forked from Deuxfleurs/garage
338 lines
9.8 KiB
Rust
338 lines
9.8 KiB
Rust
use std::path::PathBuf;
|
|
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use garage_util::config::DataDirEnum;
|
|
use garage_util::data::Hash;
|
|
use garage_util::error::{Error, OkOrMessage};
|
|
use garage_util::migrate::*;
|
|
|
|
type Idx = u16;
|
|
|
|
const DRIVE_NPART: usize = 1024;
|
|
|
|
const HASH_DRIVE_BYTES: (usize, usize) = (2, 3);
|
|
|
|
#[derive(Serialize, Deserialize, Debug, Clone)]
|
|
pub(crate) struct DataLayout {
|
|
pub(crate) data_dirs: Vec<DataDir>,
|
|
|
|
/// Primary storage location (index in data_dirs) for each partition
|
|
/// = the location where the data is supposed to be, blocks are always
|
|
/// written there (copies in other dirs may be deleted if they exist)
|
|
pub(crate) part_prim: Vec<Idx>,
|
|
/// Secondary storage locations for each partition = locations
|
|
/// where data blocks might be, we check from these dirs when reading
|
|
pub(crate) part_sec: Vec<Vec<Idx>>,
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize, Debug, Clone, Eq, PartialEq)]
|
|
pub(crate) struct DataDir {
|
|
pub(crate) path: PathBuf,
|
|
pub(crate) state: DataDirState,
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize, Debug, Clone, Copy, Eq, PartialEq)]
|
|
pub(crate) enum DataDirState {
|
|
Active { capacity: u64 },
|
|
ReadOnly,
|
|
}
|
|
|
|
impl DataLayout {
|
|
pub(crate) fn initialize(dirs: &DataDirEnum) -> Result<Self, Error> {
|
|
let data_dirs = make_data_dirs(dirs)?;
|
|
|
|
// Split partitions proportionnally to capacity for all drives
|
|
// to affect primary storage location
|
|
let total_cap = data_dirs.iter().filter_map(|x| x.capacity()).sum::<u64>();
|
|
assert!(total_cap > 0);
|
|
|
|
let mut part_prim = Vec::with_capacity(DRIVE_NPART);
|
|
let mut cum_cap = 0;
|
|
for (i, dd) in data_dirs.iter().enumerate() {
|
|
if let DataDirState::Active { capacity } = dd.state {
|
|
cum_cap += capacity;
|
|
let n_total = (cum_cap * DRIVE_NPART as u64) / total_cap;
|
|
part_prim.resize(n_total as usize, i as Idx);
|
|
}
|
|
}
|
|
assert_eq!(cum_cap, total_cap);
|
|
assert_eq!(part_prim.len(), DRIVE_NPART);
|
|
|
|
// If any of the storage locations is non-empty, it probably existed before
|
|
// this algorithm was added, so add it as a secondary storage location for all partitions
|
|
// to make sure existing files are not lost
|
|
let mut part_sec = vec![vec![]; DRIVE_NPART];
|
|
for (i, dd) in data_dirs.iter().enumerate() {
|
|
if dir_not_empty(&dd.path)? {
|
|
for (sec, prim) in part_sec.iter_mut().zip(part_prim.iter()) {
|
|
if *prim != i as Idx {
|
|
sec.push(i as Idx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(Self {
|
|
data_dirs,
|
|
part_prim,
|
|
part_sec,
|
|
})
|
|
}
|
|
|
|
pub(crate) fn update(&mut self, dirs: &DataDirEnum) -> Result<(), Error> {
|
|
// Make list of new data directories, exit if nothing changed
|
|
let data_dirs = make_data_dirs(dirs)?;
|
|
if data_dirs == self.data_dirs {
|
|
return Ok(());
|
|
}
|
|
|
|
let total_cap = data_dirs.iter().filter_map(|x| x.capacity()).sum::<u64>();
|
|
assert!(total_cap > 0);
|
|
|
|
// Compute mapping of old indices to new indices
|
|
let old2new = self
|
|
.data_dirs
|
|
.iter()
|
|
.map(|x| {
|
|
data_dirs
|
|
.iter()
|
|
.position(|y| y.path == x.path)
|
|
.map(|x| x as Idx)
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// Compute secondary location list for partitions based on existing
|
|
// folders, translating indices from old to new
|
|
let mut part_sec = self
|
|
.part_sec
|
|
.iter()
|
|
.map(|dl| {
|
|
dl.iter()
|
|
.filter_map(|old| old2new.get(*old as usize).copied().flatten())
|
|
.collect::<Vec<_>>()
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// Compute a vector that, for each data dir,
|
|
// contains the list of partitions primarily stored on that drive
|
|
let mut dir_prim = vec![vec![]; data_dirs.len()];
|
|
for (ipart, prim) in self.part_prim.iter().enumerate() {
|
|
if let Some(new) = old2new.get(*prim as usize).copied().flatten() {
|
|
dir_prim[new as usize].push(ipart);
|
|
}
|
|
}
|
|
|
|
// Compute the target number of partitions per data directory
|
|
let mut cum_cap = 0;
|
|
let mut npart_per_dir = vec![0; data_dirs.len()];
|
|
for (idir, dd) in data_dirs.iter().enumerate() {
|
|
if let DataDirState::Active { capacity } = dd.state {
|
|
let begin = (cum_cap * DRIVE_NPART as u64) / total_cap;
|
|
cum_cap += capacity;
|
|
let end = (cum_cap * DRIVE_NPART as u64) / total_cap;
|
|
npart_per_dir[idir] = (end - begin) as usize;
|
|
}
|
|
}
|
|
assert_eq!(cum_cap, total_cap);
|
|
assert_eq!(npart_per_dir.iter().sum::<usize>(), DRIVE_NPART);
|
|
|
|
// For all directories that have too many primary partitions,
|
|
// move that partition to secondary
|
|
for (idir, (parts, tgt_npart)) in dir_prim.iter_mut().zip(npart_per_dir.iter()).enumerate()
|
|
{
|
|
while parts.len() > *tgt_npart {
|
|
let part = parts.pop().unwrap();
|
|
if !part_sec[part].contains(&(idir as Idx)) {
|
|
part_sec[part].push(idir as Idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate the vector of primary partition dir index
|
|
let mut part_prim = vec![None; DRIVE_NPART];
|
|
for (idir, parts) in dir_prim.iter().enumerate() {
|
|
for part in parts.iter() {
|
|
assert!(part_prim[*part].is_none());
|
|
part_prim[*part] = Some(idir as Idx)
|
|
}
|
|
}
|
|
|
|
// Calculate a vector of unassigned partitions
|
|
let mut unassigned = part_prim
|
|
.iter()
|
|
.enumerate()
|
|
.filter(|(_, dir)| dir.is_none())
|
|
.map(|(ipart, _)| ipart)
|
|
.collect::<Vec<_>>();
|
|
|
|
// For all directories that don't have enough primary partitions,
|
|
// add partitions from unassigned
|
|
for (idir, (parts, tgt_npart)) in dir_prim.iter_mut().zip(npart_per_dir.iter()).enumerate()
|
|
{
|
|
if parts.len() < *tgt_npart {
|
|
let required = *tgt_npart - parts.len();
|
|
assert!(unassigned.len() >= required);
|
|
for _ in 0..required {
|
|
let new_part = unassigned.pop().unwrap();
|
|
part_prim[new_part] = Some(idir as Idx);
|
|
part_sec[new_part].retain(|x| *x != idir as Idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sanity checks
|
|
assert!(part_prim.iter().all(|x| x.is_some()));
|
|
assert!(unassigned.is_empty());
|
|
|
|
// Transform part_prim from vec of Option<Idx> to vec of Idx
|
|
let part_prim = part_prim
|
|
.into_iter()
|
|
.map(|x| x.unwrap())
|
|
.collect::<Vec<_>>();
|
|
assert!(part_prim.iter().all(|p| data_dirs
|
|
.get(*p as usize)
|
|
.and_then(|x| x.capacity())
|
|
.unwrap_or(0)
|
|
> 0));
|
|
|
|
// If any of the newly added storage locations is non-empty,
|
|
// it might have been removed and added again and might contain data,
|
|
// so add it as a secondary storage location for all partitions
|
|
// to make sure existing files are not lost
|
|
let mut part_sec = vec![vec![]; DRIVE_NPART];
|
|
for (i, dd) in data_dirs.iter().enumerate() {
|
|
if self.data_dirs.iter().any(|ed| ed.path == dd.path) {
|
|
continue;
|
|
}
|
|
if dir_not_empty(&dd.path)? {
|
|
for (sec, prim) in part_sec.iter_mut().zip(part_prim.iter()) {
|
|
if *prim != i as Idx && !sec.contains(&(i as Idx)) {
|
|
sec.push(i as Idx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Apply newly generated config
|
|
*self = Self {
|
|
data_dirs,
|
|
part_prim,
|
|
part_sec,
|
|
};
|
|
Ok(())
|
|
}
|
|
|
|
pub(crate) fn primary_block_dir(&self, hash: &Hash) -> PathBuf {
|
|
let ipart = self.partition_from(hash);
|
|
let idir = self.part_prim[ipart] as usize;
|
|
self.block_dir_from(hash, &self.data_dirs[idir].path)
|
|
}
|
|
|
|
pub(crate) fn secondary_block_dirs<'a>(
|
|
&'a self,
|
|
hash: &'a Hash,
|
|
) -> impl Iterator<Item = PathBuf> + 'a {
|
|
let ipart = self.partition_from(hash);
|
|
self.part_sec[ipart]
|
|
.iter()
|
|
.map(move |idir| self.block_dir_from(hash, &self.data_dirs[*idir as usize].path))
|
|
}
|
|
|
|
fn partition_from(&self, hash: &Hash) -> usize {
|
|
u16::from_be_bytes([
|
|
hash.as_slice()[HASH_DRIVE_BYTES.0],
|
|
hash.as_slice()[HASH_DRIVE_BYTES.1],
|
|
]) as usize % DRIVE_NPART
|
|
}
|
|
|
|
fn block_dir_from(&self, hash: &Hash, dir: &PathBuf) -> PathBuf {
|
|
let mut path = dir.clone();
|
|
path.push(hex::encode(&hash.as_slice()[0..1]));
|
|
path.push(hex::encode(&hash.as_slice()[1..2]));
|
|
path
|
|
}
|
|
|
|
pub(crate) fn without_secondary_locations(&self) -> Self {
|
|
Self {
|
|
data_dirs: self.data_dirs.clone(),
|
|
part_prim: self.part_prim.clone(),
|
|
part_sec: self.part_sec.iter().map(|_| vec![]).collect::<Vec<_>>(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl InitialFormat for DataLayout {
|
|
const VERSION_MARKER: &'static [u8] = b"G09bmdl";
|
|
}
|
|
|
|
impl DataDir {
|
|
pub fn capacity(&self) -> Option<u64> {
|
|
match self.state {
|
|
DataDirState::Active { capacity } => Some(capacity),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn make_data_dirs(dirs: &DataDirEnum) -> Result<Vec<DataDir>, Error> {
|
|
let mut data_dirs = vec![];
|
|
match dirs {
|
|
DataDirEnum::Single(path) => data_dirs.push(DataDir {
|
|
path: path.clone(),
|
|
state: DataDirState::Active {
|
|
capacity: 1_000_000_000, // whatever, doesn't matter
|
|
},
|
|
}),
|
|
DataDirEnum::Multiple(dirs) => {
|
|
let mut ok = false;
|
|
for dir in dirs.iter() {
|
|
let state = match &dir.capacity {
|
|
Some(cap) if dir.read_only == false => {
|
|
let capacity = cap.parse::<bytesize::ByteSize>()
|
|
.ok_or_message("invalid capacity value")?.as_u64();
|
|
if capacity == 0 {
|
|
return Err(Error::Message(format!("data directory {} should have non-zero capacity", dir.path.to_string_lossy())));
|
|
}
|
|
ok = true;
|
|
DataDirState::Active {
|
|
capacity,
|
|
}
|
|
}
|
|
None if dir.read_only == true => {
|
|
DataDirState::ReadOnly
|
|
}
|
|
_ => return Err(Error::Message(format!("data directories in data_dir should have a capacity value or be marked read_only, not the case for {}", dir.path.to_string_lossy()))),
|
|
};
|
|
data_dirs.push(DataDir {
|
|
path: dir.path.clone(),
|
|
state,
|
|
});
|
|
}
|
|
if !ok {
|
|
return Err(Error::Message(
|
|
"incorrect data_dir configuration, no primary writable directory specified"
|
|
.into(),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
Ok(data_dirs)
|
|
}
|
|
|
|
fn dir_not_empty(path: &PathBuf) -> Result<bool, Error> {
|
|
for entry in std::fs::read_dir(&path)? {
|
|
let dir = entry?;
|
|
if dir.file_type()?.is_dir()
|
|
&& dir
|
|
.file_name()
|
|
.into_string()
|
|
.ok()
|
|
.and_then(|hex| hex::decode(&hex).ok())
|
|
.is_some()
|
|
{
|
|
return Ok(true);
|
|
}
|
|
}
|
|
Ok(false)
|
|
}
|