
Published on September 26, 2022

24 min reading time 4717 words

For the past years, we have extensively analyzed possible design decisions and

their theoretical tradeoffs on Garage, especially on the network, data structure,

or scheduling side. And it worked well enough for our production cluster at

Deuxfleurs, but we also knew that people started discovering some unexpected

behaviors. We thus started a round of benchmark and performance

measurements to see how Garage behaves compared to our expectations. We

split them into 3 categories: "efficient I/O", "myriads of objects" and "resiliency"

to reflect the high-level properties we are seeking.

 Disclaimer

The following results must be taken with a critical grain of salt due to some

limitations that are inherent to any benchmark. We try to reference them as

exhaustively as possible in this section, but other limitations might exist.

Most of our tests are done on simulated networks that can not represent all the

diversity of real networks (dynamic drop, jitter, latency, all of them could be

correlated with throughput or any other external event). We also limited

ourselves to very small workloads that are not representative of a production

cluster. Furthermore, we only benchmarked some very specific aspects of

Garage: our results are thus not an overview of the whole software performance.

For some benchmarks, we used Minio as a reference. It must be noted that we

did not try to optimize its configuration as we have done on Garage, and more

generally, we have way less knowledge on Minio than on Garage, which can lead

to underrated performance measurements for Minio. It must also be noted that

Garage and Minio are systems with different feature sets, eg. Minio supports

erasure coding for better data density while Garage doesn't, Minio implements

way more S3 endpoints than Garage, etc. Such features have necessarily a cost

Bringing theoretical design and

observed performances face to face

that you must keep in mind when reading plots. You should consider Minio results

as a way to contextualize our results, to check that our improvements are not

artificials compared to existing object storage implementations.

The impact of the testing environment is also not evaluated (kernel patches,

configuration, parameters, filesystem, hardware configuration, etc.), some of

these configurations could favor one configuration/software over another.

Especially, it must be noted that most of the tests were done on a consumer-

grade computer and SSD only, which will be different from most production

setups. Finally, our results are also provided without statistical tests to check

their significance, and thus might be statistically not significant.

When reading this post, please keep in mind that we are not making any

business or technical recommendations here, this is not a scientific

paper either; we only share bits of our development process as honestly as

possible. Read benchmarking crimes, make your own tests if you need to take

a decision, and remain supportive and caring with your peers...

About our testing environment

We started a batch of tests on Grid5000, a large-scale and flexible testbed for

experiment-driven research in all areas of computer science, under the Open

Access program. During our tests, we used part of the following clusters: nova,

paravance, and econome to make a geo-distributed topology. We used the

Grid5000 testbed only during our preliminary tests to identify issues when

running Garage on many powerful servers, issues that we then reproduced in a

controlled environment; don't be surprised then if Grid5000 is not mentioned

often on our plots.

To reproduce some environments locally, we have a small set of Python scripts

named mknet tailored to our needs . Most of the following tests were thus run

locally with mknet on a single computer: a Dell Inspiron 27" 7775 AIO, with a

Ryzen 5 1400, 16GB of RAM, a 512GB SSD. In terms of software, NixOS 22.05

with the 5.15.50 kernel is used with an ext4 encrypted filesystem. The

vm.dirty_background_ratio and vm.dirty_ratio have been reduced to 2

and 1 respectively as, with default values, the system tends to freeze when it is

under heavy I/O load.

Efficient I/O

The main goal of an object storage system is to store or retrieve an object across

the network, and the faster, the better. For this analysis, we focus on 2 aspects:

1

https://gernot-heiser.org/benchmarking-crimes.html
https://gernot-heiser.org/benchmarking-crimes.html
https://www.grid5000.fr/w/Grid5000:Home
https://www.grid5000.fr/w/Grid5000:Home
https://www.grid5000.fr/w/Grid5000:Open-Access
https://www.grid5000.fr/w/Grid5000:Open-Access
https://www.grid5000.fr/w/Grid5000:Open-Access
https://www.grid5000.fr/w/Grid5000:Open-Access
https://www.grid5000.fr/w/Lyon:Hardware#nova
https://www.grid5000.fr/w/Lyon:Hardware#nova
https://www.grid5000.fr/w/Rennes:Hardware#paravance
https://www.grid5000.fr/w/Rennes:Hardware#paravance
https://www.grid5000.fr/w/Nantes:Hardware#econome
https://www.grid5000.fr/w/Nantes:Hardware#econome
https://git.deuxfleurs.fr/Deuxfleurs/mknet
https://git.deuxfleurs.fr/Deuxfleurs/mknet
http://127.0.0.1:1111/blog/2022-perf/#ref1
http://127.0.0.1:1111/blog/2022-perf/#ref1

time to first byte, as many applications can start processing a file before

receiving it completely, and generic throughput, to understand how well Garage

can leverage the underlying machine performances.

Time To First Byte - One specificity of Garage is that we implemented S3 web

endpoints, with the idea to make it the platform of choice to publish your static

website. When publishing a website, one metric you observe is Time To First Byte

(TTFB), as it will impact the perceived reactivity of your website. On Garage, time

to first byte was a bit high.

This is not surprising as, until now, the smallest level of granularity internally was

handling full blocks. Blocks are 1MB chunks (this is configurable) of a given

object. For example, a 4.5MB object will be split into 4 blocks of 1MB and 1 block

of 0.5MB. With this design, when you were sending a GET request, the first block

had to be fully retrieved by the gateway node from the storage node before

starting to send any data to the client.

With Garage v0.8, we integrated a block streaming logic that allows the gateway

to send the beginning of a block without having to wait for the full block from the

storage node. We can visually represent the difference as follow:

https://garagehq.deuxfleurs.fr/documentation/reference-manual/configuration/#block-size
https://garagehq.deuxfleurs.fr/documentation/reference-manual/configuration/#block-size

As our default block size is only 1MB, the difference will be very small on fast

networks: it takes only 8ms to transfer 1MB on a 1Gbps network. However, on a

very slow network (or a very congested link with many parallel requests

handled), the impact can be much more important: at 5Mbps, it takes 1.6

seconds to transfer our 1MB block, and streaming could heavily improve user

experience.

We wanted to see if this theory holds in practice: we simulated a low latency but

slow network on mknet and did some requests with (garage v0.8 beta) and

without (garage v0.7) block streaming. We also added Minio as a reference. To

benchmark this behavior, we wrote a small test named s3ttfb, its results are

depicted in the following figure.

Garage v0.7, which does not support block streaming, features TTFB between

1.6s and 2s, which corresponds to the theoretical time to transfer the full block.

On the other side of the plot, Garage v0.8 has a very low TTFB thanks to the

streaming feature (the lowest value is 43 ms). Minio sits between the two Garage

https://git.deuxfleurs.fr/Deuxfleurs/mknet/src/branch/main/benchmarks/s3ttfb
https://git.deuxfleurs.fr/Deuxfleurs/mknet/src/branch/main/benchmarks/s3ttfb

streaming feature (the lowest value is 43 ms). Minio sits between the two Garage

versions: we suppose that it does some form of batching, but smaller than 1MB.

Throughput - As soon as we publicly released Garage, people started

benchmarking it, comparing its performances to writing directly on the

filesystem, and observed that Garage was slower (eg. #288). To improve the

situation, we put costly processing like hashing on a dedicated thread and did

many compute optimization (#342, #343) which lead us to v0.8 beta 1 . We

also noted logic we wrote (to better control resource usage and detect errors, like

semaphores or timeouts) was artificially limiting performances. In another

iteration, we made this logic less restrictive at the cost of higher resource

consumption under load (#387), resulting in v0.8 beta 2 . Finally, we currently

do multiple fsync calls each time we write a block. We know that this is

expensive and did a test build without any fsync call (see the commit) that

will not be merged, just to assess the impact of fsync . We refer to it as no-

fsync in the following plot.

A note about fsync: for performance reasons, operating systems often do not

write directly to the disk when a process creates or updates a file in your

filesystem, instead, the write is kept in memory, and flushed later in a batch with

other writes. If a power loss occurs before the OS has time to flush the writes on

the disk, data will be lost. To ensure that a write is effectively written on disk, you

must use the fsync(2) system call: it will block until your file or directory has

been written from your volatile memory to your persisting storage device.

Additionally, the exact semantic of fsync differs from one OS to another and,

even on battle-tested software like Postgres, they "did it wrong for 20 years".

Note that on Garage, we are currently working on our "fsync" policy and thus, for

now, you should expect limited data durability in case of power loss, as we are

aware of some inconsistency on this point (which we describe in the following

and plan to solve).

To assess performance improvements, we used the benchmark tool minio/warp

in a non-standard configuration, adapted for small-scale tests, and we kept only

the aggregated result named "cluster total". The goal of this experiment is to get

an idea of the cluster performance with a standardized and mixed workload.

https://git.deuxfleurs.fr/Deuxfleurs/garage/issues/288
https://git.deuxfleurs.fr/Deuxfleurs/garage/issues/288
https://git.deuxfleurs.fr/Deuxfleurs/garage/pulls/342
https://git.deuxfleurs.fr/Deuxfleurs/garage/pulls/342
https://git.deuxfleurs.fr/Deuxfleurs/garage/pulls/343
https://git.deuxfleurs.fr/Deuxfleurs/garage/pulls/343
https://git.deuxfleurs.fr/Deuxfleurs/garage/pulls/387
https://git.deuxfleurs.fr/Deuxfleurs/garage/pulls/387
https://git.deuxfleurs.fr/Deuxfleurs/garage/commit/432131f5b8c2aad113df3b295072a00756da47e7
https://git.deuxfleurs.fr/Deuxfleurs/garage/commit/432131f5b8c2aad113df3b295072a00756da47e7
https://man7.org/linux/man-pages/man2/fsync.2.html
https://man7.org/linux/man-pages/man2/fsync.2.html
https://mjtsai.com/blog/2022/02/17/apple-ssd-benchmarks-and-f_fullsync/
https://mjtsai.com/blog/2022/02/17/apple-ssd-benchmarks-and-f_fullsync/
https://archive.fosdem.org/2019/schedule/event/postgresql_fsync/
https://archive.fosdem.org/2019/schedule/event/postgresql_fsync/
https://github.com/minio/warp
https://github.com/minio/warp

Minio, our ground truth, features the best performances in this test. Considering

Garage, we observe that each improvement we made has a visible impact on its

performances. We also note that we have a progress margin in terms of

performances compared to Minio: additional benchmarks, tests, and monitoring

could help better understand the remaining difference.

A myriad of objects

Object storage systems do not handle a single object but a myriad of them:

Amazon claims to handle trillions of objects on their platform, and Red Hat

communicates about Ceph being able to handle 10 billion objects. All these

objects must be tracked efficiently in the system to be fetched, listed, removed,

etc. In Garage, we use a "metadata engine" component to track them. For this

analysis, we compare different metadata engines in Garage and see how well the

best one scale to a million objects.

Testing metadata engines - With Garage, we chose to not store metadata

directly on the filesystem, like Minio for example, but in an on-disk fancy B-Tree

structure, in other words, in an embedded database engine. Until now, the only

available option was sled, but we started having serious issues with it, and we

were not alone (#284). With Garage v0.8, we introduce an abstraction semantic

over the features we expect from our database, allowing us to switch from one

backend to another without touching the rest of our codebase. We added two

additional backends: lmdb (heed) and sqlite (rusqlite). Keep in mind that

they are both experimental: contrarily to sled, we have never run them

in production for a long time.

https://sled.rs/
https://sled.rs/
https://git.deuxfleurs.fr/Deuxfleurs/garage/issues/284
https://git.deuxfleurs.fr/Deuxfleurs/garage/issues/284
https://github.com/meilisearch/heed
https://github.com/meilisearch/heed
https://github.com/rusqlite/rusqlite
https://github.com/rusqlite/rusqlite

Similarly to the impact of fsync on block writing, each database engine we use

has its own policy with fsync. Sled flushes its write every 2 seconds by default,

this is configurable). lmdb by default does an fsync on each write, on early

tests it led to very slow resynchronizations between nodes. We added 2 flags:

MDB_NOSYNC and MDB_NOMETASYNC which deactivate fsync. On sqlite, it is

also possible to deactivate fsync with pragma synchronous = off; , but we did

not start any optimization work on it: our sqlite implementation fsync all the data

on the disk. Additionally, we are using these engines through a Rust binding that

had to do some tradeoff on the concurrency part. Our comparison will not

reflect the raw performances of these database engines, but instead,

our integration choices.

Still, we think it makes sense to evaluate our implementations in their current

state in Garage. We designed a benchmark that is intensive on the metadata part

of the software, ie. handling tiny files. We chose again minio/warp but we

configure it with the smallest possible object size supported by warp, 256 bytes,

to put some pressure on the metadata engine. We evaluate sled twice: with its

default configuration, and with a configuration where we set a flush interval of 10

minutes to disable fsync.

Note that S3 has not been designed for such small objects; a regular database,

like Cassandra, would be more appropriate for such workloads. This test has only

been designed to stress our metadata engine, it is not indicative of real-world

performances.

https://garagehq.deuxfleurs.fr/documentation/reference-manual/configuration/#sled-flush-every-ms
https://garagehq.deuxfleurs.fr/documentation/reference-manual/configuration/#sled-flush-every-ms
http://www.lmdb.tech/doc/group__mdb__env.html#ga5791dd1adb09123f82dd1f331209e12e
http://www.lmdb.tech/doc/group__mdb__env.html#ga5791dd1adb09123f82dd1f331209e12e
http://www.lmdb.tech/doc/group__mdb__env.html#ga5021c4e96ffe9f383f5b8ab2af8e4b16
http://www.lmdb.tech/doc/group__mdb__env.html#ga5021c4e96ffe9f383f5b8ab2af8e4b16

Unsurprisingly, we observe abysmal performances for sqlite, the engine we have

the less tested and kept fsync for each write. lmdb performs twice better than

sled in its default version and 60% better than the "no fsync" version in our

benchmark. Furthermore, and not depicted on these plots, LMDB uses way less

disk storage and RAM; we would like to quantify that in the future. As we are only

at the very beginning of our work on metadata engines, it is hard to draw strong

conclusions. Still, we can say that sqlite is not ready for production workloads,

LMDB looks very promising both in terms of performances and resource usage, it

is a very good candidate for Garage's default metadata engine in the future, and

we need to define a data policy for Garage that would help us arbitrate between

performances and durability.

To fsync or not to fsync? Performance is nothing without reliability, so we need to

better assess the impact of validating a write and then losing it. Because Garage

is a distributed system, even if a node loses its write due to a power loss, it will

fetch it back from the 2 other nodes storing it. But rare situations where 1 node is

down and the 2 others validated the write and then lost power can occur, what is

our policy in this case? For storage durability, we are already supposing that we

never lose the storage of more than 2 nodes, should we also expect that we don't

lose power on more than 2 nodes at the same time? What should we think about

people hosting all their nodes at the same place without a UPS? Historically, it

seems that Minio developers also accepted some compromises on this side

(#3536, HN Discussion). Now, they seem to use a combination of O_DSYNC and

fdatasync(3p) - a derivative that ensures only data and not metadata are

persisted on disk - in combination with O_DIRECT for direct I/O (discussion,

example in minio source).

Storing a million objects - Object storage systems are designed not only for

data durability and availability but also for scalability. Following this observation,

some people asked us how scalable Garage is. If answering this question is out of

the scope of this study, we wanted to be sure that our metadata engine would be

able to scale to a million objects. To put this target in context, it remains small

compared to other industrial solutions: Ceph claims to scale up to 10 billion

objects, which is 4 orders of magnitude more than our current target. Of course,

their benchmarking setup has nothing in common with ours, and their tests are

way more exhaustive.

https://github.com/minio/minio/issues/3536
https://github.com/minio/minio/issues/3536
https://news.ycombinator.com/item?id=28135533
https://news.ycombinator.com/item?id=28135533
https://github.com/minio/minio/discussions/14339#discussioncomment-2200274
https://github.com/minio/minio/discussions/14339#discussioncomment-2200274
https://github.com/minio/minio/blob/master/cmd/xl-storage.go#L1928-L1932
https://github.com/minio/minio/blob/master/cmd/xl-storage.go#L1928-L1932
https://www.redhat.com/en/resources/data-solutions-overview
https://www.redhat.com/en/resources/data-solutions-overview
https://www.redhat.com/en/resources/data-solutions-overview
https://www.redhat.com/en/resources/data-solutions-overview

We wrote our own benchmarking tool for this test, s3billion . It concurrently

sends a defined number of very tiny objects (8192 objects of 16 bytes by default)

and measures the time it took. It repeats this step a given number of times (128

by default) to effectively create a certain number of objects on the target cluster

(1M by default). On our local setup with 3 nodes, both Minio and Garage with

LMDB were able to achieve this target. In the following plot, we show how many

times it took to Garage and Minio to handle each batch.

Before looking at the plot, you must keep in mind some important points

about Minio and Garage internals.

Minio has no metadata engine, it stores its objects directly on the filesystem.

Sending 1 million objects on Minio results in creating one million inodes on the

storage node in our current setup. So the performance of your filesystem will

probably substantially impact the results you will observe; we know the

filesystem we used is not adapted at all for Minio (encryption layer, fixed number

of inodes, etc.). Additionally, we mentioned earlier that we deactivated fsync for

our metadata engine, minio has some fsync logic here slowing down the creation

of objects. Finally, object storage is designed for big objects: this cost is

negligible with bigger objects. In the end, again, we use Minio as a reference to

understand what is our performance budget for each part of our software.

Conversely, Garage has an optimization for small objects. Below 3KB, a block is

not created on the filesystem but the object is directly stored inline in the

metadata engine. In the future, we plan to evaluate how Garage behaves with

3KB+ objects at scale, probably way closer to Minio, as it will have to create an

inode for each object. For now, we limit ourselves to evaluating our metadata

engine and thus focus only on 16-byte objects.

2

https://git.deuxfleurs.fr/Deuxfleurs/mknet/src/branch/main/benchmarks/s3billion
https://git.deuxfleurs.fr/Deuxfleurs/mknet/src/branch/main/benchmarks/s3billion
http://127.0.0.1:1111/blog/2022-perf/#ref2
http://127.0.0.1:1111/blog/2022-perf/#ref2

It appears that the performances of our metadata engine are acceptable, as we

have a comfortable margin compared to Minio (Minio is between 3x and 4x times

slower per batch). We also note that, past 200k objects, Minio batch completion

time is constant as Garage's one remains linear: it could be interesting to know if

Garage batch's completion time would cross Minio's one for a very large number

of objects. If we reason per object, both Minio and Garage performances remain

very good: it takes respectively around 20ms and 5ms to create an object. At 100

Mbps, if you upload a 10MB file, the upload will take 800ms, for a 100MB file, it

goes up to 8sec; in both cases handling the object metadata is only a fraction of

the upload time. The only cases where you could notice it would be if you upload

a lot of very small files at once, which again, is an unusual usage of the S3 API.

Next, we focus on Garage's data only to better see its specific behavior:

Two effects are now more visible: 1. batch completion time is linear with the

number of objects in the bucket and 2. measurements are dispersed, at least

more than Minio. We discussed the first point previously but not the second one

on measurement dispersion. This instability could be an issue as it could be a

symptom of what we saw with some other experiments in this machine:

sometimes it freezes under heavy I/O operations. Such freezes could lead to

request timeouts and failures. If it occurs on our testing computer, it will occur on

other servers too: it could be interesting to better understand this issue,

document how to avoid it, or change how we handle our I/O. At the same time,

this was a very stressful test that will probably not be encountered in many

setups: we were adding 273 objects per second for 30 minutes!

To conclude this part, Garage can ingest 1 million tiny objects while remaining

usable on our local setup. To put this result in perspective, our production cluster

at deuxfleurs.fr smoothly manages a bucket with 116k objects. This bucket

contains real data: it is used by our Matrix instance to store people's media files

(profile pictures, shared pictures, videos, audios, documents...). Thanks to this

benchmark, we have identified two points of vigilance: putting object duration

seems linear with the number of existing objects in the cluster, and we have

some volatility in our measured data that could be a symptom of our system

freezing under the load. Despite these two points, we are confident that Garage

could scale way above 1M+ objects, but it remains to be proved!

In an unpredictable world, stay resilient

Supporting a variety of network properties and computers, especially ones that

were not designed for software-defined storage or even server purposes, is the

core value proposition of Garage. For example, our production cluster is hosted

on refurbished Lenovo Thinkcentre Tiny Desktop computers behind

consumer-grade fiber links across France and Belgium - if you are reading this,

congratulation, you fetched this webpage from it! That's why we are very careful

that our internal protocol (named RPC protocol in our documentation) remains as

lightweight as possible. For this analysis, we quantify how network latency and

the number of nodes in the cluster impact S3 main requests duration.

Latency amplification - With the kind of networks we use (consumer-grade

fiber links across the EU), the observed latency is in the 50ms range between

nodes. When latency is not negligible, you will observe that request completion

time is a factor of the observed latency. That's expected: in many cases, the node

https://deuxfleurs/
https://deuxfleurs/
https://guide.deuxfleurs.fr/img/serv_neptune.jpg
https://guide.deuxfleurs.fr/img/serv_neptune.jpg

of the cluster you are contacting can not directly answer your request, it needs to

reach other nodes of the cluster to get your information. Each sequential RPC

adds to the final S3 request duration, which can quickly become expensive. This

ratio between request duration and network latency is what we refer to as

latency amplification.

For example, on Garage, a GetObject request does two sequential calls: first, it

asks for the descriptor of the requested object containing the block list of the

requested object, then it retrieves its blocks. We can expect that the request

duration of a small GetObject request will be close to twice the network latency.

We tested this theory with another benchmark of our own named s3lat which

does a single request at a time on an endpoint and measures its response time.

As we are not interested in bandwidth but latency, all our requests involving an

object are made on a tiny file of around 16 bytes. Our benchmark tests 5

standard endpoints: ListBuckets, ListObjects, PutObject, GetObject and

RemoveObject. Its results are plotted here:

As Garage has been optimized for this use case from the beginning, we don't see

any significant evolution from one version to another (garage v0.7.3 and garage

v0.8.0 beta here). Compared to Minio, these values are either similar (for

ListObjects and ListBuckets) or way better (for GetObject, PutObject, and

https://git.deuxfleurs.fr/Deuxfleurs/mknet/src/branch/main/benchmarks/s3lat
https://git.deuxfleurs.fr/Deuxfleurs/mknet/src/branch/main/benchmarks/s3lat

ListObjects and ListBuckets) or way better (for GetObject, PutObject, and

RemoveObject). It is understandable: Minio has not been designed for

environments with high latencies, you are expected to build your clusters in the

same datacenter, and then possibly connect them with their asynchronous

Bucket Replication feature.

Minio also has a Multi-Site Active-Active Replication System but it is even

more sensitive to latency: "Multi-site replication has increased latency sensitivity,

as MinIO does not consider an object as replicated until it has synchronized to all

configured remote targets. Replication latency is therefore dictated by the

slowest link in the replication mesh."

A cluster with many nodes - Whether you already have many compute nodes

with unused storage, need to store a lot of data, or experiment with unusual

system architecture, you might want to deploy a hundredth of Garage nodes.

However, in some distributed systems, the number of nodes in the cluster will

impact performance. Theoretically, our protocol inspired by distributed

hashtables (DHT) should scale fairly well but we never took the time to test it

with a hundredth of nodes before.

This time, we did our test directly on Grid5000 with 6 physical servers spread in 3

locations in France: Lyon, Rennes, and Nantes. On each server, we ran up to 65

instances of Garage simultaneously (for a total of 390 nodes). The network

between the physical server is the dedicated network provided by Grid5000

operators. Nodes on the same physical machine communicate directly through

the Linux network stack without any limitation: we are aware this is a weakness

of this test. We still think that this test can be relevant as, at each step in the

test, each instance of Garage has 83% (5/6) of its connections that are made

over a real network. To benchmark each cluster size, we used s3lat again:

https://min.io/docs/minio/linux/administration/bucket-replication.html?ref=docs-redirect
https://min.io/docs/minio/linux/administration/bucket-replication.html?ref=docs-redirect
https://blog.min.io/minio-multi-site-active-active-replication/
https://blog.min.io/minio-multi-site-active-active-replication/
https://git.deuxfleurs.fr/Deuxfleurs/mknet/src/branch/main/benchmarks/s3lat
https://git.deuxfleurs.fr/Deuxfleurs/mknet/src/branch/main/benchmarks/s3lat

Up to 250 nodes observed response times remain constant. After this threshold,

results become very noisy. By looking at the server resource usage, we saw that

their load started to become non-negligible: it seems that we are not hitting a

limit on the protocol side but we have simply exhausted the resource of our

testing nodes. In the future, we would like to run this experiment again, but on

way more physical nodes, to confirm our hypothesis. For now, we are confident

that a Garage cluster with 100+ nodes should work.

Conclusion and Future work

During this work, we identified some sensitive points on Garage we will continue

working on: our data durability target and interaction with the filesystem

(O_DSYNC , fsync , O_DIRECT , etc.) is not yet homogeneous across our

components, our new metadata engines (lmdb, sqlite) still need some testing and

tuning, and we know that raw I/O (GetObject, PutObject) have a small

improvement margin.

At the same time, Garage has never been better: its next version (v0.8) will see

drastic improvements in terms of performance and reliability. We are confident

that it is already able to cover a wide range of deployment needs, up to a

hundredth of nodes and millions of objects.

In the future, on the performance aspect, we would like to evaluate the impact of

introducing an SRPT scheduler (#361), define a data durability policy and

implement it, and make a deeper and larger review of the state of the art (minio,

ceph, swift, openio, riak cs, seaweedfs, etc.) to learn from them, and finally,

benchmark Garage at scale with possibly multiple terabytes of data and billions

of objects on long-lasting experiments.

https://git.deuxfleurs.fr/Deuxfleurs/garage/issues/361
https://git.deuxfleurs.fr/Deuxfleurs/garage/issues/361

In the meantime, stay tuned: we have released a first release candidate for

Garage v0.8, and we are working on proving and explaining our layout

algorithm (#296), we are also working on a Python SDK for Garage's

administration API (#379), and we will soon introduce officially a new API (as a

technical preview) named K2V (see K2V on our doc for a primer).

Notes

Yes, we are aware of Jepsen existence. This tool is far more complex than our

set of scripts, but we know that it is also way more versatile.

The program name contains the word "billion" and we only tested Garage up to

1 "million" object, this is not a typo, we were just a little bit too enthusiast when

we wrote it.

We tried IPFS over Garage

Built with Zola, powered by Garage, hosted by Deuxfleurs

1

2

https://git.deuxfleurs.fr/Deuxfleurs/garage/releases/tag/v0.8.0-rc1
https://git.deuxfleurs.fr/Deuxfleurs/garage/releases/tag/v0.8.0-rc1
https://git.deuxfleurs.fr/Deuxfleurs/garage/releases/tag/v0.8.0-rc1
https://git.deuxfleurs.fr/Deuxfleurs/garage/releases/tag/v0.8.0-rc1
https://git.deuxfleurs.fr/Deuxfleurs/garage/pulls/296
https://git.deuxfleurs.fr/Deuxfleurs/garage/pulls/296
https://git.deuxfleurs.fr/Deuxfleurs/garage/pulls/379
https://git.deuxfleurs.fr/Deuxfleurs/garage/pulls/379
https://garagehq.deuxfleurs.fr/documentation/reference-manual/k2v/
https://garagehq.deuxfleurs.fr/documentation/reference-manual/k2v/
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen
http://127.0.0.1:1111/blog/2022-ipfs/
http://127.0.0.1:1111/blog/2022-ipfs/
http://127.0.0.1:1111/blog/2022-ipfs/
http://127.0.0.1:1111/blog/2022-ipfs/
http://127.0.0.1:1111/blog/2022-ipfs/
http://127.0.0.1:1111/blog/2022-ipfs/
https://git.deuxfleurs.fr/Deuxfleurs/garage
https://git.deuxfleurs.fr/Deuxfleurs/garage
https://git.deuxfleurs.fr/Deuxfleurs/garage
mailto:garagehq@deuxfleurs.fr
mailto:garagehq@deuxfleurs.fr
mailto:garagehq@deuxfleurs.fr
http://127.0.0.1:1111/rss.xml
http://127.0.0.1:1111/rss.xml
http://127.0.0.1:1111/rss.xml
https://www.getzola.org/
https://www.getzola.org/
http://127.0.0.1:1111/
http://127.0.0.1:1111/
https://deuxfleurs.fr/
https://deuxfleurs.fr/

