- **Self-contained & lightweight**: works everywhere and integrates well in existing environments to target [hyperconverged infrastructures](https://en.wikipedia.org/wiki/Hyper-converged_infrastructure).
- **Extreme performances**: high performances constrain a lot the design and the infrastructure; we seek performances through minimalism only.
- **Feature extensiveness**: complete implementation of the S3 API or any other API to make garage a drop-in replacement is not targeted as it could lead to decisions impacting our desirable properties.
- **Storage optimizations**: erasure coding or any other coding technique both increase the difficulty of placing data and synchronizing; we limit ourselves to duplication.
- **POSIX/Filesystem compatibility**: we do not aim at being POSIX compatible or to emulate any kind of filesystem. Indeed, in a distributed environment, such synchronizations are translated in network messages that impose severe constraints on the deployment.
Garage speaks (or will speak) the following protocols:
- [S3](https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html) - *SUPPORTED* - Enable applications to store large blobs such as pictures, video, images, documents, etc. S3 is versatile enough to also be used to publish a static website.
Especially, it is used to host their main website, this documentation and some of its members' blogs.
Additionally, Garage is used as a [backend for Nextcloud](https://docs.nextcloud.com/server/20/admin_manual/configuration_files/primary_storage.html).
Deuxfleurs also plans to use Garage as their [Matrix's media backend](https://github.com/matrix-org/synapse-s3-storage-provider) and as the backend of [OCIS](https://github.com/owncloud/ocis).
**[MinIO](https://min.io/):** MinIO shares our *Self-contained & lightweight* goal but selected two of our non-goals: *Storage optimizations* through erasure coding and *POSIX/Filesystem compatibility* through strong consistency.
However, by pursuing these two non-goals, MinIO do not reach our desirable properties.
Firstly, it fails on the *Simple* property: due to the erasure coding, MinIO has severe limitations on how drives can be added or deleted from a cluster.
Secondly, it fails on the *Internet enabled* property: due to its strong consistency, MinIO is latency sensitive.
Furthermore, MinIO has no knowledge of "sites" and thus can not distribute data to minimize the failure of a given site.
Due to its industry oriented design, Ceph is also far from being *Simple* to operate and from being *Self-contained & lightweight* which makes it hard to integrate it in an hyperconverged infrastructure.
In a certain way, Ceph and MinIO are closer together than they are from Garage or OpenStack Swift.
- [(fr, 2020-12-02) Garage : jouer dans la cour des grands quand on est un hébergeur associatif](https://git.deuxfleurs.fr/Deuxfleurs/garage/raw/commit/b1f60579a13d3c5eba7f74b1775c84639ea9b51a/doc/talks/2020-12-02_wide-team/talk.pdf)
Our code repository and issue tracker, which is the place where you should report bugs, is managed on [Deuxfleurs' Gitea](https://git.deuxfleurs.fr/Deuxfleurs/garage).
_This project has received funding from the European Union’s Horizon 2020 research and innovation programme within the framework of the NGI-POINTER Project funded under grant agreement No 871528._