garage/src/rpc/graph_algo.rs

422 lines
16 KiB
Rust
Raw Normal View History

//! This module deals with graph algorithms.
//! It is used in layout.rs to build the partition to node assignation.
use rand::prelude::SliceRandom;
use std::cmp::{max, min};
use std::collections::VecDeque;
use std::collections::HashMap;
//Vertex data structures used in all the graphs used in layout.rs.
//usize parameters correspond to node/zone/partitions ids.
//To understand the vertex roles below, please refer to the formal description
//of the layout computation algorithm.
#[derive(Clone,Copy,Debug, PartialEq, Eq, Hash)]
pub enum Vertex{
Source,
Pup(usize), //The vertex p+ of partition p
Pdown(usize), //The vertex p- of partition p
PZ(usize,usize), //The vertex corresponding to x_(partition p, zone z)
N(usize), //The vertex corresponding to node n
Sink
}
//Edge data structure for the flow algorithm.
//The graph is stored as an adjacency list
#[derive(Clone, Copy, Debug)]
pub struct FlowEdge {
cap: u32, //flow maximal capacity of the edge
flow: i32, //flow value on the edge
dest: usize, //destination vertex id
rev: usize, //index of the reversed edge (v, self) in the edge list of vertex v
}
//Edge data structure for the detection of negative cycles.
//The graph is stored as a list of edges (u,v).
#[derive(Clone, Copy, Debug)]
pub struct WeightedEdge {
w: i32, //weight of the edge
dest: usize,
}
pub trait Edge: Clone + Copy {}
impl Edge for FlowEdge {}
impl Edge for WeightedEdge {}
//Struct for the graph structure. We do encapsulation here to be able to both
//provide user friendly Vertex enum to address vertices, and to use usize indices
//and Vec instead of HashMap in the graph algorithm to optimize execution speed.
pub struct Graph<E : Edge>{
vertextoid : HashMap<Vertex , usize>,
idtovertex : Vec<Vertex>,
graph : Vec< Vec<E> >
}
pub type CostFunction = HashMap<(Vertex,Vertex), i32>;
impl<E : Edge> Graph<E>{
pub fn new(vertices : &[Vertex]) -> Self {
let mut map = HashMap::<Vertex, usize>::new();
2022-10-06 14:53:57 +02:00
for (i, vert) in vertices.iter().enumerate(){
map.insert(*vert , i);
}
2022-10-06 14:53:57 +02:00
Graph::<E> {
vertextoid : map,
idtovertex: vertices.to_vec(),
graph : vec![Vec::< E >::new(); vertices.len() ]
}
}
}
impl Graph<FlowEdge>{
//This function adds a directed edge to the graph with capacity c, and the
//corresponding reversed edge with capacity 0.
pub fn add_edge(&mut self, u: Vertex, v:Vertex, c: u32) -> Result<(), String>{
if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
return Err("The graph does not contain the provided vertex.".to_string());
}
let idu = self.vertextoid[&u];
let idv = self.vertextoid[&v];
let rev_u = self.graph[idu].len();
let rev_v = self.graph[idv].len();
self.graph[idu].push( FlowEdge{cap: c , dest: idv , flow: 0, rev : rev_v} );
self.graph[idv].push( FlowEdge{cap: 0 , dest: idu , flow: 0, rev : rev_u} );
Ok(())
}
//This function returns the list of vertices that receive a positive flow from
//vertex v.
pub fn get_positive_flow_from(&self , v:Vertex) -> Result< Vec<Vertex> , String>{
if !self.vertextoid.contains_key(&v) {
return Err("The graph does not contain the provided vertex.".to_string());
}
let idv = self.vertextoid[&v];
let mut result = Vec::<Vertex>::new();
for edge in self.graph[idv].iter() {
if edge.flow > 0 {
result.push(self.idtovertex[edge.dest]);
}
}
2022-10-06 14:53:57 +02:00
Ok(result)
}
//This function returns the value of the flow incoming to v.
pub fn get_inflow(&self , v:Vertex) -> Result< i32 , String>{
if !self.vertextoid.contains_key(&v) {
return Err("The graph does not contain the provided vertex.".to_string());
}
let idv = self.vertextoid[&v];
let mut result = 0;
for edge in self.graph[idv].iter() {
result += max(0,self.graph[edge.dest][edge.rev].flow);
}
2022-10-06 14:53:57 +02:00
Ok(result)
}
//This function returns the value of the flow outgoing from v.
pub fn get_outflow(&self , v:Vertex) -> Result< i32 , String>{
if !self.vertextoid.contains_key(&v) {
return Err("The graph does not contain the provided vertex.".to_string());
}
let idv = self.vertextoid[&v];
let mut result = 0;
for edge in self.graph[idv].iter() {
result += max(0,edge.flow);
}
2022-10-06 14:53:57 +02:00
Ok(result)
}
//This function computes the flow total value by computing the outgoing flow
//from the source.
pub fn get_flow_value(&mut self) -> Result<i32, String> {
2022-10-06 14:53:57 +02:00
self.get_outflow(Vertex::Source)
}
//This function shuffles the order of the edge lists. It keeps the ids of the
//reversed edges consistent.
fn shuffle_edges(&mut self) {
let mut rng = rand::thread_rng();
for i in 0..self.graph.len() {
self.graph[i].shuffle(&mut rng);
//We need to update the ids of the reverse edges.
for j in 0..self.graph[i].len() {
let target_v = self.graph[i][j].dest;
let target_rev = self.graph[i][j].rev;
self.graph[target_v][target_rev].rev = j;
}
}
}
//Computes an upper bound of the flow n the graph
pub fn flow_upper_bound(&self) -> u32{
let idsource = self.vertextoid[&Vertex::Source];
let mut flow_upper_bound = 0;
for edge in self.graph[idsource].iter(){
flow_upper_bound += edge.cap;
}
2022-10-06 14:53:57 +02:00
flow_upper_bound
}
//This function computes the maximal flow using Dinic's algorithm. It starts with
//the flow values already present in the graph. So it is possible to add some edge to
//the graph, compute a flow, add other edges, update the flow.
pub fn compute_maximal_flow(&mut self) -> Result<(), String> {
if !self.vertextoid.contains_key(&Vertex::Source) {
return Err("The graph does not contain a source.".to_string());
}
if !self.vertextoid.contains_key(&Vertex::Sink) {
return Err("The graph does not contain a sink.".to_string());
}
let idsource = self.vertextoid[&Vertex::Source];
let idsink = self.vertextoid[&Vertex::Sink];
let nb_vertices = self.graph.len();
let flow_upper_bound = self.flow_upper_bound();
//To ensure the dispersion of the associations generated by the
//assignation, we shuffle the neighbours of the nodes. Hence,
//the vertices do not consider their neighbours in the same order.
self.shuffle_edges();
//We run Dinic's max flow algorithm
loop {
//We build the level array from Dinic's algorithm.
let mut level = vec![None; nb_vertices];
let mut fifo = VecDeque::new();
fifo.push_back((idsource, 0));
while !fifo.is_empty() {
if let Some((id, lvl)) = fifo.pop_front() {
if level[id] == None { //it means id has not yet been reached
level[id] = Some(lvl);
for edge in self.graph[id].iter() {
if edge.cap as i32 - edge.flow > 0 {
fifo.push_back((edge.dest, lvl + 1));
}
}
}
}
}
if level[idsink] == None {
//There is no residual flow
break;
}
//Now we run DFS respecting the level array
let mut next_nbd = vec![0; nb_vertices];
let mut lifo = VecDeque::new();
lifo.push_back((idsource, flow_upper_bound));
while let Some((id_tmp, f_tmp)) = lifo.back() {
let id = *id_tmp;
let f = *f_tmp;
if id == idsink {
//The DFS reached the sink, we can add a
//residual flow.
lifo.pop_back();
while let Some((id, _)) = lifo.pop_back() {
let nbd = next_nbd[id];
self.graph[id][nbd].flow += f as i32;
let id_rev = self.graph[id][nbd].dest;
let nbd_rev = self.graph[id][nbd].rev;
self.graph[id_rev][nbd_rev].flow -= f as i32;
}
lifo.push_back((idsource, flow_upper_bound));
continue;
}
//else we did not reach the sink
let nbd = next_nbd[id];
if nbd >= self.graph[id].len() {
//There is nothing to explore from id anymore
lifo.pop_back();
if let Some((parent, _)) = lifo.back() {
next_nbd[*parent] += 1;
}
continue;
}
//else we can try to send flow from id to its nbd
let new_flow = min(f as i32, self.graph[id][nbd].cap as i32 - self.graph[id][nbd].flow) as u32;
if new_flow == 0 {
next_nbd[id] += 1;
continue;
}
if let (Some(lvldest), Some(lvlid)) =
(level[self.graph[id][nbd].dest], level[id]){
if lvldest <= lvlid {
//We cannot send flow to nbd.
next_nbd[id] += 1;
continue;
}
}
//otherwise, we send flow to nbd.
lifo.push_back((self.graph[id][nbd].dest, new_flow));
}
}
Ok(())
}
//This function takes a flow, and a cost function on the edges, and tries to find an
// equivalent flow with a better cost, by finding improving overflow cycles. It uses
// as subroutine the Bellman Ford algorithm run up to path_length.
// We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and only
// one needs to be present in the cost function.
pub fn optimize_flow_with_cost(&mut self , cost: &CostFunction, path_length: usize )
-> Result<(),String>{
//We build the weighted graph g where we will look for negative cycle
let mut gf = self.build_cost_graph(cost)?;
let mut cycles = gf.list_negative_cycles(path_length);
2022-10-06 14:53:57 +02:00
while !cycles.is_empty() {
//we enumerate negative cycles
for c in cycles.iter(){
for i in 0..c.len(){
//We add one flow unit to the edge (u,v) of cycle c
let idu = self.vertextoid[&c[i]];
let idv = self.vertextoid[&c[(i+1)%c.len()]];
for j in 0..self.graph[idu].len(){
//since idu appears at most once in the cycles, we enumerate every
//edge at most once.
let edge = self.graph[idu][j];
if edge.dest == idv {
self.graph[idu][j].flow += 1;
self.graph[idv][edge.rev].flow -=1;
break;
}
}
}
}
gf = self.build_cost_graph(cost)?;
cycles = gf.list_negative_cycles(path_length);
}
2022-10-06 14:53:57 +02:00
Ok(())
}
//Construct the weighted graph G_f from the flow and the cost function
fn build_cost_graph(&self , cost: &CostFunction) -> Result<Graph<WeightedEdge>,String>{
let mut g = Graph::<WeightedEdge>::new(&self.idtovertex);
let nb_vertices = self.idtovertex.len();
for i in 0..nb_vertices {
for edge in self.graph[i].iter() {
if edge.cap as i32 -edge.flow > 0 {
//It is possible to send overflow through this edge
let u = self.idtovertex[i];
let v = self.idtovertex[edge.dest];
if cost.contains_key(&(u,v)) {
g.add_edge(u,v, cost[&(u,v)])?;
}
else if cost.contains_key(&(v,u)) {
g.add_edge(u,v, -cost[&(v,u)])?;
}
else{
g.add_edge(u,v, 0)?;
}
}
}
}
2022-10-06 14:53:57 +02:00
Ok(g)
}
}
impl Graph<WeightedEdge>{
//This function adds a single directed weighted edge to the graph.
pub fn add_edge(&mut self, u: Vertex, v:Vertex, w: i32) -> Result<(), String>{
if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
return Err("The graph does not contain the provided vertex.".to_string());
}
let idu = self.vertextoid[&u];
let idv = self.vertextoid[&v];
2022-10-06 14:53:57 +02:00
self.graph[idu].push( WeightedEdge{ w , dest: idv} );
Ok(())
}
//This function lists the negative cycles it manages to find after path_length
//iterations of the main loop of the Bellman-Ford algorithm. For the classical
//algorithm, path_length needs to be equal to the number of vertices. However,
//for particular graph structures like our case, the algorithm is still correct
//when path_length is the length of the longest possible simple path.
//See the formal description of the algorithm for more details.
fn list_negative_cycles(&self, path_length: usize) -> Vec< Vec<Vertex> > {
let nb_vertices = self.graph.len();
//We start with every vertex at distance 0 of some imaginary extra -1 vertex.
let mut distance = vec![0 ; nb_vertices];
//The prev vector collects for every vertex from where does the shortest path come
let mut prev = vec![None; nb_vertices];
for _ in 0..path_length +1 {
for id in 0..nb_vertices{
for e in self.graph[id].iter(){
if distance[id] + e.w < distance[e.dest] {
distance[e.dest] = distance[id] + e.w;
prev[e.dest] = Some(id);
}
}
}
}
//If self.graph contains a negative cycle, then at this point the graph described
//by prev (which is a directed 1-forest/functional graph)
//must contain a cycle. We list the cycles of prev.
let cycles_prev = cycles_of_1_forest(&prev);
//Remark that the cycle in prev is in the reverse order compared to the cycle
//in the graph. Thus the .rev().
return cycles_prev.iter().map(|cycle| cycle.iter().rev().map(
|id| self.idtovertex[*id]
).collect() ).collect();
}
}
//This function returns the list of cycles of a directed 1 forest. It does not
//check for the consistency of the input.
fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> {
let mut cycles = Vec::<Vec::<usize>>::new();
let mut time_of_discovery = vec![None; forest.len()];
for t in 0..forest.len(){
let mut id = t;
//while we are on a valid undiscovered node
while time_of_discovery[id] == None {
time_of_discovery[id] = Some(t);
if let Some(i) = forest[id] {
id = i;
}
else{
break;
}
}
if forest[id] != None && time_of_discovery[id] == Some(t) {
//We discovered an id that we explored at this iteration t.
//It means we are on a cycle
let mut cy = vec![id; 1];
let mut id2 = id;
while let Some(id_next) = forest[id2] {
id2 = id_next;
if id2 != id {
cy.push(id2);
}
else {
break;
}
}
cycles.push(cy);
}
}
2022-10-06 14:53:57 +02:00
cycles
}