps {
match needed.err_context("NeedBlockQuery RPC")? {
BlockRpc::NeedBlockReply(needed) => {
if needed {
need_nodes.push(node);
}
}
m => {
return Err(Error::unexpected_rpc_message(m));
}
}
}
if !need_nodes.is_empty() {
trace!(
"Block {:?} needed by {} nodes, sending",
hash,
need_nodes.len()
);
for node in need_nodes.iter() {
manager
.metrics
.resync_send_counter
.add(1, &[KeyValue::new("to", format!("{:?}", node))]);
}
let block = manager.read_block(hash).await?;
let (header, bytes) = block.into_parts();
let put_block_message = Req::new(BlockRpc::PutBlock {
hash: *hash,
header,
})?
.with_stream_from_buffer(bytes);
manager
.system
.rpc
.try_call_many(
&manager.endpoint,
&need_nodes[..],
put_block_message,
RequestStrategy::with_priority(PRIO_BACKGROUND)
.with_quorum(need_nodes.len()),
)
.await
.err_context("PutBlock RPC")?;
}
info!(
"Deleting unneeded block {:?}, offload finished ({} / {})",
hash,
need_nodes.len(),
who.len()
);
manager.delete_if_unneeded(hash).await?;
manager.rc.clear_deleted_block_rc(hash)?;
}
if needed.is_nonzero() && !exists {
info!(
"Resync block {:?}: fetching absent but needed block (refcount > 0)",
hash
);
let block_data = manager.rpc_get_raw_block(hash, None).await?;
manager.metrics.resync_recv_counter.add(1);
manager.write_block(hash, &block_data).await?;
}
Ok(())
}
async fn update_persisted(
&self,
update: impl Fn(&mut ResyncPersistedConfig),
) -> Result<(), Error> {
let mut cfg: ResyncPersistedConfig = *self.persisted.load().as_ref();
update(&mut cfg);
self.persister.save_async(&cfg).await?;
self.persisted.store(Arc::new(cfg));
self.notify.notify_waiters();
Ok(())
}
pub async fn set_n_workers(&self, n_workers: usize) -> Result<(), Error> {
2022-09-02 15:24:26 +00:00
if !(1..=MAX_RESYNC_WORKERS).contains(&n_workers) {
return Err(Error::Message(format!(
"Invalid number of resync workers, must be between 1 and {}",
MAX_RESYNC_WORKERS
)));
}
self.update_persisted(|cfg| cfg.n_workers = n_workers).await
}
pub async fn set_tranquility(&self, tranquility: u32) -> Result<(), Error> {
self.update_persisted(|cfg| cfg.tranquility = tranquility)
.await
}
}
impl Drop for BusyBlock {
fn drop(&mut self) {
let mut busy = self.busy_set.lock().unwrap();
busy.remove(&self.time_bytes);
}
}
pub(crate) struct ResyncWorker {
index: usize,
manager: Arc<BlockManager>,
tranquilizer: Tranquilizer,
next_delay: Duration,
}
impl ResyncWorker {
pub(crate) fn new(index: usize, manager: Arc<BlockManager>) -> Self {
Self {
index,
manager,
tranquilizer: Tranquilizer::new(30),
next_delay: Duration::from_secs(10),
}
}
}
#[async_trait]
impl Worker for ResyncWorker {
fn name(&self) -> String {
format!("Block resync worker #{}", self.index + 1)
}
fn status(&self) -> WorkerStatus {
let persisted = self.manager.resync.persisted.load();
if self.index >= persisted.n_workers {
return WorkerStatus {
2022-12-13 11:24:30 +00:00
freeform: vec!["This worker is currently disabled".into()],
..Default::default()
};
}
WorkerStatus {
queue_length: Some(self.manager.resync.queue_len().unwrap_or(0) as u64),
tranquility: Some(persisted.tranquility),
persistent_errors: Some(self.manager.resync.errors_len().unwrap_or(0) as u64),
..Default::default()
}
}
async fn work(&mut self, _must_exit: &mut watch::Receiver<bool>) -> Result<WorkerState, Error> {
if self.index >= self.manager.resync.persisted.load().n_workers {
return Ok(WorkerState::Idle);
}
self.tranquilizer.reset();
match self.manager.resync.resync_iter(&self.manager).await {
Ok(ResyncIterResult::BusyDidSomething) => Ok(self
.tranquilizer
.tranquilize_worker(self.manager.resync.persisted.load().tranquility)),
Ok(ResyncIterResult::BusyDidNothing) => Ok(WorkerState::Busy),
Ok(ResyncIterResult::IdleFor(delay)) => {
self.next_delay = delay;
Ok(WorkerState::Idle)
}
Err(e) => {
// The errors that we have here are only Sled errors
// We don't really know how to handle them so just ¯\_(ツ)_/¯
// (there is kind of an assumption that Sled won't error on us,
// if it does there is not much we can do -- TODO should we just panic?)
// Here we just give the error to the worker manager,
// it will print it to the logs and increment a counter
Err(e.into())
}
}
}
async fn wait_for_work(&mut self) -> WorkerState {
while self.index >= self.manager.resync.persisted.load().n_workers {
self.manager.resync.notify.notified().await
}
select! {
_ = tokio::time::sleep(self.next_delay) => (),
_ = self.manager.resync.notify.notified() => (),
};
WorkerState::Busy
}
}
/// Counts the number of errors when resyncing a block,
/// and the time of the last try.
/// Used to implement exponential backoff.
#[derive(Clone, Copy, Debug)]
pub(crate) struct ErrorCounter {
pub(crate) errors: u64,
pub(crate) last_try: u64,
}
impl ErrorCounter {
fn new(now: u64) -> Self {
Self {
errors: 1,
last_try: now,
}
}
pub(crate) fn decode(data: &[u8]) -> Self {
Self {
errors: u64::from_be_bytes(data[0..8].try_into().unwrap()),
last_try: u64::from_be_bytes(data[8..16].try_into().unwrap()),
}
}
fn encode(&self) -> Vec<u8> {
[
u64::to_be_bytes(self.errors),
u64::to_be_bytes(self.last_try),
]
.concat()
}
fn add1(self, now: u64) -> Self {
Self {
errors: self.errors + 1,
last_try: now,
}
}
fn delay_msec(&self) -> u64 {
(RESYNC_RETRY_DELAY.as_millis() as u64)
<< std::cmp::min(self.errors - 1, RESYNC_RETRY_DELAY_MAX_BACKOFF_POWER)
}
pub(crate) fn next_try(&self) -> u64 {
self.last_try + self.delay_msec()
}
}