forked from Deuxfleurs/garage
Request strategy: don't launch all 3 requests if not needed
This commit is contained in:
parent
2090a6187f
commit
e8811f7c9d
2 changed files with 156 additions and 49 deletions
|
@ -7,7 +7,7 @@ use futures::stream::futures_unordered::FuturesUnordered;
|
|||
use futures::stream::StreamExt;
|
||||
use futures_util::future::FutureExt;
|
||||
use tokio::select;
|
||||
use tokio::sync::Semaphore;
|
||||
use tokio::sync::{watch, Semaphore};
|
||||
|
||||
pub use netapp::endpoint::{Endpoint, EndpointHandler, Message as Rpc};
|
||||
use netapp::peering::fullmesh::FullMeshPeeringStrategy;
|
||||
|
@ -18,6 +18,8 @@ use garage_util::background::BackgroundRunner;
|
|||
use garage_util::data::*;
|
||||
use garage_util::error::Error;
|
||||
|
||||
use crate::ring::Ring;
|
||||
|
||||
const DEFAULT_TIMEOUT: Duration = Duration::from_secs(10);
|
||||
|
||||
// Try to never have more than 200MB of outgoing requests
|
||||
|
@ -67,22 +69,30 @@ impl RequestStrategy {
|
|||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct RpcHelper {
|
||||
pub(crate) fullmesh: Arc<FullMeshPeeringStrategy>,
|
||||
pub(crate) background: Arc<BackgroundRunner>,
|
||||
request_buffer_semaphore: Arc<Semaphore>,
|
||||
pub struct RpcHelper(Arc<RpcHelperInner>);
|
||||
|
||||
struct RpcHelperInner {
|
||||
our_node_id: Uuid,
|
||||
fullmesh: Arc<FullMeshPeeringStrategy>,
|
||||
background: Arc<BackgroundRunner>,
|
||||
ring: watch::Receiver<Arc<Ring>>,
|
||||
request_buffer_semaphore: Semaphore,
|
||||
}
|
||||
|
||||
impl RpcHelper {
|
||||
pub(crate) fn new(
|
||||
our_node_id: Uuid,
|
||||
fullmesh: Arc<FullMeshPeeringStrategy>,
|
||||
background: Arc<BackgroundRunner>,
|
||||
ring: watch::Receiver<Arc<Ring>>,
|
||||
) -> Self {
|
||||
Self {
|
||||
Self(Arc::new(RpcHelperInner {
|
||||
our_node_id,
|
||||
fullmesh,
|
||||
background,
|
||||
request_buffer_semaphore: Arc::new(Semaphore::new(REQUEST_BUFFER_SIZE)),
|
||||
}
|
||||
ring,
|
||||
request_buffer_semaphore: Semaphore::new(REQUEST_BUFFER_SIZE),
|
||||
}))
|
||||
}
|
||||
|
||||
pub async fn call<M, H, S>(
|
||||
|
@ -111,7 +121,11 @@ impl RpcHelper {
|
|||
H: EndpointHandler<M>,
|
||||
{
|
||||
let msg_size = rmp_to_vec_all_named(&msg)?.len() as u32;
|
||||
let permit = self.request_buffer_semaphore.acquire_many(msg_size).await?;
|
||||
let permit = self
|
||||
.0
|
||||
.request_buffer_semaphore
|
||||
.acquire_many(msg_size)
|
||||
.await?;
|
||||
|
||||
let node_id = to.into();
|
||||
select! {
|
||||
|
@ -160,6 +174,7 @@ impl RpcHelper {
|
|||
H: EndpointHandler<M>,
|
||||
{
|
||||
let to = self
|
||||
.0
|
||||
.fullmesh
|
||||
.get_peer_list()
|
||||
.iter()
|
||||
|
@ -168,8 +183,8 @@ impl RpcHelper {
|
|||
self.call_many(endpoint, &to[..], msg, strat).await
|
||||
}
|
||||
|
||||
/// Make a RPC call to multiple servers, returning either a Vec of responses, or an error if
|
||||
/// strategy could not be respected due to too many errors
|
||||
/// Make a RPC call to multiple servers, returning either a Vec of responses,
|
||||
/// or an error if quorum could not be reached due to too many errors
|
||||
pub async fn try_call_many<M, H, S>(
|
||||
&self,
|
||||
endpoint: &Arc<Endpoint<M, H>>,
|
||||
|
@ -183,54 +198,146 @@ impl RpcHelper {
|
|||
S: Send,
|
||||
{
|
||||
let msg = Arc::new(msg);
|
||||
let mut resp_stream = to
|
||||
.to_vec()
|
||||
.into_iter()
|
||||
.map(|to| {
|
||||
let self2 = self.clone();
|
||||
let msg = msg.clone();
|
||||
let endpoint2 = endpoint.clone();
|
||||
async move { self2.call_arc(&endpoint2, to, msg, strategy).await }
|
||||
})
|
||||
.collect::<FuturesUnordered<_>>();
|
||||
|
||||
let mut results = vec![];
|
||||
let mut errors = vec![];
|
||||
// Build future for each request
|
||||
// They are not started now: they are added below in a FuturesUnordered
|
||||
// object that will take care of polling them (see below)
|
||||
let requests = to.iter().cloned().map(|to| {
|
||||
let self2 = self.clone();
|
||||
let msg = msg.clone();
|
||||
let endpoint2 = endpoint.clone();
|
||||
(to, async move {
|
||||
self2.call_arc(&endpoint2, to, msg, strategy).await
|
||||
})
|
||||
});
|
||||
let quorum = strategy.rs_quorum.unwrap_or(to.len());
|
||||
|
||||
while let Some(resp) = resp_stream.next().await {
|
||||
match resp {
|
||||
Ok(msg) => {
|
||||
results.push(msg);
|
||||
if results.len() >= quorum {
|
||||
break;
|
||||
// Vectors in which success results and errors will be collected
|
||||
let mut successes = vec![];
|
||||
let mut errors = vec![];
|
||||
|
||||
if strategy.rs_interrupt_after_quorum {
|
||||
// Case 1: once quorum is reached, other requests don't matter.
|
||||
// What we do here is only send the required number of requests
|
||||
// to reach a quorum, priorizing nodes with the lowest latency.
|
||||
// When there are errors, we start new requests to compensate.
|
||||
|
||||
// Retrieve some status variables that we will use to sort requests
|
||||
let peer_list = self.0.fullmesh.get_peer_list();
|
||||
let ring: Arc<Ring> = self.0.ring.borrow().clone();
|
||||
let our_zone = match ring.config.members.get(&self.0.our_node_id) {
|
||||
Some(pc) => &pc.zone,
|
||||
None => "",
|
||||
};
|
||||
|
||||
// Augment requests with some information used to sort them.
|
||||
// The tuples are as follows:
|
||||
// (is another node?, is another zone?, latency, node ID, request future)
|
||||
// We store all of these tuples in a vec that we can sort.
|
||||
// By sorting this vec, we priorize ourself, then nodes in the same zone,
|
||||
// and within a same zone we priorize nodes with the lowest latency.
|
||||
let mut requests = requests
|
||||
.map(|(to, fut)| {
|
||||
let peer_zone = match ring.config.members.get(&to) {
|
||||
Some(pc) => &pc.zone,
|
||||
None => "",
|
||||
};
|
||||
let peer_avg_ping = peer_list
|
||||
.iter()
|
||||
.find(|x| x.id.as_ref() == to.as_slice())
|
||||
.map(|pi| pi.avg_ping)
|
||||
.flatten()
|
||||
.unwrap_or_else(|| Duration::from_secs(1));
|
||||
(
|
||||
to != self.0.our_node_id,
|
||||
peer_zone != our_zone,
|
||||
peer_avg_ping,
|
||||
to,
|
||||
fut,
|
||||
)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// Sort requests by (priorize ourself, priorize same zone, priorize low latency)
|
||||
requests
|
||||
.sort_by_key(|(diffnode, diffzone, ping, _to, _fut)| (*diffnode, *diffzone, *ping));
|
||||
|
||||
// Make an iterator to take requests in their sorted order
|
||||
let mut requests = requests.into_iter();
|
||||
|
||||
// resp_stream will contain all of the requests that are currently in flight.
|
||||
// (for the moment none, they will be added in the loop below)
|
||||
let mut resp_stream = FuturesUnordered::new();
|
||||
|
||||
// Do some requests and collect results
|
||||
'request_loop: while successes.len() < quorum {
|
||||
// If the current set of requests that are running is not enough to possibly
|
||||
// reach quorum, start some new requests.
|
||||
while successes.len() + resp_stream.len() < quorum {
|
||||
if let Some((_, _, _, _to, fut)) = requests.next() {
|
||||
resp_stream.push(fut);
|
||||
} else {
|
||||
// If we have no request to add, we know that we won't ever
|
||||
// reach quorum: bail out now.
|
||||
break 'request_loop;
|
||||
}
|
||||
}
|
||||
Err(e) => {
|
||||
errors.push(e);
|
||||
assert!(!resp_stream.is_empty()); // because of loop invariants
|
||||
|
||||
// Wait for one request to terminate
|
||||
match resp_stream.next().await.unwrap() {
|
||||
Ok(msg) => {
|
||||
successes.push(msg);
|
||||
}
|
||||
Err(e) => {
|
||||
errors.push(e);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Case 2: all of the requests need to be sent in all cases,
|
||||
// and need to terminate. (this is the case for writes that
|
||||
// must be spread to n nodes)
|
||||
// Just start all the requests in parallel and return as soon
|
||||
// as the quorum is reached.
|
||||
let mut resp_stream = requests
|
||||
.map(|(_, fut)| fut)
|
||||
.collect::<FuturesUnordered<_>>();
|
||||
|
||||
while let Some(resp) = resp_stream.next().await {
|
||||
match resp {
|
||||
Ok(msg) => {
|
||||
successes.push(msg);
|
||||
if successes.len() >= quorum {
|
||||
break;
|
||||
}
|
||||
}
|
||||
Err(e) => {
|
||||
errors.push(e);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if !resp_stream.is_empty() {
|
||||
// Continue remaining requests in background.
|
||||
// Continue the remaining requests immediately using tokio::spawn
|
||||
// but enqueue a task in the background runner
|
||||
// to ensure that the process won't exit until the requests are done
|
||||
// (if we had just enqueued the resp_stream.collect directly in the background runner,
|
||||
// the requests might have been put on hold in the background runner's queue,
|
||||
// in which case they might timeout or otherwise fail)
|
||||
let wait_finished_fut = tokio::spawn(async move {
|
||||
resp_stream.collect::<Vec<Result<_, _>>>().await;
|
||||
});
|
||||
self.0.background.spawn(wait_finished_fut.map(|_| Ok(())));
|
||||
}
|
||||
}
|
||||
|
||||
if results.len() >= quorum {
|
||||
// Continue requests in background.
|
||||
// Continue the remaining requests immediately using tokio::spawn
|
||||
// but enqueue a task in the background runner
|
||||
// to ensure that the process won't exit until the requests are done
|
||||
// (if we had just enqueued the resp_stream.collect directly in the background runner,
|
||||
// the requests might have been put on hold in the background runner's queue,
|
||||
// in which case they might timeout or otherwise fail)
|
||||
if !strategy.rs_interrupt_after_quorum {
|
||||
let wait_finished_fut = tokio::spawn(async move {
|
||||
resp_stream.collect::<Vec<_>>().await;
|
||||
});
|
||||
self.background.spawn(wait_finished_fut.map(|_| Ok(())));
|
||||
}
|
||||
|
||||
Ok(results)
|
||||
if successes.len() >= quorum {
|
||||
Ok(successes)
|
||||
} else {
|
||||
let errors = errors.iter().map(|e| format!("{}", e)).collect::<Vec<_>>();
|
||||
Err(Error::Quorum(quorum, results.len(), to.len(), errors))
|
||||
Err(Error::Quorum(quorum, successes.len(), to.len(), errors))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -235,7 +235,7 @@ impl System {
|
|||
node_status: RwLock::new(HashMap::new()),
|
||||
netapp: netapp.clone(),
|
||||
fullmesh: fullmesh.clone(),
|
||||
rpc: RpcHelper::new(fullmesh, background.clone()),
|
||||
rpc: RpcHelper::new(netapp.id.into(), fullmesh, background.clone(), ring.clone()),
|
||||
system_endpoint,
|
||||
replication_factor,
|
||||
rpc_listen_addr: config.rpc_bind_addr,
|
||||
|
|
Loading…
Reference in a new issue