use std::path::PathBuf; use std::sync::Arc; use std::time::Duration; use arc_swap::ArcSwapOption; use futures::future::*; use futures::select; use serde::{Deserialize, Serialize}; use tokio::fs; use tokio::io::{AsyncReadExt, AsyncWriteExt}; use tokio::sync::{watch, Mutex, Notify}; use zstd::stream::{decode_all as zstd_decode, Encoder}; use garage_util::data::*; use garage_util::error::Error; use garage_util::time::*; use garage_rpc::membership::System; use garage_rpc::rpc_client::*; use garage_rpc::rpc_server::*; use garage_table::replication::{TableReplication, TableShardedReplication}; use crate::block_ref_table::*; use crate::garage::Garage; /// Size under which data will be stored inlined in database instead of as files pub const INLINE_THRESHOLD: usize = 3072; pub const BACKGROUND_WORKERS: u64 = 1; const BLOCK_RW_TIMEOUT: Duration = Duration::from_secs(42); const BLOCK_GC_TIMEOUT: Duration = Duration::from_secs(60); const NEED_BLOCK_QUERY_TIMEOUT: Duration = Duration::from_secs(5); const RESYNC_RETRY_TIMEOUT: Duration = Duration::from_secs(10); /// RPC messages used to share blocks of data between nodes #[derive(Debug, Serialize, Deserialize)] pub enum Message { Ok, /// Message to ask for a block of data, by hash GetBlock(Hash), /// Message to send a block of data, either because requested, of for first delivery of new /// block PutBlock { hash: Hash, data: BlockData, }, /// Ask other node if they should have this block, but don't actually have it NeedBlockQuery(Hash), /// Response : whether the node do require that block NeedBlockReply(bool), } /// A possibly compressed block of data #[derive(Debug, Serialize, Deserialize)] pub enum BlockData { Plain(#[serde(with = "serde_bytes")] Vec), Compressed(#[serde(with = "serde_bytes")] Vec), } impl BlockData { pub fn is_compressed(&self) -> bool { match self { BlockData::Plain(_) => false, BlockData::Compressed(_) => true, } } pub fn buffer(&self) -> &Vec { match self { BlockData::Plain(b) => b, BlockData::Compressed(b) => b, } } } impl RpcMessage for Message {} /// The block manager, handling block exchange between nodes, and block storage on local node pub struct BlockManager { /// Replication strategy, allowing to find on which node blocks should be located pub replication: TableShardedReplication, /// Directory in which block are stored pub data_dir: PathBuf, /// Lock to prevent concurrent edition of the directory pub data_dir_lock: Mutex<()>, rc: sled::Tree, resync_queue: sled::Tree, resync_notify: Notify, system: Arc, rpc_client: Arc>, pub(crate) garage: ArcSwapOption, } impl BlockManager { pub fn new( db: &sled::Db, data_dir: PathBuf, replication: TableShardedReplication, system: Arc, rpc_server: &mut RpcServer, ) -> Arc { let rc = db .open_tree("block_local_rc") .expect("Unable to open block_local_rc tree"); let resync_queue = db .open_tree("block_local_resync_queue") .expect("Unable to open block_local_resync_queue tree"); let rpc_path = "block_manager"; let rpc_client = system.rpc_client::(rpc_path); let block_manager = Arc::new(Self { replication, data_dir, data_dir_lock: Mutex::new(()), rc, resync_queue, resync_notify: Notify::new(), system, rpc_client, garage: ArcSwapOption::from(None), }); block_manager .clone() .register_handler(rpc_server, rpc_path.into()); block_manager } fn register_handler(self: Arc, rpc_server: &mut RpcServer, path: String) { let self2 = self.clone(); rpc_server.add_handler::(path, move |msg, _addr| { let self2 = self2.clone(); async move { self2.handle(&msg).await } }); let self2 = self.clone(); self.rpc_client .set_local_handler(self.system.id, move |msg| { let self2 = self2.clone(); async move { self2.handle(&msg).await } }); } async fn handle(self: Arc, msg: &Message) -> Result { match msg { Message::PutBlock { hash, data } => self.write_block(&hash, &data).await, Message::GetBlock(h) => self.read_block(h).await, Message::NeedBlockQuery(h) => self.need_block(h).await.map(Message::NeedBlockReply), _ => Err(Error::BadRPC(format!("Unexpected RPC message"))), } } pub fn spawn_background_worker(self: Arc) { // Launch 2 simultaneous workers for background resync loop preprocessing <= TODO actually this // launches only one worker with current value of BACKGROUND_WORKERS for i in 0..BACKGROUND_WORKERS { let bm2 = self.clone(); let background = self.system.background.clone(); tokio::spawn(async move { tokio::time::sleep(Duration::from_secs(10 * (i + 1))).await; background.spawn_worker(format!("block resync worker {}", i), move |must_exit| { bm2.resync_loop(must_exit) }); }); } } /// Write a block to disk pub async fn write_block(&self, hash: &Hash, data: &BlockData) -> Result { let mut path = self.block_dir(hash); let _lock = self.data_dir_lock.lock().await; let clean_plain = match self.is_block_compressed(hash).await { Ok(true) => return Ok(Message::Ok), Ok(false) if !data.is_compressed() => return Ok(Message::Ok), // we have a plain block, and the provided block is not compressed either Ok(false) => true, Err(_) => false, }; fs::create_dir_all(&path).await?; path.push(hex::encode(hash)); if data.is_compressed() { path.set_extension("zst"); } let buffer = data.buffer(); let mut f = fs::File::create(path.clone()).await?; f.write_all(&buffer).await?; drop(f); if clean_plain { path.set_extension(""); fs::remove_file(path).await?; } Ok(Message::Ok) } /// Read block from disk, verifying it's integrity pub async fn read_block(&self, hash: &Hash) -> Result { let mut path = self.block_path(hash); let mut data = vec![]; let block = match self.is_block_compressed(hash).await { Ok(false) => { let f = fs::File::open(&path).await; f.map(|f| (f, false)).map_err(Into::into) } Ok(true) => { path.set_extension("zst"); let f = fs::File::open(&path).await; f.map(|f| (f, true)).map_err(Into::into) } Err(e) => Err(e), }; let (mut f, compressed) = match block { Ok(ok) => ok, e => { // Not found but maybe we should have had it ?? self.put_to_resync(hash, Duration::from_millis(0))?; e? } }; f.read_to_end(&mut data).await?; drop(f); let sum_ok = if compressed { zstd_check_checksum(&data[..]) } else { blake2sum(&data[..]) == *hash }; if !sum_ok { let _lock = self.data_dir_lock.lock().await; warn!( "Block {:?} is corrupted. Renaming to .corrupted and resyncing.", hash ); let mut path2 = path.clone(); path2.set_extension("corrupted"); fs::rename(path, path2).await?; self.put_to_resync(&hash, Duration::from_millis(0))?; return Err(Error::CorruptData(*hash)); } if compressed { Ok(Message::PutBlock { hash: *hash, data: BlockData::Compressed(data), }) } else { Ok(Message::PutBlock { hash: *hash, data: BlockData::Plain(data), }) } } /// Check if this node should have a block, but don't actually have it async fn need_block(&self, hash: &Hash) -> Result { let needed = self .rc .get(hash.as_ref())? .map(|x| u64_from_be_bytes(x) > 0) .unwrap_or(false); if needed { let exists = self.is_block_compressed(hash).await.is_ok(); Ok(!exists) } else { Ok(false) } } async fn is_block_compressed(&self, hash: &Hash) -> Result { let mut path = self.block_path(hash); path.set_extension("zst"); if fs::metadata(&path).await.is_ok() { return Ok(true); } path.set_extension(""); fs::metadata(&path).await.map(|_| false).map_err(Into::into) } fn block_dir(&self, hash: &Hash) -> PathBuf { let mut path = self.data_dir.clone(); path.push(hex::encode(&hash.as_slice()[0..1])); path.push(hex::encode(&hash.as_slice()[1..2])); path } fn block_path(&self, hash: &Hash) -> PathBuf { let mut path = self.block_dir(hash); path.push(hex::encode(hash.as_ref())); path } /// Increment the number of time a block is used, putting it to resynchronization if it is /// required, but not known pub fn block_incref(&self, hash: &Hash) -> Result<(), Error> { let old_rc = self.rc.fetch_and_update(&hash, |old| { let old_v = old.map(u64_from_be_bytes).unwrap_or(0); Some(u64::to_be_bytes(old_v + 1).to_vec()) })?; let old_rc = old_rc.map(u64_from_be_bytes).unwrap_or(0); if old_rc == 0 { self.put_to_resync(&hash, BLOCK_RW_TIMEOUT)?; } Ok(()) } /// Decrement the number of time a block is used pub fn block_decref(&self, hash: &Hash) -> Result<(), Error> { let new_rc = self.rc.update_and_fetch(&hash, |old| { let old_v = old.map(u64_from_be_bytes).unwrap_or(0); if old_v > 1 { Some(u64::to_be_bytes(old_v - 1).to_vec()) } else { None } })?; if new_rc.is_none() { self.put_to_resync(&hash, BLOCK_GC_TIMEOUT)?; } Ok(()) } fn put_to_resync(&self, hash: &Hash, delay: Duration) -> Result<(), Error> { let when = now_msec() + delay.as_millis() as u64; trace!("Put resync_queue: {} {:?}", when, hash); let mut key = u64::to_be_bytes(when).to_vec(); key.extend(hash.as_ref()); self.resync_queue.insert(key, hash.as_ref())?; self.resync_notify.notify_waiters(); Ok(()) } async fn resync_loop(self: Arc, mut must_exit: watch::Receiver) { while !*must_exit.borrow() { if let Err(e) = self.resync_iter(&mut must_exit).await { warn!("Error in block resync loop: {}", e); select! { _ = tokio::time::sleep(Duration::from_secs(1)).fuse() => (), _ = must_exit.changed().fuse() => (), } } } } async fn resync_iter(&self, must_exit: &mut watch::Receiver) -> Result<(), Error> { if let Some(first_item) = self.resync_queue.iter().next() { let (time_bytes, hash_bytes) = first_item?; let time_msec = u64_from_be_bytes(&time_bytes[0..8]); let now = now_msec(); if now >= time_msec { let hash = Hash::try_from(&hash_bytes[..]).unwrap(); let res = self.resync_block(&hash).await; if let Err(e) = &res { warn!("Error when resyncing {:?}: {}", hash, e); self.put_to_resync(&hash, RESYNC_RETRY_TIMEOUT)?; } self.resync_queue.remove(&time_bytes)?; res?; // propagate error to delay main loop } else { let delay = tokio::time::sleep(Duration::from_millis(time_msec - now)); select! { _ = delay.fuse() => (), _ = self.resync_notify.notified().fuse() => (), _ = must_exit.changed().fuse() => (), } } } else { select! { _ = self.resync_notify.notified().fuse() => (), _ = must_exit.changed().fuse() => (), } } Ok(()) } async fn resync_block(&self, hash: &Hash) -> Result<(), Error> { let lock = self.data_dir_lock.lock().await; let path = self.block_path(hash); let exists = self.is_block_compressed(hash).await.is_ok(); let needed = self .rc .get(hash.as_ref())? .map(|x| u64_from_be_bytes(x) > 0) .unwrap_or(false); if exists != needed { info!( "Resync block {:?}: exists {}, needed {}", hash, exists, needed ); } if exists && !needed { trace!("Offloading block {:?}", hash); let mut who = self.replication.write_nodes(&hash); if who.len() < self.replication.write_quorum() { return Err(Error::Message(format!("Not trying to offload block because we don't have a quorum of nodes to write to"))); } who.retain(|id| *id != self.system.id); let msg = Arc::new(Message::NeedBlockQuery(*hash)); let who_needs_fut = who.iter().map(|to| { self.rpc_client .call_arc(*to, msg.clone(), NEED_BLOCK_QUERY_TIMEOUT) }); let who_needs_resps = join_all(who_needs_fut).await; let mut need_nodes = vec![]; for (node, needed) in who.iter().zip(who_needs_resps.into_iter()) { match needed? { Message::NeedBlockReply(needed) => { if needed { need_nodes.push(*node); } } _ => { return Err(Error::Message(format!( "Unexpected response to NeedBlockQuery RPC" ))); } } } if need_nodes.len() > 0 { trace!( "Block {:?} needed by {} nodes, sending", hash, need_nodes.len() ); let put_block_message = self.read_block(hash).await?; self.rpc_client .try_call_many( &need_nodes[..], put_block_message, RequestStrategy::with_quorum(need_nodes.len()) .with_timeout(BLOCK_RW_TIMEOUT), ) .await?; } info!( "Deleting block {:?}, offload finished ({} / {})", hash, need_nodes.len(), who.len() ); fs::remove_file(path).await?; } if needed && !exists { drop(lock); // TODO find a way to not do this if they are sending it to us // Let's suppose this isn't an issue for now with the BLOCK_RW_TIMEOUT delay // between the RC being incremented and this part being called. let block = self.rpc_get_raw_block(&hash).await?; self.write_block(hash, &block).await?; } Ok(()) } async fn rpc_get_raw_block(&self, hash: &Hash) -> Result { let who = self.replication.read_nodes(&hash); let resps = self .rpc_client .try_call_many( &who[..], Message::GetBlock(*hash), RequestStrategy::with_quorum(1) .with_timeout(BLOCK_RW_TIMEOUT) .interrupt_after_quorum(true), ) .await?; for resp in resps { match resp { Message::PutBlock { data, .. } => return Ok(data), _ => {} } } Err(Error::Message(format!( "Unable to read block {:?}: no valid blocks returned", hash ))) } /// Ask nodes that might have a block for it pub async fn rpc_get_block(&self, hash: &Hash) -> Result, Error> { self.rpc_get_raw_block(hash) .await .and_then(|data| match data { BlockData::Plain(data) => Ok(data), BlockData::Compressed(data) => { zstd_decode(&data[..]).map_err(|_| Error::CorruptData(*hash)) } }) } /// Send block to nodes that should have it pub async fn rpc_put_block(&self, hash: Hash, data: Vec) -> Result<(), Error> { let garage = self.garage.load_full().unwrap(); let compressed = if garage.config.enable_compression { zstd_encode(&data[..], garage.config.compression_level).ok() } else { None }; // If compressed data is not less than 7/8 of the size of the original data, i.e. if we // don't gain a significant margin by compressing, then we store the plain data instead // so that we don't lose time decompressing it on reads. let block_data = if compressed.is_some() && compressed.as_ref().unwrap().len() < (data.len() * 7) / 8 { BlockData::Compressed(compressed.unwrap()) } else { BlockData::Plain(data) }; let message = Message::PutBlock { hash, data: block_data, }; let who = self.replication.write_nodes(&hash); self.rpc_client .try_call_many( &who[..], message, RequestStrategy::with_quorum(self.replication.write_quorum()) .with_timeout(BLOCK_RW_TIMEOUT), ) .await?; Ok(()) } pub async fn repair_data_store(&self, must_exit: &watch::Receiver) -> Result<(), Error> { // 1. Repair blocks from RC table let garage = self.garage.load_full().unwrap(); let mut last_hash = None; let mut i = 0usize; for entry in garage.block_ref_table.data.store.iter() { let (_k, v_bytes) = entry?; let block_ref = rmp_serde::decode::from_read_ref::<_, BlockRef>(v_bytes.as_ref())?; if Some(&block_ref.block) == last_hash.as_ref() { continue; } if !block_ref.deleted.get() { last_hash = Some(block_ref.block); self.put_to_resync(&block_ref.block, Duration::from_secs(0))?; } i += 1; if i & 0xFF == 0 && *must_exit.borrow() { return Ok(()); } } // 2. Repair blocks actually on disk self.repair_aux_read_dir_rec(&self.data_dir, must_exit) .await?; Ok(()) } fn repair_aux_read_dir_rec<'a>( &'a self, path: &'a PathBuf, must_exit: &'a watch::Receiver, ) -> BoxFuture<'a, Result<(), Error>> { // Lists all blocks on disk and adds them to the resync queue. // This allows us to find blocks we are storing but don't actually need, // so that we can offload them if necessary and then delete them locally. async move { let mut ls_data_dir = fs::read_dir(path).await?; loop { let data_dir_ent = ls_data_dir.next_entry().await?; let data_dir_ent = match data_dir_ent { Some(x) => x, None => break, }; let name = data_dir_ent.file_name(); let name = match name.into_string() { Ok(x) => x, Err(_) => continue, }; let ent_type = data_dir_ent.file_type().await?; let mut iter_name = name.split('.'); let name = iter_name .next() .expect("split always contain at least one item"); let corrupted = iter_name .last() .map(|ext| ext == "corrupted") .unwrap_or(false); if name.len() == 2 && hex::decode(&name).is_ok() && ent_type.is_dir() { self.repair_aux_read_dir_rec(&data_dir_ent.path(), must_exit) .await?; } else if name.len() == 64 && !corrupted { let hash_bytes = match hex::decode(&name) { Ok(h) => h, Err(_) => continue, }; let mut hash = [0u8; 32]; hash.copy_from_slice(&hash_bytes[..]); self.put_to_resync(&hash.into(), Duration::from_secs(0))?; } if *must_exit.borrow() { break; } } Ok(()) } .boxed() } /// Get lenght of resync queue pub fn resync_queue_len(&self) -> usize { self.resync_queue.len() } pub fn rc_len(&self) -> usize { self.rc.len() } } fn u64_from_be_bytes>(bytes: T) -> u64 { assert!(bytes.as_ref().len() == 8); let mut x8 = [0u8; 8]; x8.copy_from_slice(bytes.as_ref()); u64::from_be_bytes(x8) } fn zstd_check_checksum(source: R) -> bool { zstd::stream::copy_decode(source, std::io::sink()).is_ok() } fn zstd_encode(mut source: R, level: i32) -> std::io::Result> { let mut result = Vec::::new(); let mut encoder = Encoder::new(&mut result, level)?; encoder.include_checksum(true)?; std::io::copy(&mut source, &mut encoder)?; encoder.finish()?; Ok(result) }