forked from Deuxfleurs/garage
420 lines
13 KiB
Rust
420 lines
13 KiB
Rust
//! This module deals with graph algorithms.
|
|
//! It is used in layout.rs to build the partition to node assignation.
|
|
|
|
use rand::prelude::SliceRandom;
|
|
use std::cmp::{max, min};
|
|
use std::collections::HashMap;
|
|
use std::collections::VecDeque;
|
|
|
|
///Vertex data structures used in all the graphs used in layout.rs.
|
|
///usize parameters correspond to node/zone/partitions ids.
|
|
///To understand the vertex roles below, please refer to the formal description
|
|
///of the layout computation algorithm.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
pub enum Vertex {
|
|
Source,
|
|
Pup(usize), //The vertex p+ of partition p
|
|
Pdown(usize), //The vertex p- of partition p
|
|
PZ(usize, usize), //The vertex corresponding to x_(partition p, zone z)
|
|
N(usize), //The vertex corresponding to node n
|
|
Sink,
|
|
}
|
|
|
|
///Edge data structure for the flow algorithm.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct FlowEdge {
|
|
cap: u32, //flow maximal capacity of the edge
|
|
flow: i32, //flow value on the edge
|
|
dest: usize, //destination vertex id
|
|
rev: usize, //index of the reversed edge (v, self) in the edge list of vertex v
|
|
}
|
|
|
|
///Edge data structure for the detection of negative cycles.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct WeightedEdge {
|
|
w: i32, //weight of the edge
|
|
dest: usize,
|
|
}
|
|
|
|
pub trait Edge: Clone + Copy {}
|
|
impl Edge for FlowEdge {}
|
|
impl Edge for WeightedEdge {}
|
|
|
|
///Struct for the graph structure. We do encapsulation here to be able to both
|
|
///provide user friendly Vertex enum to address vertices, and to use internally usize
|
|
///indices and Vec instead of HashMap in the graph algorithm to optimize execution speed.
|
|
pub struct Graph<E: Edge> {
|
|
vertextoid: HashMap<Vertex, usize>,
|
|
idtovertex: Vec<Vertex>,
|
|
|
|
//The graph is stored as an adjacency list
|
|
graph: Vec<Vec<E>>,
|
|
}
|
|
|
|
pub type CostFunction = HashMap<(Vertex, Vertex), i32>;
|
|
|
|
impl<E: Edge> Graph<E> {
|
|
pub fn new(vertices: &[Vertex]) -> Self {
|
|
let mut map = HashMap::<Vertex, usize>::new();
|
|
for (i, vert) in vertices.iter().enumerate() {
|
|
map.insert(*vert, i);
|
|
}
|
|
Graph::<E> {
|
|
vertextoid: map,
|
|
idtovertex: vertices.to_vec(),
|
|
graph: vec![Vec::<E>::new(); vertices.len()],
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Graph<FlowEdge> {
|
|
///This function adds a directed edge to the graph with capacity c, and the
|
|
///corresponding reversed edge with capacity 0.
|
|
pub fn add_edge(&mut self, u: Vertex, v: Vertex, c: u32) -> Result<(), String> {
|
|
if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
|
|
return Err("The graph does not contain the provided vertex.".to_string());
|
|
}
|
|
let idu = self.vertextoid[&u];
|
|
let idv = self.vertextoid[&v];
|
|
let rev_u = self.graph[idu].len();
|
|
let rev_v = self.graph[idv].len();
|
|
self.graph[idu].push(FlowEdge {
|
|
cap: c,
|
|
dest: idv,
|
|
flow: 0,
|
|
rev: rev_v,
|
|
});
|
|
self.graph[idv].push(FlowEdge {
|
|
cap: 0,
|
|
dest: idu,
|
|
flow: 0,
|
|
rev: rev_u,
|
|
});
|
|
Ok(())
|
|
}
|
|
|
|
///This function returns the list of vertices that receive a positive flow from
|
|
///vertex v.
|
|
pub fn get_positive_flow_from(&self, v: Vertex) -> Result<Vec<Vertex>, String> {
|
|
if !self.vertextoid.contains_key(&v) {
|
|
return Err("The graph does not contain the provided vertex.".to_string());
|
|
}
|
|
let idv = self.vertextoid[&v];
|
|
let mut result = Vec::<Vertex>::new();
|
|
for edge in self.graph[idv].iter() {
|
|
if edge.flow > 0 {
|
|
result.push(self.idtovertex[edge.dest]);
|
|
}
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
///This function returns the value of the flow incoming to v.
|
|
pub fn get_inflow(&self, v: Vertex) -> Result<i32, String> {
|
|
if !self.vertextoid.contains_key(&v) {
|
|
return Err("The graph does not contain the provided vertex.".to_string());
|
|
}
|
|
let idv = self.vertextoid[&v];
|
|
let mut result = 0;
|
|
for edge in self.graph[idv].iter() {
|
|
result += max(0, self.graph[edge.dest][edge.rev].flow);
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
///This function returns the value of the flow outgoing from v.
|
|
pub fn get_outflow(&self, v: Vertex) -> Result<i32, String> {
|
|
if !self.vertextoid.contains_key(&v) {
|
|
return Err("The graph does not contain the provided vertex.".to_string());
|
|
}
|
|
let idv = self.vertextoid[&v];
|
|
let mut result = 0;
|
|
for edge in self.graph[idv].iter() {
|
|
result += max(0, edge.flow);
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
///This function computes the flow total value by computing the outgoing flow
|
|
///from the source.
|
|
pub fn get_flow_value(&mut self) -> Result<i32, String> {
|
|
self.get_outflow(Vertex::Source)
|
|
}
|
|
|
|
///This function shuffles the order of the edge lists. It keeps the ids of the
|
|
///reversed edges consistent.
|
|
fn shuffle_edges(&mut self) {
|
|
let mut rng = rand::thread_rng();
|
|
for i in 0..self.graph.len() {
|
|
self.graph[i].shuffle(&mut rng);
|
|
//We need to update the ids of the reverse edges.
|
|
for j in 0..self.graph[i].len() {
|
|
let target_v = self.graph[i][j].dest;
|
|
let target_rev = self.graph[i][j].rev;
|
|
self.graph[target_v][target_rev].rev = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
///Computes an upper bound of the flow on the graph
|
|
pub fn flow_upper_bound(&self) -> u32 {
|
|
let idsource = self.vertextoid[&Vertex::Source];
|
|
let mut flow_upper_bound = 0;
|
|
for edge in self.graph[idsource].iter() {
|
|
flow_upper_bound += edge.cap;
|
|
}
|
|
flow_upper_bound
|
|
}
|
|
|
|
///This function computes the maximal flow using Dinic's algorithm. It starts with
|
|
///the flow values already present in the graph. So it is possible to add some edge to
|
|
///the graph, compute a flow, add other edges, update the flow.
|
|
pub fn compute_maximal_flow(&mut self) -> Result<(), String> {
|
|
if !self.vertextoid.contains_key(&Vertex::Source) {
|
|
return Err("The graph does not contain a source.".to_string());
|
|
}
|
|
if !self.vertextoid.contains_key(&Vertex::Sink) {
|
|
return Err("The graph does not contain a sink.".to_string());
|
|
}
|
|
|
|
let idsource = self.vertextoid[&Vertex::Source];
|
|
let idsink = self.vertextoid[&Vertex::Sink];
|
|
|
|
let nb_vertices = self.graph.len();
|
|
|
|
let flow_upper_bound = self.flow_upper_bound();
|
|
|
|
//To ensure the dispersion of the associations generated by the
|
|
//assignation, we shuffle the neighbours of the nodes. Hence,
|
|
//the vertices do not consider their neighbours in the same order.
|
|
self.shuffle_edges();
|
|
|
|
//We run Dinic's max flow algorithm
|
|
loop {
|
|
//We build the level array from Dinic's algorithm.
|
|
let mut level = vec![None; nb_vertices];
|
|
|
|
let mut fifo = VecDeque::new();
|
|
fifo.push_back((idsource, 0));
|
|
while !fifo.is_empty() {
|
|
if let Some((id, lvl)) = fifo.pop_front() {
|
|
if level[id] == None {
|
|
//it means id has not yet been reached
|
|
level[id] = Some(lvl);
|
|
for edge in self.graph[id].iter() {
|
|
if edge.cap as i32 - edge.flow > 0 {
|
|
fifo.push_back((edge.dest, lvl + 1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if level[idsink] == None {
|
|
//There is no residual flow
|
|
break;
|
|
}
|
|
//Now we run DFS respecting the level array
|
|
let mut next_nbd = vec![0; nb_vertices];
|
|
let mut lifo = VecDeque::new();
|
|
|
|
lifo.push_back((idsource, flow_upper_bound));
|
|
|
|
while let Some((id_tmp, f_tmp)) = lifo.back() {
|
|
let id = *id_tmp;
|
|
let f = *f_tmp;
|
|
if id == idsink {
|
|
//The DFS reached the sink, we can add a
|
|
//residual flow.
|
|
lifo.pop_back();
|
|
while let Some((id, _)) = lifo.pop_back() {
|
|
let nbd = next_nbd[id];
|
|
self.graph[id][nbd].flow += f as i32;
|
|
let id_rev = self.graph[id][nbd].dest;
|
|
let nbd_rev = self.graph[id][nbd].rev;
|
|
self.graph[id_rev][nbd_rev].flow -= f as i32;
|
|
}
|
|
lifo.push_back((idsource, flow_upper_bound));
|
|
continue;
|
|
}
|
|
//else we did not reach the sink
|
|
let nbd = next_nbd[id];
|
|
if nbd >= self.graph[id].len() {
|
|
//There is nothing to explore from id anymore
|
|
lifo.pop_back();
|
|
if let Some((parent, _)) = lifo.back() {
|
|
next_nbd[*parent] += 1;
|
|
}
|
|
continue;
|
|
}
|
|
//else we can try to send flow from id to its nbd
|
|
let new_flow = min(
|
|
f as i32,
|
|
self.graph[id][nbd].cap as i32 - self.graph[id][nbd].flow,
|
|
) as u32;
|
|
if new_flow == 0 {
|
|
next_nbd[id] += 1;
|
|
continue;
|
|
}
|
|
if let (Some(lvldest), Some(lvlid)) = (level[self.graph[id][nbd].dest], level[id]) {
|
|
if lvldest <= lvlid {
|
|
//We cannot send flow to nbd.
|
|
next_nbd[id] += 1;
|
|
continue;
|
|
}
|
|
}
|
|
//otherwise, we send flow to nbd.
|
|
lifo.push_back((self.graph[id][nbd].dest, new_flow));
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
///This function takes a flow, and a cost function on the edges, and tries to find an
|
|
/// equivalent flow with a better cost, by finding improving overflow cycles. It uses
|
|
/// as subroutine the Bellman Ford algorithm run up to path_length.
|
|
/// We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and
|
|
/// only one needs to be present in the cost function.
|
|
pub fn optimize_flow_with_cost(
|
|
&mut self,
|
|
cost: &CostFunction,
|
|
path_length: usize,
|
|
) -> Result<(), String> {
|
|
//We build the weighted graph g where we will look for negative cycle
|
|
let mut gf = self.build_cost_graph(cost)?;
|
|
let mut cycles = gf.list_negative_cycles(path_length);
|
|
while !cycles.is_empty() {
|
|
//we enumerate negative cycles
|
|
for c in cycles.iter() {
|
|
for i in 0..c.len() {
|
|
//We add one flow unit to the edge (u,v) of cycle c
|
|
let idu = self.vertextoid[&c[i]];
|
|
let idv = self.vertextoid[&c[(i + 1) % c.len()]];
|
|
for j in 0..self.graph[idu].len() {
|
|
//since idu appears at most once in the cycles, we enumerate every
|
|
//edge at most once.
|
|
let edge = self.graph[idu][j];
|
|
if edge.dest == idv {
|
|
self.graph[idu][j].flow += 1;
|
|
self.graph[idv][edge.rev].flow -= 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
gf = self.build_cost_graph(cost)?;
|
|
cycles = gf.list_negative_cycles(path_length);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
///Construct the weighted graph G_f from the flow and the cost function
|
|
fn build_cost_graph(&self, cost: &CostFunction) -> Result<Graph<WeightedEdge>, String> {
|
|
let mut g = Graph::<WeightedEdge>::new(&self.idtovertex);
|
|
let nb_vertices = self.idtovertex.len();
|
|
for i in 0..nb_vertices {
|
|
for edge in self.graph[i].iter() {
|
|
if edge.cap as i32 - edge.flow > 0 {
|
|
//It is possible to send overflow through this edge
|
|
let u = self.idtovertex[i];
|
|
let v = self.idtovertex[edge.dest];
|
|
if cost.contains_key(&(u, v)) {
|
|
g.add_edge(u, v, cost[&(u, v)])?;
|
|
} else if cost.contains_key(&(v, u)) {
|
|
g.add_edge(u, v, -cost[&(v, u)])?;
|
|
} else {
|
|
g.add_edge(u, v, 0)?;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Ok(g)
|
|
}
|
|
}
|
|
|
|
impl Graph<WeightedEdge> {
|
|
///This function adds a single directed weighted edge to the graph.
|
|
pub fn add_edge(&mut self, u: Vertex, v: Vertex, w: i32) -> Result<(), String> {
|
|
if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
|
|
return Err("The graph does not contain the provided vertex.".to_string());
|
|
}
|
|
let idu = self.vertextoid[&u];
|
|
let idv = self.vertextoid[&v];
|
|
self.graph[idu].push(WeightedEdge { w, dest: idv });
|
|
Ok(())
|
|
}
|
|
|
|
///This function lists the negative cycles it manages to find after path_length
|
|
///iterations of the main loop of the Bellman-Ford algorithm. For the classical
|
|
///algorithm, path_length needs to be equal to the number of vertices. However,
|
|
///for particular graph structures like in our case, the algorithm is still correct
|
|
///when path_length is the length of the longest possible simple path.
|
|
///See the formal description of the algorithm for more details.
|
|
fn list_negative_cycles(&self, path_length: usize) -> Vec<Vec<Vertex>> {
|
|
let nb_vertices = self.graph.len();
|
|
|
|
//We start with every vertex at distance 0 of some imaginary extra -1 vertex.
|
|
let mut distance = vec![0; nb_vertices];
|
|
//The prev vector collects for every vertex from where does the shortest path come
|
|
let mut prev = vec![None; nb_vertices];
|
|
|
|
for _ in 0..path_length + 1 {
|
|
for id in 0..nb_vertices {
|
|
for e in self.graph[id].iter() {
|
|
if distance[id] + e.w < distance[e.dest] {
|
|
distance[e.dest] = distance[id] + e.w;
|
|
prev[e.dest] = Some(id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//If self.graph contains a negative cycle, then at this point the graph described
|
|
//by prev (which is a directed 1-forest/functional graph)
|
|
//must contain a cycle. We list the cycles of prev.
|
|
let cycles_prev = cycles_of_1_forest(&prev);
|
|
|
|
//Remark that the cycle in prev is in the reverse order compared to the cycle
|
|
//in the graph. Thus the .rev().
|
|
return cycles_prev
|
|
.iter()
|
|
.map(|cycle| cycle.iter().rev().map(|id| self.idtovertex[*id]).collect())
|
|
.collect();
|
|
}
|
|
}
|
|
|
|
///This function returns the list of cycles of a directed 1 forest. It does not
|
|
///check for the consistency of the input.
|
|
fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> {
|
|
let mut cycles = Vec::<Vec<usize>>::new();
|
|
let mut time_of_discovery = vec![None; forest.len()];
|
|
|
|
for t in 0..forest.len() {
|
|
let mut id = t;
|
|
//while we are on a valid undiscovered node
|
|
while time_of_discovery[id] == None {
|
|
time_of_discovery[id] = Some(t);
|
|
if let Some(i) = forest[id] {
|
|
id = i;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
if forest[id] != None && time_of_discovery[id] == Some(t) {
|
|
//We discovered an id that we explored at this iteration t.
|
|
//It means we are on a cycle
|
|
let mut cy = vec![id; 1];
|
|
let mut id2 = id;
|
|
while let Some(id_next) = forest[id2] {
|
|
id2 = id_next;
|
|
if id2 != id {
|
|
cy.push(id2);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
cycles.push(cy);
|
|
}
|
|
}
|
|
cycles
|
|
}
|