forked from Deuxfleurs/garage
1232 lines
39 KiB
Rust
1232 lines
39 KiB
Rust
use std::cmp::Ordering;
|
|
use std::collections::HashMap;
|
|
use std::collections::HashSet;
|
|
|
|
use bytesize::ByteSize;
|
|
use itertools::Itertools;
|
|
|
|
use garage_util::crdt::{AutoCrdt, Crdt, Lww, LwwMap};
|
|
use garage_util::data::*;
|
|
use garage_util::encode::nonversioned_encode;
|
|
use garage_util::error::*;
|
|
|
|
use crate::graph_algo::*;
|
|
|
|
use crate::ring::*;
|
|
|
|
use std::convert::TryInto;
|
|
|
|
const NB_PARTITIONS: usize = 1usize << PARTITION_BITS;
|
|
|
|
// The Message type will be used to collect information on the algorithm.
|
|
type Message = Vec<String>;
|
|
|
|
mod v08 {
|
|
use crate::ring::CompactNodeType;
|
|
use garage_util::crdt::LwwMap;
|
|
use garage_util::data::{Hash, Uuid};
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
/// The layout of the cluster, i.e. the list of roles
|
|
/// which are assigned to each cluster node
|
|
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
pub struct ClusterLayout {
|
|
pub version: u64,
|
|
|
|
pub replication_factor: usize,
|
|
pub roles: LwwMap<Uuid, NodeRoleV>,
|
|
|
|
/// node_id_vec: a vector of node IDs with a role assigned
|
|
/// in the system (this includes gateway nodes).
|
|
/// The order here is different than the vec stored by `roles`, because:
|
|
/// 1. non-gateway nodes are first so that they have lower numbers
|
|
/// 2. nodes that don't have a role are excluded (but they need to
|
|
/// stay in the CRDT as tombstones)
|
|
pub node_id_vec: Vec<Uuid>,
|
|
/// the assignation of data partitions to node, the values
|
|
/// are indices in node_id_vec
|
|
#[serde(with = "serde_bytes")]
|
|
pub ring_assignation_data: Vec<CompactNodeType>,
|
|
|
|
/// Role changes which are staged for the next version of the layout
|
|
pub staging: LwwMap<Uuid, NodeRoleV>,
|
|
pub staging_hash: Hash,
|
|
}
|
|
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
|
|
pub struct NodeRoleV(pub Option<NodeRole>);
|
|
|
|
/// The user-assigned roles of cluster nodes
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
|
|
pub struct NodeRole {
|
|
/// Datacenter at which this entry belong. This information is used to
|
|
/// perform a better geodistribution
|
|
pub zone: String,
|
|
/// The capacity of the node
|
|
/// If this is set to None, the node does not participate in storing data for the system
|
|
/// and is only active as an API gateway to other nodes
|
|
pub capacity: Option<u64>,
|
|
/// A set of tags to recognize the node
|
|
pub tags: Vec<String>,
|
|
}
|
|
|
|
impl garage_util::migrate::InitialFormat for ClusterLayout {}
|
|
}
|
|
|
|
mod v09 {
|
|
use super::v08;
|
|
use crate::ring::CompactNodeType;
|
|
use garage_util::crdt::{Lww, LwwMap};
|
|
use garage_util::data::{Hash, Uuid};
|
|
use serde::{Deserialize, Serialize};
|
|
pub use v08::{NodeRole, NodeRoleV};
|
|
|
|
/// The layout of the cluster, i.e. the list of roles
|
|
/// which are assigned to each cluster node
|
|
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
pub struct ClusterLayout {
|
|
pub version: u64,
|
|
|
|
pub replication_factor: usize,
|
|
|
|
/// This attribute is only used to retain the previously computed partition size,
|
|
/// to know to what extent does it change with the layout update.
|
|
pub partition_size: u64,
|
|
/// Parameters used to compute the assignment currently given by
|
|
/// ring_assignment_data
|
|
pub parameters: LayoutParameters,
|
|
|
|
pub roles: LwwMap<Uuid, NodeRoleV>,
|
|
|
|
/// see comment in v08::ClusterLayout
|
|
pub node_id_vec: Vec<Uuid>,
|
|
/// see comment in v08::ClusterLayout
|
|
#[serde(with = "serde_bytes")]
|
|
pub ring_assignment_data: Vec<CompactNodeType>,
|
|
|
|
/// Parameters to be used in the next partition assignment computation.
|
|
pub staging_parameters: Lww<LayoutParameters>,
|
|
/// Role changes which are staged for the next version of the layout
|
|
pub staging_roles: LwwMap<Uuid, NodeRoleV>,
|
|
pub staging_hash: Hash,
|
|
}
|
|
|
|
/// This struct is used to set the parameters to be used in the assignment computation
|
|
/// algorithm. It is stored as a Crdt.
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Debug, Serialize, Deserialize)]
|
|
pub struct LayoutParameters {
|
|
pub zone_redundancy: usize,
|
|
}
|
|
|
|
impl garage_util::migrate::Migrate for ClusterLayout {
|
|
const VERSION_MARKER: &'static [u8] = b"G09layout";
|
|
|
|
type Previous = v08::ClusterLayout;
|
|
|
|
fn migrate(previous: Self::Previous) -> Self {
|
|
use itertools::Itertools;
|
|
use std::collections::HashSet;
|
|
|
|
// In the old layout, capacities are in an arbitrary unit,
|
|
// but in the new layout they are in bytes.
|
|
// Here we arbitrarily multiply everything by 1G,
|
|
// such that 1 old capacity unit = 1GB in the new units.
|
|
// This is totally arbitrary and won't work for most users.
|
|
let cap_mul = 1024 * 1024 * 1024;
|
|
let roles = multiply_all_capacities(previous.roles, cap_mul);
|
|
let staging_roles = multiply_all_capacities(previous.staging, cap_mul);
|
|
let node_id_vec = previous.node_id_vec;
|
|
|
|
// Determine partition size
|
|
let mut tmp = previous.ring_assignation_data.clone();
|
|
tmp.sort();
|
|
let partition_size = tmp
|
|
.into_iter()
|
|
.dedup_with_count()
|
|
.map(|(npart, node)| {
|
|
roles
|
|
.get(&node_id_vec[node as usize])
|
|
.and_then(|p| p.0.as_ref().and_then(|r| r.capacity))
|
|
.unwrap_or(0) / npart as u64
|
|
})
|
|
.min()
|
|
.unwrap_or(0);
|
|
|
|
// Determine zone redundancy parameter
|
|
let zone_redundancy = std::cmp::min(
|
|
previous.replication_factor,
|
|
roles
|
|
.items()
|
|
.iter()
|
|
.filter_map(|(_, _, r)| r.0.as_ref().map(|p| p.zone.as_str()))
|
|
.collect::<HashSet<&str>>()
|
|
.len(),
|
|
);
|
|
let parameters = LayoutParameters { zone_redundancy };
|
|
|
|
let mut res = Self {
|
|
version: previous.version,
|
|
replication_factor: previous.replication_factor,
|
|
partition_size,
|
|
parameters,
|
|
roles,
|
|
node_id_vec,
|
|
ring_assignment_data: previous.ring_assignation_data,
|
|
staging_parameters: Lww::new(parameters),
|
|
staging_roles,
|
|
staging_hash: [0u8; 32].into(),
|
|
};
|
|
res.staging_hash = res.calculate_staging_hash();
|
|
res
|
|
}
|
|
}
|
|
|
|
fn multiply_all_capacities(
|
|
old_roles: LwwMap<Uuid, NodeRoleV>,
|
|
mul: u64,
|
|
) -> LwwMap<Uuid, NodeRoleV> {
|
|
let mut new_roles = LwwMap::new();
|
|
for (node, ts, role) in old_roles.items() {
|
|
let mut role = role.clone();
|
|
if let NodeRoleV(Some(NodeRole {
|
|
capacity: Some(ref mut cap),
|
|
..
|
|
})) = role
|
|
{
|
|
*cap = *cap * mul;
|
|
}
|
|
new_roles.merge_raw(node, *ts, &role);
|
|
}
|
|
new_roles
|
|
}
|
|
}
|
|
|
|
pub use v09::*;
|
|
|
|
impl AutoCrdt for LayoutParameters {
|
|
const WARN_IF_DIFFERENT: bool = true;
|
|
}
|
|
|
|
impl AutoCrdt for NodeRoleV {
|
|
const WARN_IF_DIFFERENT: bool = true;
|
|
}
|
|
|
|
impl NodeRole {
|
|
pub fn capacity_string(&self) -> String {
|
|
match self.capacity {
|
|
Some(c) => ByteSize::b(c).to_string_as(false),
|
|
None => "gateway".to_string(),
|
|
}
|
|
}
|
|
|
|
pub fn tags_string(&self) -> String {
|
|
self.tags.join(",")
|
|
}
|
|
}
|
|
|
|
// Implementation of the ClusterLayout methods unrelated to the assignment algorithm.
|
|
impl ClusterLayout {
|
|
pub fn new(replication_factor: usize) -> Self {
|
|
// We set the default zone redundancy to be equal to the replication factor,
|
|
// i.e. as strict as possible.
|
|
let parameters = LayoutParameters {
|
|
zone_redundancy: replication_factor,
|
|
};
|
|
let staging_parameters = Lww::<LayoutParameters>::new(parameters.clone());
|
|
|
|
let empty_lwwmap = LwwMap::new();
|
|
|
|
let mut ret = ClusterLayout {
|
|
version: 0,
|
|
replication_factor,
|
|
partition_size: 0,
|
|
roles: LwwMap::new(),
|
|
node_id_vec: Vec::new(),
|
|
ring_assignment_data: Vec::new(),
|
|
parameters,
|
|
staging_parameters,
|
|
staging_roles: empty_lwwmap,
|
|
staging_hash: [0u8; 32].into(),
|
|
};
|
|
ret.staging_hash = ret.calculate_staging_hash();
|
|
ret
|
|
}
|
|
|
|
fn calculate_staging_hash(&self) -> Hash {
|
|
let hashed_tuple = (&self.staging_roles, &self.staging_parameters);
|
|
blake2sum(&nonversioned_encode(&hashed_tuple).unwrap()[..])
|
|
}
|
|
|
|
pub fn merge(&mut self, other: &ClusterLayout) -> bool {
|
|
match other.version.cmp(&self.version) {
|
|
Ordering::Greater => {
|
|
*self = other.clone();
|
|
true
|
|
}
|
|
Ordering::Equal => {
|
|
self.staging_parameters.merge(&other.staging_parameters);
|
|
self.staging_roles.merge(&other.staging_roles);
|
|
|
|
let new_staging_hash = self.calculate_staging_hash();
|
|
let changed = new_staging_hash != self.staging_hash;
|
|
|
|
self.staging_hash = new_staging_hash;
|
|
|
|
changed
|
|
}
|
|
Ordering::Less => false,
|
|
}
|
|
}
|
|
|
|
pub fn apply_staged_changes(mut self, version: Option<u64>) -> Result<(Self, Message), Error> {
|
|
match version {
|
|
None => {
|
|
let error = r#"
|
|
Please pass the new layout version number to ensure that you are writing the correct version of the cluster layout.
|
|
To know the correct value of the new layout version, invoke `garage layout show` and review the proposed changes.
|
|
"#;
|
|
return Err(Error::Message(error.into()));
|
|
}
|
|
Some(v) => {
|
|
if v != self.version + 1 {
|
|
return Err(Error::Message("Invalid new layout version".into()));
|
|
}
|
|
}
|
|
}
|
|
|
|
self.roles.merge(&self.staging_roles);
|
|
self.roles.retain(|(_, _, v)| v.0.is_some());
|
|
self.parameters = self.staging_parameters.get().clone();
|
|
|
|
self.staging_roles.clear();
|
|
self.staging_hash = self.calculate_staging_hash();
|
|
|
|
let msg = self.calculate_partition_assignment()?;
|
|
|
|
self.version += 1;
|
|
|
|
Ok((self, msg))
|
|
}
|
|
|
|
pub fn revert_staged_changes(mut self, version: Option<u64>) -> Result<Self, Error> {
|
|
match version {
|
|
None => {
|
|
let error = r#"
|
|
Please pass the new layout version number to ensure that you are writing the correct version of the cluster layout.
|
|
To know the correct value of the new layout version, invoke `garage layout show` and review the proposed changes.
|
|
"#;
|
|
return Err(Error::Message(error.into()));
|
|
}
|
|
Some(v) => {
|
|
if v != self.version + 1 {
|
|
return Err(Error::Message("Invalid new layout version".into()));
|
|
}
|
|
}
|
|
}
|
|
|
|
self.staging_roles.clear();
|
|
self.staging_parameters.update(self.parameters.clone());
|
|
self.staging_hash = self.calculate_staging_hash();
|
|
|
|
self.version += 1;
|
|
|
|
Ok(self)
|
|
}
|
|
|
|
/// Returns a list of IDs of nodes that currently have
|
|
/// a role in the cluster
|
|
pub fn node_ids(&self) -> &[Uuid] {
|
|
&self.node_id_vec[..]
|
|
}
|
|
|
|
pub fn num_nodes(&self) -> usize {
|
|
self.node_id_vec.len()
|
|
}
|
|
|
|
/// Returns the role of a node in the layout
|
|
pub fn node_role(&self, node: &Uuid) -> Option<&NodeRole> {
|
|
match self.roles.get(node) {
|
|
Some(NodeRoleV(Some(v))) => Some(v),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// Returns the uuids of the non_gateway nodes in self.node_id_vec.
|
|
fn nongateway_nodes(&self) -> Vec<Uuid> {
|
|
let mut result = Vec::<Uuid>::new();
|
|
for uuid in self.node_id_vec.iter() {
|
|
match self.node_role(uuid) {
|
|
Some(role) if role.capacity != None => result.push(*uuid),
|
|
_ => (),
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
/// Given a node uuids, this function returns the label of its zone
|
|
fn get_node_zone(&self, uuid: &Uuid) -> Result<String, Error> {
|
|
match self.node_role(uuid) {
|
|
Some(role) => Ok(role.zone.clone()),
|
|
_ => Err(Error::Message(
|
|
"The Uuid does not correspond to a node present in the cluster.".into(),
|
|
)),
|
|
}
|
|
}
|
|
|
|
/// Given a node uuids, this function returns its capacity or fails if it does not have any
|
|
pub fn get_node_capacity(&self, uuid: &Uuid) -> Result<u64, Error> {
|
|
match self.node_role(uuid) {
|
|
Some(NodeRole {
|
|
capacity: Some(cap),
|
|
zone: _,
|
|
tags: _,
|
|
}) => Ok(*cap),
|
|
_ => Err(Error::Message(
|
|
"The Uuid does not correspond to a node present in the \
|
|
cluster or this node does not have a positive capacity."
|
|
.into(),
|
|
)),
|
|
}
|
|
}
|
|
|
|
/// Returns the number of partitions associated to this node in the ring
|
|
pub fn get_node_usage(&self, uuid: &Uuid) -> Result<usize, Error> {
|
|
for (i, id) in self.node_id_vec.iter().enumerate() {
|
|
if id == uuid {
|
|
let mut count = 0;
|
|
for nod in self.ring_assignment_data.iter() {
|
|
if i as u8 == *nod {
|
|
count += 1
|
|
}
|
|
}
|
|
return Ok(count);
|
|
}
|
|
}
|
|
Err(Error::Message(
|
|
"The Uuid does not correspond to a node present in the \
|
|
cluster or this node does not have a positive capacity."
|
|
.into(),
|
|
))
|
|
}
|
|
|
|
/// Returns the sum of capacities of non gateway nodes in the cluster
|
|
fn get_total_capacity(&self) -> Result<u64, Error> {
|
|
let mut total_capacity = 0;
|
|
for uuid in self.nongateway_nodes().iter() {
|
|
total_capacity += self.get_node_capacity(uuid)?;
|
|
}
|
|
Ok(total_capacity)
|
|
}
|
|
|
|
/// Check a cluster layout for internal consistency
|
|
/// (assignment, roles, parameters, partition size)
|
|
/// returns true if consistent, false if error
|
|
pub fn check(&self) -> Result<(), String> {
|
|
// Check that the hash of the staging data is correct
|
|
let staging_hash = self.calculate_staging_hash();
|
|
if staging_hash != self.staging_hash {
|
|
return Err("staging_hash is incorrect".into());
|
|
}
|
|
|
|
// Check that node_id_vec contains the correct list of nodes
|
|
let mut expected_nodes = self
|
|
.roles
|
|
.items()
|
|
.iter()
|
|
.filter(|(_, _, v)| v.0.is_some())
|
|
.map(|(id, _, _)| *id)
|
|
.collect::<Vec<_>>();
|
|
expected_nodes.sort();
|
|
let mut node_id_vec = self.node_id_vec.clone();
|
|
node_id_vec.sort();
|
|
if expected_nodes != node_id_vec {
|
|
return Err(format!("node_id_vec does not contain the correct set of nodes\nnode_id_vec: {:?}\nexpected: {:?}", node_id_vec, expected_nodes));
|
|
}
|
|
|
|
// Check that the assignment data has the correct length
|
|
let expected_assignment_data_len = (1 << PARTITION_BITS) * self.replication_factor;
|
|
if self.ring_assignment_data.len() != expected_assignment_data_len {
|
|
return Err(format!(
|
|
"ring_assignment_data has incorrect length {} instead of {}",
|
|
self.ring_assignment_data.len(),
|
|
expected_assignment_data_len
|
|
));
|
|
}
|
|
|
|
// Check that the assigned nodes are correct identifiers
|
|
// of nodes that are assigned a role
|
|
// and that role is not the role of a gateway nodes
|
|
for x in self.ring_assignment_data.iter() {
|
|
if *x as usize >= self.node_id_vec.len() {
|
|
return Err(format!(
|
|
"ring_assignment_data contains invalid node id {}",
|
|
*x
|
|
));
|
|
}
|
|
let node = self.node_id_vec[*x as usize];
|
|
match self.roles.get(&node) {
|
|
Some(NodeRoleV(Some(x))) if x.capacity.is_some() => (),
|
|
_ => return Err("ring_assignment_data contains id of a gateway node".into()),
|
|
}
|
|
}
|
|
|
|
// Check that every partition is associated to distinct nodes
|
|
let rf = self.replication_factor;
|
|
for p in 0..(1 << PARTITION_BITS) {
|
|
let nodes_of_p = self.ring_assignment_data[rf * p..rf * (p + 1)].to_vec();
|
|
if nodes_of_p.iter().unique().count() != rf {
|
|
return Err(format!("partition does not contain {} unique node ids", rf));
|
|
}
|
|
// Check that every partition is spread over at least zone_redundancy zones.
|
|
let zones_of_p = nodes_of_p
|
|
.iter()
|
|
.map(|n| {
|
|
self.get_node_zone(&self.node_id_vec[*n as usize])
|
|
.expect("Zone not found.")
|
|
})
|
|
.collect::<Vec<_>>();
|
|
let redundancy = self.parameters.zone_redundancy;
|
|
if zones_of_p.iter().unique().count() < redundancy {
|
|
return Err(format!(
|
|
"nodes of partition are in less than {} distinct zones",
|
|
redundancy
|
|
));
|
|
}
|
|
}
|
|
|
|
// Check that the nodes capacities is consistent with the stored partitions
|
|
let mut node_usage = vec![0; MAX_NODE_NUMBER];
|
|
for n in self.ring_assignment_data.iter() {
|
|
node_usage[*n as usize] += 1;
|
|
}
|
|
for (n, usage) in node_usage.iter().enumerate() {
|
|
if *usage > 0 {
|
|
let uuid = self.node_id_vec[n];
|
|
let partusage = usage * self.partition_size;
|
|
let nodecap = self.get_node_capacity(&uuid).unwrap();
|
|
if partusage > nodecap {
|
|
return Err(format!(
|
|
"node usage ({}) is bigger than node capacity ({})",
|
|
usage * self.partition_size,
|
|
nodecap
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that the partition size stored is the one computed by the asignation
|
|
// algorithm.
|
|
let cl2 = self.clone();
|
|
let (_, zone_to_id) = cl2.generate_nongateway_zone_ids().unwrap();
|
|
match cl2.compute_optimal_partition_size(&zone_to_id) {
|
|
Ok(s) if s != self.partition_size => {
|
|
return Err(format!(
|
|
"partition_size ({}) is different than optimal value ({})",
|
|
self.partition_size, s
|
|
))
|
|
}
|
|
Err(e) => return Err(format!("could not calculate optimal partition size: {}", e)),
|
|
_ => (),
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
// Implementation of the ClusterLayout methods related to the assignment algorithm.
|
|
impl ClusterLayout {
|
|
/// This function calculates a new partition-to-node assignment.
|
|
/// The computed assignment respects the node replication factor
|
|
/// and the zone redundancy parameter It maximizes the capacity of a
|
|
/// partition (assuming all partitions have the same size).
|
|
/// Among such optimal assignment, it minimizes the distance to
|
|
/// the former assignment (if any) to minimize the amount of
|
|
/// data to be moved.
|
|
/// Staged role changes must be merged with nodes roles before calling this function,
|
|
/// hence it must only be called from apply_staged_changes() and hence is not public.
|
|
fn calculate_partition_assignment(&mut self) -> Result<Message, Error> {
|
|
// We update the node ids, since the node role list might have changed with the
|
|
// changes in the layout. We retrieve the old_assignment reframed with new ids
|
|
let old_assignment_opt = self.update_node_id_vec()?;
|
|
|
|
let mut msg = Message::new();
|
|
msg.push("==== COMPUTATION OF A NEW PARTITION ASSIGNATION ====".into());
|
|
msg.push("".into());
|
|
msg.push(format!(
|
|
"Partitions are \
|
|
replicated {} times on at least {} distinct zones.",
|
|
self.replication_factor, self.parameters.zone_redundancy
|
|
));
|
|
|
|
// We generate for once numerical ids for the zones of non gateway nodes,
|
|
// to use them as indices in the flow graphs.
|
|
let (id_to_zone, zone_to_id) = self.generate_nongateway_zone_ids()?;
|
|
|
|
let nb_nongateway_nodes = self.nongateway_nodes().len();
|
|
if nb_nongateway_nodes < self.replication_factor {
|
|
return Err(Error::Message(format!(
|
|
"The number of nodes with positive \
|
|
capacity ({}) is smaller than the replication factor ({}).",
|
|
nb_nongateway_nodes, self.replication_factor
|
|
)));
|
|
}
|
|
if id_to_zone.len() < self.parameters.zone_redundancy {
|
|
return Err(Error::Message(format!(
|
|
"The number of zones with non-gateway \
|
|
nodes ({}) is smaller than the redundancy parameter ({})",
|
|
id_to_zone.len(),
|
|
self.parameters.zone_redundancy
|
|
)));
|
|
}
|
|
|
|
// We compute the optimal partition size
|
|
// Capacities should be given in a unit so that partition size is at least 100.
|
|
// In this case, integer rounding plays a marginal role in the percentages of
|
|
// optimality.
|
|
let partition_size = self.compute_optimal_partition_size(&zone_to_id)?;
|
|
|
|
msg.push("".into());
|
|
if old_assignment_opt != None {
|
|
msg.push(format!(
|
|
"Optimal partition size: {} ({} in previous layout)",
|
|
ByteSize::b(partition_size).to_string_as(false),
|
|
ByteSize::b(self.partition_size).to_string_as(false)
|
|
));
|
|
} else {
|
|
msg.push(format!(
|
|
"Optimal partition size: {}",
|
|
ByteSize::b(partition_size).to_string_as(false)
|
|
));
|
|
}
|
|
// We write the partition size.
|
|
self.partition_size = partition_size;
|
|
|
|
if partition_size < 100 {
|
|
msg.push(
|
|
"WARNING: The partition size is low (< 100), make sure the capacities of your nodes are correct and are of at least a few MB"
|
|
.into(),
|
|
);
|
|
}
|
|
|
|
// We compute a first flow/assignment that is heuristically close to the previous
|
|
// assignment
|
|
let mut gflow = self.compute_candidate_assignment(&zone_to_id, &old_assignment_opt)?;
|
|
if let Some(assoc) = &old_assignment_opt {
|
|
// We minimize the distance to the previous assignment.
|
|
self.minimize_rebalance_load(&mut gflow, &zone_to_id, assoc)?;
|
|
}
|
|
|
|
// We display statistics of the computation
|
|
msg.extend(self.output_stat(&gflow, &old_assignment_opt, &zone_to_id, &id_to_zone)?);
|
|
|
|
// We update the layout structure
|
|
self.update_ring_from_flow(id_to_zone.len(), &gflow)?;
|
|
|
|
if let Err(e) = self.check() {
|
|
return Err(Error::Message(
|
|
format!("Layout check returned an error: {}\nOriginal result of computation: <<<<\n{}\n>>>>", e, msg.join("\n"))
|
|
));
|
|
}
|
|
|
|
Ok(msg)
|
|
}
|
|
|
|
/// The LwwMap of node roles might have changed. This function updates the node_id_vec
|
|
/// and returns the assignment given by ring, with the new indices of the nodes, and
|
|
/// None if the node is not present anymore.
|
|
/// We work with the assumption that only this function and calculate_new_assignment
|
|
/// do modify assignment_ring and node_id_vec.
|
|
fn update_node_id_vec(&mut self) -> Result<Option<Vec<Vec<usize>>>, Error> {
|
|
// (1) We compute the new node list
|
|
// Non gateway nodes should be coded on 8bits, hence they must be first in the list
|
|
// We build the new node ids
|
|
let new_non_gateway_nodes: Vec<Uuid> = self
|
|
.roles
|
|
.items()
|
|
.iter()
|
|
.filter(|(_, _, v)| matches!(&v.0, Some(r) if r.capacity != None))
|
|
.map(|(k, _, _)| *k)
|
|
.collect();
|
|
|
|
if new_non_gateway_nodes.len() > MAX_NODE_NUMBER {
|
|
return Err(Error::Message(format!(
|
|
"There are more than {} non-gateway nodes in the new \
|
|
layout. This is not allowed.",
|
|
MAX_NODE_NUMBER
|
|
)));
|
|
}
|
|
|
|
let new_gateway_nodes: Vec<Uuid> = self
|
|
.roles
|
|
.items()
|
|
.iter()
|
|
.filter(|(_, _, v)| matches!(v, NodeRoleV(Some(r)) if r.capacity == None))
|
|
.map(|(k, _, _)| *k)
|
|
.collect();
|
|
|
|
let mut new_node_id_vec = Vec::<Uuid>::new();
|
|
new_node_id_vec.extend(new_non_gateway_nodes);
|
|
new_node_id_vec.extend(new_gateway_nodes);
|
|
|
|
let old_node_id_vec = self.node_id_vec.clone();
|
|
self.node_id_vec = new_node_id_vec.clone();
|
|
|
|
// (2) We retrieve the old association
|
|
// We rewrite the old association with the new indices. We only consider partition
|
|
// to node assignments where the node is still in use.
|
|
if self.ring_assignment_data.is_empty() {
|
|
// This is a new association
|
|
return Ok(None);
|
|
}
|
|
|
|
if self.ring_assignment_data.len() != NB_PARTITIONS * self.replication_factor {
|
|
return Err(Error::Message(
|
|
"The old assignment does not have a size corresponding to \
|
|
the old replication factor or the number of partitions."
|
|
.into(),
|
|
));
|
|
}
|
|
|
|
// We build a translation table between the uuid and new ids
|
|
let mut uuid_to_new_id = HashMap::<Uuid, usize>::new();
|
|
|
|
// We add the indices of only the new non-gateway nodes that can be used in the
|
|
// association ring
|
|
for (i, uuid) in new_node_id_vec.iter().enumerate() {
|
|
uuid_to_new_id.insert(*uuid, i);
|
|
}
|
|
|
|
let mut old_assignment = vec![Vec::<usize>::new(); NB_PARTITIONS];
|
|
let rf = self.replication_factor;
|
|
|
|
for (p, old_assign_p) in old_assignment.iter_mut().enumerate() {
|
|
for old_id in &self.ring_assignment_data[p * rf..(p + 1) * rf] {
|
|
let uuid = old_node_id_vec[*old_id as usize];
|
|
if uuid_to_new_id.contains_key(&uuid) {
|
|
old_assign_p.push(uuid_to_new_id[&uuid]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// We write the ring
|
|
self.ring_assignment_data = Vec::<CompactNodeType>::new();
|
|
|
|
Ok(Some(old_assignment))
|
|
}
|
|
|
|
/// This function generates ids for the zone of the nodes appearing in
|
|
/// self.node_id_vec.
|
|
fn generate_nongateway_zone_ids(&self) -> Result<(Vec<String>, HashMap<String, usize>), Error> {
|
|
let mut id_to_zone = Vec::<String>::new();
|
|
let mut zone_to_id = HashMap::<String, usize>::new();
|
|
|
|
for uuid in self.nongateway_nodes().iter() {
|
|
let r = self.node_role(uuid).unwrap();
|
|
if !zone_to_id.contains_key(&r.zone) && r.capacity != None {
|
|
zone_to_id.insert(r.zone.clone(), id_to_zone.len());
|
|
id_to_zone.push(r.zone.clone());
|
|
}
|
|
}
|
|
Ok((id_to_zone, zone_to_id))
|
|
}
|
|
|
|
/// This function computes by dichotomy the largest realizable partition size, given
|
|
/// the layout roles and parameters.
|
|
fn compute_optimal_partition_size(
|
|
&self,
|
|
zone_to_id: &HashMap<String, usize>,
|
|
) -> Result<u64, Error> {
|
|
let empty_set = HashSet::<(usize, usize)>::new();
|
|
let mut g = self.generate_flow_graph(1, zone_to_id, &empty_set)?;
|
|
g.compute_maximal_flow()?;
|
|
if g.get_flow_value()? < (NB_PARTITIONS * self.replication_factor) as i64 {
|
|
return Err(Error::Message(
|
|
"The storage capacity of he cluster is to small. It is \
|
|
impossible to store partitions of size 1."
|
|
.into(),
|
|
));
|
|
}
|
|
|
|
let mut s_down = 1;
|
|
let mut s_up = self.get_total_capacity()?;
|
|
while s_down + 1 < s_up {
|
|
g = self.generate_flow_graph((s_down + s_up) / 2, zone_to_id, &empty_set)?;
|
|
g.compute_maximal_flow()?;
|
|
if g.get_flow_value()? < (NB_PARTITIONS * self.replication_factor) as i64 {
|
|
s_up = (s_down + s_up) / 2;
|
|
} else {
|
|
s_down = (s_down + s_up) / 2;
|
|
}
|
|
}
|
|
|
|
Ok(s_down)
|
|
}
|
|
|
|
fn generate_graph_vertices(nb_zones: usize, nb_nodes: usize) -> Vec<Vertex> {
|
|
let mut vertices = vec![Vertex::Source, Vertex::Sink];
|
|
for p in 0..NB_PARTITIONS {
|
|
vertices.push(Vertex::Pup(p));
|
|
vertices.push(Vertex::Pdown(p));
|
|
for z in 0..nb_zones {
|
|
vertices.push(Vertex::PZ(p, z));
|
|
}
|
|
}
|
|
for n in 0..nb_nodes {
|
|
vertices.push(Vertex::N(n));
|
|
}
|
|
vertices
|
|
}
|
|
|
|
/// Generates the graph to compute the maximal flow corresponding to the optimal
|
|
/// partition assignment.
|
|
/// exclude_assoc is the set of (partition, node) association that we are forbidden
|
|
/// to use (hence we do not add the corresponding edge to the graph). This parameter
|
|
/// is used to compute a first flow that uses only edges appearing in the previous
|
|
/// assignment. This produces a solution that heuristically should be close to the
|
|
/// previous one.
|
|
fn generate_flow_graph(
|
|
&self,
|
|
partition_size: u64,
|
|
zone_to_id: &HashMap<String, usize>,
|
|
exclude_assoc: &HashSet<(usize, usize)>,
|
|
) -> Result<Graph<FlowEdge>, Error> {
|
|
let vertices =
|
|
ClusterLayout::generate_graph_vertices(zone_to_id.len(), self.nongateway_nodes().len());
|
|
let mut g = Graph::<FlowEdge>::new(&vertices);
|
|
let nb_zones = zone_to_id.len();
|
|
let redundancy = self.parameters.zone_redundancy;
|
|
for p in 0..NB_PARTITIONS {
|
|
g.add_edge(Vertex::Source, Vertex::Pup(p), redundancy as u64)?;
|
|
g.add_edge(
|
|
Vertex::Source,
|
|
Vertex::Pdown(p),
|
|
(self.replication_factor - redundancy) as u64,
|
|
)?;
|
|
for z in 0..nb_zones {
|
|
g.add_edge(Vertex::Pup(p), Vertex::PZ(p, z), 1)?;
|
|
g.add_edge(
|
|
Vertex::Pdown(p),
|
|
Vertex::PZ(p, z),
|
|
self.replication_factor as u64,
|
|
)?;
|
|
}
|
|
}
|
|
for n in 0..self.nongateway_nodes().len() {
|
|
let node_capacity = self.get_node_capacity(&self.node_id_vec[n])?;
|
|
let node_zone = zone_to_id[&self.get_node_zone(&self.node_id_vec[n])?];
|
|
g.add_edge(Vertex::N(n), Vertex::Sink, node_capacity / partition_size)?;
|
|
for p in 0..NB_PARTITIONS {
|
|
if !exclude_assoc.contains(&(p, n)) {
|
|
g.add_edge(Vertex::PZ(p, node_zone), Vertex::N(n), 1)?;
|
|
}
|
|
}
|
|
}
|
|
Ok(g)
|
|
}
|
|
|
|
/// This function computes a first optimal assignment (in the form of a flow graph).
|
|
fn compute_candidate_assignment(
|
|
&self,
|
|
zone_to_id: &HashMap<String, usize>,
|
|
prev_assign_opt: &Option<Vec<Vec<usize>>>,
|
|
) -> Result<Graph<FlowEdge>, Error> {
|
|
// We list the (partition,node) associations that are not used in the
|
|
// previous assignment
|
|
let mut exclude_edge = HashSet::<(usize, usize)>::new();
|
|
if let Some(prev_assign) = prev_assign_opt {
|
|
let nb_nodes = self.nongateway_nodes().len();
|
|
for (p, prev_assign_p) in prev_assign.iter().enumerate() {
|
|
for n in 0..nb_nodes {
|
|
exclude_edge.insert((p, n));
|
|
}
|
|
for n in prev_assign_p.iter() {
|
|
exclude_edge.remove(&(p, *n));
|
|
}
|
|
}
|
|
}
|
|
|
|
// We compute the best flow using only the edges used in the previous assignment
|
|
let mut g = self.generate_flow_graph(self.partition_size, zone_to_id, &exclude_edge)?;
|
|
g.compute_maximal_flow()?;
|
|
|
|
// We add the excluded edges and compute the maximal flow with the full graph.
|
|
// The algorithm is such that it will start with the flow that we just computed
|
|
// and find ameliorating paths from that.
|
|
for (p, n) in exclude_edge.iter() {
|
|
let node_zone = zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?];
|
|
g.add_edge(Vertex::PZ(*p, node_zone), Vertex::N(*n), 1)?;
|
|
}
|
|
g.compute_maximal_flow()?;
|
|
Ok(g)
|
|
}
|
|
|
|
/// This function updates the flow graph gflow to minimize the distance between
|
|
/// its corresponding assignment and the previous one
|
|
fn minimize_rebalance_load(
|
|
&self,
|
|
gflow: &mut Graph<FlowEdge>,
|
|
zone_to_id: &HashMap<String, usize>,
|
|
prev_assign: &[Vec<usize>],
|
|
) -> Result<(), Error> {
|
|
// We define a cost function on the edges (pairs of vertices) corresponding
|
|
// to the distance between the two assignments.
|
|
let mut cost = CostFunction::new();
|
|
for (p, assoc_p) in prev_assign.iter().enumerate() {
|
|
for n in assoc_p.iter() {
|
|
let node_zone = zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?];
|
|
cost.insert((Vertex::PZ(p, node_zone), Vertex::N(*n)), -1);
|
|
}
|
|
}
|
|
|
|
// We compute the maximal length of a simple path in gflow. It is used in the
|
|
// Bellman-Ford algorithm in optimize_flow_with_cost to set the number
|
|
// of iterations.
|
|
let nb_nodes = self.nongateway_nodes().len();
|
|
let path_length = 4 * nb_nodes;
|
|
gflow.optimize_flow_with_cost(&cost, path_length)?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// This function updates the assignment ring from the flow graph.
|
|
fn update_ring_from_flow(
|
|
&mut self,
|
|
nb_zones: usize,
|
|
gflow: &Graph<FlowEdge>,
|
|
) -> Result<(), Error> {
|
|
self.ring_assignment_data = Vec::<CompactNodeType>::new();
|
|
for p in 0..NB_PARTITIONS {
|
|
for z in 0..nb_zones {
|
|
let assoc_vertex = gflow.get_positive_flow_from(Vertex::PZ(p, z))?;
|
|
for vertex in assoc_vertex.iter() {
|
|
if let Vertex::N(n) = vertex {
|
|
self.ring_assignment_data.push((*n).try_into().unwrap());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if self.ring_assignment_data.len() != NB_PARTITIONS * self.replication_factor {
|
|
return Err(Error::Message(
|
|
"Critical Error : the association ring we produced does not \
|
|
have the right size."
|
|
.into(),
|
|
));
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// This function returns a message summing up the partition repartition of the new
|
|
/// layout, and other statistics of the partition assignment computation.
|
|
fn output_stat(
|
|
&self,
|
|
gflow: &Graph<FlowEdge>,
|
|
prev_assign_opt: &Option<Vec<Vec<usize>>>,
|
|
zone_to_id: &HashMap<String, usize>,
|
|
id_to_zone: &[String],
|
|
) -> Result<Message, Error> {
|
|
let mut msg = Message::new();
|
|
|
|
let used_cap = self.partition_size * NB_PARTITIONS as u64 * self.replication_factor as u64;
|
|
let total_cap = self.get_total_capacity()?;
|
|
let percent_cap = 100.0 * (used_cap as f32) / (total_cap as f32);
|
|
msg.push(format!(
|
|
"Usable capacity / total cluster capacity: {} / {} ({:.1} %)",
|
|
ByteSize::b(used_cap).to_string_as(false),
|
|
ByteSize::b(total_cap).to_string_as(false),
|
|
percent_cap
|
|
));
|
|
msg.push(format!(
|
|
"Effective capacity (replication factor {}): {}",
|
|
self.replication_factor,
|
|
ByteSize::b(used_cap / self.replication_factor as u64).to_string_as(false)
|
|
));
|
|
if percent_cap < 80. {
|
|
msg.push("".into());
|
|
msg.push(
|
|
"If the percentage is too low, it might be that the \
|
|
replication/redundancy constraints force the use of nodes/zones with small \
|
|
storage capacities."
|
|
.into(),
|
|
);
|
|
msg.push(
|
|
"You might want to rebalance the storage capacities or relax the constraints."
|
|
.into(),
|
|
);
|
|
msg.push(
|
|
"See the detailed statistics below and look for saturated nodes/zones.".into(),
|
|
);
|
|
}
|
|
|
|
// We define and fill in the following tables
|
|
let storing_nodes = self.nongateway_nodes();
|
|
let mut new_partitions = vec![0; storing_nodes.len()];
|
|
let mut stored_partitions = vec![0; storing_nodes.len()];
|
|
|
|
let mut new_partitions_zone = vec![0; id_to_zone.len()];
|
|
let mut stored_partitions_zone = vec![0; id_to_zone.len()];
|
|
|
|
for p in 0..NB_PARTITIONS {
|
|
for z in 0..id_to_zone.len() {
|
|
let pz_nodes = gflow.get_positive_flow_from(Vertex::PZ(p, z))?;
|
|
if !pz_nodes.is_empty() {
|
|
stored_partitions_zone[z] += 1;
|
|
if let Some(prev_assign) = prev_assign_opt {
|
|
let mut old_zones_of_p = Vec::<usize>::new();
|
|
for n in prev_assign[p].iter() {
|
|
old_zones_of_p
|
|
.push(zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?]);
|
|
}
|
|
if !old_zones_of_p.contains(&z) {
|
|
new_partitions_zone[z] += 1;
|
|
}
|
|
}
|
|
}
|
|
for vert in pz_nodes.iter() {
|
|
if let Vertex::N(n) = *vert {
|
|
stored_partitions[n] += 1;
|
|
if let Some(prev_assign) = prev_assign_opt {
|
|
if !prev_assign[p].contains(&n) {
|
|
new_partitions[n] += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if *prev_assign_opt == None {
|
|
new_partitions = stored_partitions.clone();
|
|
new_partitions_zone = stored_partitions_zone.clone();
|
|
}
|
|
|
|
// We display the statistics
|
|
|
|
msg.push("".into());
|
|
if *prev_assign_opt != None {
|
|
let total_new_partitions: usize = new_partitions.iter().sum();
|
|
msg.push(format!(
|
|
"A total of {} new copies of partitions need to be \
|
|
transferred.",
|
|
total_new_partitions
|
|
));
|
|
msg.push("".into());
|
|
}
|
|
|
|
let mut table = vec![];
|
|
for z in 0..id_to_zone.len() {
|
|
let mut nodes_of_z = Vec::<usize>::new();
|
|
for n in 0..storing_nodes.len() {
|
|
if self.get_node_zone(&self.node_id_vec[n])? == id_to_zone[z] {
|
|
nodes_of_z.push(n);
|
|
}
|
|
}
|
|
let replicated_partitions: usize =
|
|
nodes_of_z.iter().map(|n| stored_partitions[*n]).sum();
|
|
table.push(format!(
|
|
"{}\tTags\tPartitions\tCapacity\tUsable capacity",
|
|
id_to_zone[z]
|
|
));
|
|
|
|
let available_cap_z: u64 = self.partition_size * replicated_partitions as u64;
|
|
let mut total_cap_z = 0;
|
|
for n in nodes_of_z.iter() {
|
|
total_cap_z += self.get_node_capacity(&self.node_id_vec[*n])?;
|
|
}
|
|
let percent_cap_z = 100.0 * (available_cap_z as f32) / (total_cap_z as f32);
|
|
|
|
for n in nodes_of_z.iter() {
|
|
let available_cap_n = stored_partitions[*n] as u64 * self.partition_size;
|
|
let total_cap_n = self.get_node_capacity(&self.node_id_vec[*n])?;
|
|
let tags_n = (self.node_role(&self.node_id_vec[*n]).ok_or("<??>"))?.tags_string();
|
|
table.push(format!(
|
|
" {:?}\t{}\t{} ({} new)\t{}\t{} ({:.1}%)",
|
|
self.node_id_vec[*n],
|
|
tags_n,
|
|
stored_partitions[*n],
|
|
new_partitions[*n],
|
|
ByteSize::b(available_cap_n).to_string_as(false),
|
|
ByteSize::b(total_cap_n).to_string_as(false),
|
|
(available_cap_n as f32) / (total_cap_n as f32) * 100.0,
|
|
));
|
|
}
|
|
|
|
table.push(format!(
|
|
" TOTAL\t\t{} ({} unique)\t{}\t{} ({:.1}%)",
|
|
replicated_partitions,
|
|
stored_partitions_zone[z],
|
|
//new_partitions_zone[z],
|
|
ByteSize::b(available_cap_z).to_string_as(false),
|
|
ByteSize::b(total_cap_z).to_string_as(false),
|
|
percent_cap_z
|
|
));
|
|
table.push("".into());
|
|
}
|
|
msg.push(format_table::format_table_to_string(table));
|
|
|
|
Ok(msg)
|
|
}
|
|
}
|
|
|
|
// ====================================================================================
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::{Error, *};
|
|
use std::cmp::min;
|
|
|
|
// This function checks that the partition size S computed is at least better than the
|
|
// one given by a very naive algorithm. To do so, we try to run the naive algorithm
|
|
// assuming a partion size of S+1. If we succed, it means that the optimal assignment
|
|
// was not optimal. The naive algorithm is the following :
|
|
// - we compute the max number of partitions associated to every node, capped at the
|
|
// partition number. It gives the number of tokens of every node.
|
|
// - every zone has a number of tokens equal to the sum of the tokens of its nodes.
|
|
// - we cycle over the partitions and associate zone tokens while respecting the
|
|
// zone redundancy constraint.
|
|
// NOTE: the naive algorithm is not optimal. Counter example:
|
|
// take nb_partition = 3 ; replication_factor = 5; redundancy = 4;
|
|
// number of tokens by zone : (A, 4), (B,1), (C,4), (D, 4), (E, 2)
|
|
// With these parameters, the naive algo fails, whereas there is a solution:
|
|
// (A,A,C,D,E) , (A,B,C,D,D) (A,C,C,D,E)
|
|
fn check_against_naive(cl: &ClusterLayout) -> Result<bool, Error> {
|
|
let over_size = cl.partition_size + 1;
|
|
let mut zone_token = HashMap::<String, usize>::new();
|
|
|
|
let (zones, zone_to_id) = cl.generate_nongateway_zone_ids()?;
|
|
|
|
if zones.is_empty() {
|
|
return Ok(false);
|
|
}
|
|
|
|
for z in zones.iter() {
|
|
zone_token.insert(z.clone(), 0);
|
|
}
|
|
for uuid in cl.nongateway_nodes().iter() {
|
|
let z = cl.get_node_zone(uuid)?;
|
|
let c = cl.get_node_capacity(uuid)?;
|
|
zone_token.insert(
|
|
z.clone(),
|
|
zone_token[&z] + min(NB_PARTITIONS, (c / over_size) as usize),
|
|
);
|
|
}
|
|
|
|
// For every partition, we count the number of zone already associated and
|
|
// the name of the last zone associated
|
|
|
|
let mut id_zone_token = vec![0; zones.len()];
|
|
for (z, t) in zone_token.iter() {
|
|
id_zone_token[zone_to_id[z]] = *t;
|
|
}
|
|
|
|
let mut nb_token = vec![0; NB_PARTITIONS];
|
|
let mut last_zone = vec![zones.len(); NB_PARTITIONS];
|
|
|
|
let mut curr_zone = 0;
|
|
|
|
let redundancy = cl.parameters.zone_redundancy;
|
|
|
|
for replic in 0..cl.replication_factor {
|
|
for p in 0..NB_PARTITIONS {
|
|
while id_zone_token[curr_zone] == 0
|
|
|| (last_zone[p] == curr_zone
|
|
&& redundancy - nb_token[p] <= cl.replication_factor - replic)
|
|
{
|
|
curr_zone += 1;
|
|
if curr_zone >= zones.len() {
|
|
return Ok(true);
|
|
}
|
|
}
|
|
id_zone_token[curr_zone] -= 1;
|
|
if last_zone[p] != curr_zone {
|
|
nb_token[p] += 1;
|
|
last_zone[p] = curr_zone;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Ok(false);
|
|
}
|
|
|
|
fn show_msg(msg: &Message) {
|
|
for s in msg.iter() {
|
|
println!("{}", s);
|
|
}
|
|
}
|
|
|
|
fn update_layout(
|
|
cl: &mut ClusterLayout,
|
|
node_id_vec: &Vec<u8>,
|
|
node_capacity_vec: &Vec<u64>,
|
|
node_zone_vec: &Vec<String>,
|
|
zone_redundancy: usize,
|
|
) {
|
|
for i in 0..node_id_vec.len() {
|
|
if let Some(x) = FixedBytes32::try_from(&[i as u8; 32]) {
|
|
cl.node_id_vec.push(x);
|
|
}
|
|
|
|
let update = cl.staging_roles.update_mutator(
|
|
cl.node_id_vec[i],
|
|
NodeRoleV(Some(NodeRole {
|
|
zone: (node_zone_vec[i].to_string()),
|
|
capacity: (Some(node_capacity_vec[i])),
|
|
tags: (vec![]),
|
|
})),
|
|
);
|
|
cl.staging_roles.merge(&update);
|
|
}
|
|
cl.staging_parameters
|
|
.update(LayoutParameters { zone_redundancy });
|
|
cl.staging_hash = cl.calculate_staging_hash();
|
|
}
|
|
|
|
#[test]
|
|
fn test_assignment() {
|
|
let mut node_id_vec = vec![1, 2, 3];
|
|
let mut node_capacity_vec = vec![4000, 1000, 2000];
|
|
let mut node_zone_vec = vec!["A", "B", "C"]
|
|
.into_iter()
|
|
.map(|x| x.to_string())
|
|
.collect();
|
|
|
|
let mut cl = ClusterLayout::new(3);
|
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec, 3);
|
|
let v = cl.version;
|
|
let (mut cl, msg) = cl.apply_staged_changes(Some(v + 1)).unwrap();
|
|
show_msg(&msg);
|
|
assert_eq!(cl.check(), Ok(()));
|
|
assert!(matches!(check_against_naive(&cl), Ok(true)));
|
|
|
|
node_id_vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
|
|
node_capacity_vec = vec![4000, 1000, 1000, 3000, 1000, 1000, 2000, 10000, 2000];
|
|
node_zone_vec = vec!["A", "B", "C", "C", "C", "B", "G", "H", "I"]
|
|
.into_iter()
|
|
.map(|x| x.to_string())
|
|
.collect();
|
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec, 2);
|
|
let v = cl.version;
|
|
let (mut cl, msg) = cl.apply_staged_changes(Some(v + 1)).unwrap();
|
|
show_msg(&msg);
|
|
assert_eq!(cl.check(), Ok(()));
|
|
assert!(matches!(check_against_naive(&cl), Ok(true)));
|
|
|
|
node_capacity_vec = vec![4000, 1000, 2000, 7000, 1000, 1000, 2000, 10000, 2000];
|
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec, 3);
|
|
let v = cl.version;
|
|
let (mut cl, msg) = cl.apply_staged_changes(Some(v + 1)).unwrap();
|
|
show_msg(&msg);
|
|
assert_eq!(cl.check(), Ok(()));
|
|
assert!(matches!(check_against_naive(&cl), Ok(true)));
|
|
|
|
node_capacity_vec = vec![
|
|
4000000, 4000000, 2000000, 7000000, 1000000, 9000000, 2000000, 10000, 2000000,
|
|
];
|
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec, 1);
|
|
let v = cl.version;
|
|
let (cl, msg) = cl.apply_staged_changes(Some(v + 1)).unwrap();
|
|
show_msg(&msg);
|
|
assert_eq!(cl.check(), Ok(()));
|
|
assert!(matches!(check_against_naive(&cl), Ok(true)));
|
|
}
|
|
}
|