diff --git a/doc/optimal_layout_report/optimal_layout.pdf b/doc/optimal_layout_report/optimal_layout.pdf index c85803e89..0af341619 100644 Binary files a/doc/optimal_layout_report/optimal_layout.pdf and b/doc/optimal_layout_report/optimal_layout.pdf differ diff --git a/doc/optimal_layout_report/optimal_layout.tex b/doc/optimal_layout_report/optimal_layout.tex index b2898adb4..005e7b503 100644 --- a/doc/optimal_layout_report/optimal_layout.tex +++ b/doc/optimal_layout_report/optimal_layout.tex @@ -100,13 +100,12 @@ Again, we will represent an assignment $\alpha$ as a flow in a specific graph $G Given some candidate size value $s$, we describe the oriented weighted graph $G=(V,E)$ with vertex set $V$ arc set $E$. The set of vertices $V$ contains the source $\mathbf{s}$, the sink $\mathbf{t}$, vertices -$\mathbf{p, p^+, p^-}$ for every partition $p$, vertices $\mathbf{x}_{p,z}$ for every partition $p$ and zone $z$, and vertices $\mathbf{n}$ for every node $n$. +$\mathbf{p^+, p^-}$ for every partition $p$, vertices $\mathbf{x}_{p,z}$ for every partition $p$ and zone $z$, and vertices $\mathbf{n}$ for every node $n$. The set of arcs $E$ contains: \begin{itemize} - \item ($\mathbf{s}$,$\mathbf{p}$, $\rho_\mathbf{N}$) for every partition $p$; - \item ($\mathbf{p}$,$\mathbf{p}^+$, $\rho_\mathbf{Z}$) for every partition $p$; - \item ($\mathbf{p}$,$\mathbf{p}^+$, $\rho_\mathbf{N}-\rho_\mathbf{Z}$) for every partition $p$; + \item ($\mathbf{s}$,$\mathbf{p}^+$, $\rho_\mathbf{Z}$) for every partition $p$; + \item ($\mathbf{s}$,$\mathbf{p}^-$, $\rho_\mathbf{N}-\rho_\mathbf{Z}$) for every partition $p$; \item ($\mathbf{p}^+$,$\mathbf{x}_{p,z}$, 1) for every partition $p$ and zone $z$; \item ($\mathbf{p}^-$,$\mathbf{x}_{p,z}$, $\rho_\mathbf{N}-\rho_\mathbf{Z}$) for every partition $p$ and zone $z$; \item ($\mathbf{x}_{p,z}$,$\mathbf{n}$, 1) for every partition $p$, zone $z$ and node $n\in z$; @@ -119,7 +118,7 @@ In the following complexity calculations, we will use the number of vertices and An assignment $\alpha$ is realizable with partition size $s$ and the redundancy constraints $(\rho_\mathbf{N},\rho_\mathbf{Z})$ if and only if there exists a maximal flow function $f$ in $G$ with total flow $\rho_\mathbf{N}P$, such that the arcs ($\mathbf{x}_{p,z}$,$\mathbf{n}$, 1) used are exactly those for which $p$ is associated to $n$ in $\alpha$. \end{proposition} \begin{proof} - Given such flow $f$, we can reconstruct a candidate $\alpha$. In $f$, the flow passing through every $\mathbf{p}$ is $\rho_\mathbf{N}$, and since the outgoing capacity of every $\mathbf{x}_{p,z}$ is 1, every partition is associated to $\rho_\mathbf{N}$ distinct nodes. The fraction $\rho_\mathbf{Z}$ of the flow passing through every $\mathbf{p^+}$ must be spread over as many distinct zones as every arc outgoing from $\mathbf{p^+}$ has capacity 1. So the reconstructed $\alpha$ verifies the redundancy constraints. For every node $n$, the flow between $\mathbf{n}$ and $\mathbf{t}$ corresponds to the number of partitions associated to $n$. By construction of $f$, this does not exceed $\lfloor c_n/s \rfloor$. We assumed that the partition size is $s$, hence this association does not exceed the storage capacity of the nodes. + Given such flow $f$, we can reconstruct a candidate $\alpha$. In $f$, the flow passing through $\mathbf{p^+}$ and $\mathbf{p^-}$ is $\rho_\mathbf{N}$, and since the outgoing capacity of every $\mathbf{x}_{p,z}$ is 1, every partition is associated to $\rho_\mathbf{N}$ distinct nodes. The fraction $\rho_\mathbf{Z}$ of the flow passing through every $\mathbf{p^+}$ must be spread over as many distinct zones as every arc outgoing from $\mathbf{p^+}$ has capacity 1. So the reconstructed $\alpha$ verifies the redundancy constraints. For every node $n$, the flow between $\mathbf{n}$ and $\mathbf{t}$ corresponds to the number of partitions associated to $n$. By construction of $f$, this does not exceed $\lfloor c_n/s \rfloor$. We assumed that the partition size is $s$, hence this association does not exceed the storage capacity of the nodes. In the other direction, given an assignment $\alpha$, one can similarly check that the facts that $\alpha$ respects the redundancy constraints, and the storage capacities of the nodes, are necessary condition to construct a maximal flow function $f$. \end{proof} @@ -272,16 +271,16 @@ The distance $d(f,f')$ is bounded by the maximal number of differences in the as The detection of negative cycle is done with the Bellman-Ford algorithm, whose complexity should normally be $O(\#E\#V)$. In our case, it amounts to $O(P^2ZN)$. Multiplied by the complexity of the outer loop, it amounts to $O(P^3ZN)$ which is a lot when the number of partitions and nodes starts to be large. To avoid that, we adapt the Bellman-Ford algorithm. -The Bellman-Ford algorithm runs $\#V$ iterations of an outer loop, and an inner loop over $E$. The idea is to compute the shortest paths from a source vertex $v$ to all other vertices. After $k$ iterations of the outer loop, the algorithm has computed all shortest path of length at most $k$. All shortest path have length at most $\#V$, so if there is an update in the last iteration of the loop, it means that there is a negative cycle in the graph. The observation that will enable us to improve the complexity is the following: +The Bellman-Ford algorithm runs $\#V$ iterations of an outer loop, and an inner loop over $E$. The idea is to compute the shortest paths from a source vertex $v$ to all other vertices. After $k$ iterations of the outer loop, the algorithm has computed all shortest path of length at most $k$. All simple paths have length at most $\#V-1$, so if there is an update in the last iteration of the loop, it means that there is a negative cycle in the graph. The observation that will enable us to improve the complexity is the following: \begin{proposition} - In the graph $G_f$ (and $G$), all simple paths and cycles have a length at most $6N$. + In the graph $G_f$ (and $G$), all simple paths have a length at most $4N$. \end{proposition} \begin{proof} - Since $f$ is a maximal flow, there is no outgoing edge from $\mathbf{s}$ in $G_f$. One can thus check than any simple path of length 6 must contain at least to node of type $\mathbf{n}$. Hence on a cycle, at most 6 arcs separate two successive nodes of type $\mathbf{n}$. + Since $f$ is a maximal flow, there is no outgoing edge from $\mathbf{s}$ in $G_f$. One can thus check than any simple path of length 4 must contain at least two node of type $\mathbf{n}$. Hence on a path, at most 4 arcs separate two successive nodes of type $\mathbf{n}$. \end{proof} -Thus, in the absence of negative cycles, shortest paths in $G_f$ have length at most $6N$. So we can do only $6N$ iterations of the outer loop in Bellman-Ford algorithm. This makes the complexity of the detection of one set of cycle to be $O(N\#E) = O(N^2 P)$. +Thus, in the absence of negative cycles, shortest paths in $G_f$ have length at most $4N$. So we can do only $4N+1$ iterations of the outer loop in Bellman-Ford algorithm. This makes the complexity of the detection of one set of cycle to be $O(N\#E) = O(N^2 P)$. With this improvement, the complexity of the whole algorithm is, in the worst case, $O(N^2P^2)$. However, since we detect several cycles at once and we start with a flow that might be close to the previous one, the number of iterations of the outer loop might be smaller in practice. diff --git a/src/rpc/graph_algo.rs b/src/rpc/graph_algo.rs new file mode 100644 index 000000000..1a809b809 --- /dev/null +++ b/src/rpc/graph_algo.rs @@ -0,0 +1,440 @@ + +//! This module deals with graph algorithms. +//! It is used in layout.rs to build the partition to node assignation. + +use rand::prelude::SliceRandom; +use std::cmp::{max, min}; +use std::collections::VecDeque; +use std::collections::HashMap; + +//Vertex data structures used in all the graphs used in layout.rs. +//usize parameters correspond to node/zone/partitions ids. +//To understand the vertex roles below, please refer to the formal description +//of the layout computation algorithm. +#[derive(Clone,Copy,Debug, PartialEq, Eq, Hash)] +pub enum Vertex{ + Source, + Pup(usize), //The vertex p+ of partition p + Pdown(usize), //The vertex p- of partition p + PZ(usize,usize), //The vertex corresponding to x_(partition p, zone z) + N(usize), //The vertex corresponding to node n + Sink +} + + +//Edge data structure for the flow algorithm. +//The graph is stored as an adjacency list +#[derive(Clone, Copy, Debug)] +pub struct FlowEdge { + cap: u32, //flow maximal capacity of the edge + flow: i32, //flow value on the edge + dest: usize, //destination vertex id + rev: usize, //index of the reversed edge (v, self) in the edge list of vertex v +} + +//Edge data structure for the detection of negative cycles. +//The graph is stored as a list of edges (u,v). +#[derive(Clone, Copy, Debug)] +pub struct WeightedEdge { + w: i32, //weight of the edge + dest: usize, +} + +pub trait Edge: Clone + Copy {} +impl Edge for FlowEdge {} +impl Edge for WeightedEdge {} + +//Struct for the graph structure. We do encapsulation here to be able to both +//provide user friendly Vertex enum to address vertices, and to use usize indices +//and Vec instead of HashMap in the graph algorithm to optimize execution speed. +pub struct Graph{ + vertextoid : HashMap, + idtovertex : Vec, + + graph : Vec< Vec > +} + +pub type CostFunction = HashMap<(Vertex,Vertex), i32>; + +impl Graph{ + pub fn new(vertices : &[Vertex]) -> Self { + let mut map = HashMap::::new(); + for i in 0..vertices.len() { + map.insert(vertices[i] , i); + } + return Graph:: { + vertextoid : map, + idtovertex: vertices.to_vec(), + graph : vec![Vec::< E >::new(); vertices.len() ] + } + } +} + +impl Graph{ + //This function adds a directed edge to the graph with capacity c, and the + //corresponding reversed edge with capacity 0. + pub fn add_edge(&mut self, u: Vertex, v:Vertex, c: u32) -> Result<(), String>{ + if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) { + return Err("The graph does not contain the provided vertex.".to_string()); + } + let idu = self.vertextoid[&u]; + let idv = self.vertextoid[&v]; + let rev_u = self.graph[idu].len(); + let rev_v = self.graph[idv].len(); + self.graph[idu].push( FlowEdge{cap: c , dest: idv , flow: 0, rev : rev_v} ); + self.graph[idv].push( FlowEdge{cap: 0 , dest: idu , flow: 0, rev : rev_u} ); + Ok(()) + } + + //This function returns the list of vertices that receive a positive flow from + //vertex v. + pub fn get_positive_flow_from(&self , v:Vertex) -> Result< Vec , String>{ + if !self.vertextoid.contains_key(&v) { + return Err("The graph does not contain the provided vertex.".to_string()); + } + let idv = self.vertextoid[&v]; + let mut result = Vec::::new(); + for edge in self.graph[idv].iter() { + if edge.flow > 0 { + result.push(self.idtovertex[edge.dest]); + } + } + return Ok(result); + } + + + //This function returns the value of the flow incoming to v. + pub fn get_inflow(&self , v:Vertex) -> Result< i32 , String>{ + if !self.vertextoid.contains_key(&v) { + return Err("The graph does not contain the provided vertex.".to_string()); + } + let idv = self.vertextoid[&v]; + let mut result = 0; + for edge in self.graph[idv].iter() { + result += max(0,self.graph[edge.dest][edge.rev].flow); + } + return Ok(result); + } + + //This function returns the value of the flow outgoing from v. + pub fn get_outflow(&self , v:Vertex) -> Result< i32 , String>{ + if !self.vertextoid.contains_key(&v) { + return Err("The graph does not contain the provided vertex.".to_string()); + } + let idv = self.vertextoid[&v]; + let mut result = 0; + for edge in self.graph[idv].iter() { + result += max(0,edge.flow); + } + return Ok(result); + } + + //This function computes the flow total value by computing the outgoing flow + //from the source. + pub fn get_flow_value(&mut self) -> Result { + return self.get_outflow(Vertex::Source); + } + + //This function shuffles the order of the edge lists. It keeps the ids of the + //reversed edges consistent. + fn shuffle_edges(&mut self) { + let mut rng = rand::thread_rng(); + for i in 0..self.graph.len() { + self.graph[i].shuffle(&mut rng); + //We need to update the ids of the reverse edges. + for j in 0..self.graph[i].len() { + let target_v = self.graph[i][j].dest; + let target_rev = self.graph[i][j].rev; + self.graph[target_v][target_rev].rev = j; + } + } + } + + //Computes an upper bound of the flow n the graph + pub fn flow_upper_bound(&self) -> u32{ + let idsource = self.vertextoid[&Vertex::Source]; + let mut flow_upper_bound = 0; + for edge in self.graph[idsource].iter(){ + flow_upper_bound += edge.cap; + } + return flow_upper_bound; + } + + //This function computes the maximal flow using Dinic's algorithm. It starts with + //the flow values already present in the graph. So it is possible to add some edge to + //the graph, compute a flow, add other edges, update the flow. + pub fn compute_maximal_flow(&mut self) -> Result<(), String> { + if !self.vertextoid.contains_key(&Vertex::Source) { + return Err("The graph does not contain a source.".to_string()); + } + if !self.vertextoid.contains_key(&Vertex::Sink) { + return Err("The graph does not contain a sink.".to_string()); + } + + let idsource = self.vertextoid[&Vertex::Source]; + let idsink = self.vertextoid[&Vertex::Sink]; + + let nb_vertices = self.graph.len(); + + let flow_upper_bound = self.flow_upper_bound(); + + //To ensure the dispersion of the associations generated by the + //assignation, we shuffle the neighbours of the nodes. Hence, + //the vertices do not consider their neighbours in the same order. + self.shuffle_edges(); + + //We run Dinic's max flow algorithm + loop { + //We build the level array from Dinic's algorithm. + let mut level = vec![None; nb_vertices]; + + let mut fifo = VecDeque::new(); + fifo.push_back((idsource, 0)); + while !fifo.is_empty() { + if let Some((id, lvl)) = fifo.pop_front() { + if level[id] == None { //it means id has not yet been reached + level[id] = Some(lvl); + for edge in self.graph[id].iter() { + if edge.cap as i32 - edge.flow > 0 { + fifo.push_back((edge.dest, lvl + 1)); + } + } + } + } + } + if level[idsink] == None { + //There is no residual flow + break; + } + + //Now we run DFS respecting the level array + let mut next_nbd = vec![0; nb_vertices]; + let mut lifo = VecDeque::new(); + + lifo.push_back((idsource, flow_upper_bound)); + + while let Some((id_tmp, f_tmp)) = lifo.back() { + let id = *id_tmp; + let f = *f_tmp; + if id == idsink { + //The DFS reached the sink, we can add a + //residual flow. + lifo.pop_back(); + while !lifo.is_empty() { + if let Some((id, _)) = lifo.pop_back() { + let nbd = next_nbd[id]; + self.graph[id][nbd].flow += f as i32; + let id_rev = self.graph[id][nbd].dest; + let nbd_rev = self.graph[id][nbd].rev; + self.graph[id_rev][nbd_rev].flow -= f as i32; + } + } + lifo.push_back((idsource, flow_upper_bound)); + continue; + } + //else we did not reach the sink + let nbd = next_nbd[id]; + if nbd >= self.graph[id].len() { + //There is nothing to explore from id anymore + lifo.pop_back(); + if let Some((parent, _)) = lifo.back() { + next_nbd[*parent] += 1; + } + continue; + } + //else we can try to send flow from id to its nbd + let new_flow = min(f, self.graph[id][nbd].cap - self.graph[id][nbd].flow as u32 ); + if let (Some(lvldest), Some(lvlid)) = + (level[self.graph[id][nbd].dest], level[id]){ + if lvldest <= lvlid || new_flow == 0 { + //We cannot send flow to nbd. + next_nbd[id] += 1; + continue; + } + } + //otherwise, we send flow to nbd. + lifo.push_back((self.graph[id][nbd].dest, new_flow)); + } + } + Ok(()) + } + + //This function takes a flow, and a cost function on the edges, and tries to find an + // equivalent flow with a better cost, by finding improving overflow cycles. It uses + // as subroutine the Bellman Ford algorithm run up to path_length. + // We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and only + // one needs to be present in the cost function. + pub fn optimize_flow_with_cost(&mut self , cost: &CostFunction, path_length: usize ) + -> Result<(),String>{ + + //We build the weighted graph g where we will look for negative cycle + let mut gf = self.build_cost_graph(cost)?; + let mut cycles = gf.list_negative_cycles(path_length); + while cycles.len() > 0 { + //we enumerate negative cycles + for c in cycles.iter(){ + for i in 0..c.len(){ + //We add one flow unit to the edge (u,v) of cycle c + let idu = self.vertextoid[&c[i]]; + let idv = self.vertextoid[&c[(i+1)%c.len()]]; + for j in 0..self.graph[idu].len(){ + //since idu appears at most once in the cycles, we enumerate every + //edge at most once. + let edge = self.graph[idu][j]; + if edge.dest == idv { + self.graph[idu][j].flow += 1; + self.graph[idv][edge.rev].flow -=1; + break; + } + } + } + } + + gf = self.build_cost_graph(cost)?; + cycles = gf.list_negative_cycles(path_length); + } + return Ok(()); + } + + //Construct the weighted graph G_f from the flow and the cost function + fn build_cost_graph(&self , cost: &CostFunction) -> Result,String>{ + + let mut g = Graph::::new(&self.idtovertex); + let nb_vertices = self.idtovertex.len(); + for i in 0..nb_vertices { + for edge in self.graph[i].iter() { + if edge.cap as i32 -edge.flow > 0 { + //It is possible to send overflow through this edge + let u = self.idtovertex[i]; + let v = self.idtovertex[edge.dest]; + if cost.contains_key(&(u,v)) { + g.add_edge(u,v, cost[&(u,v)])?; + } + else if cost.contains_key(&(v,u)) { + g.add_edge(u,v, -cost[&(v,u)])?; + } + else{ + g.add_edge(u,v, 0)?; + } + } + } + } + return Ok(g); + + } + + +} + +impl Graph{ + //This function adds a single directed weighted edge to the graph. + pub fn add_edge(&mut self, u: Vertex, v:Vertex, w: i32) -> Result<(), String>{ + if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) { + return Err("The graph does not contain the provided vertex.".to_string()); + } + let idu = self.vertextoid[&u]; + let idv = self.vertextoid[&v]; + self.graph[idu].push( WeightedEdge{w: w , dest: idv} ); + Ok(()) + } + + //This function lists the negative cycles it manages to find after path_length + //iterations of the main loop of the Bellman-Ford algorithm. For the classical + //algorithm, path_length needs to be equal to the number of vertices. However, + //for particular graph structures like our case, the algorithm is still correct + //when path_length is the length of the longest possible simple path. + //See the formal description of the algorithm for more details. + fn list_negative_cycles(&self, path_length: usize) -> Vec< Vec > { + + let nb_vertices = self.graph.len(); + + //We start with every vertex at distance 0 of some imaginary extra -1 vertex. + let mut distance = vec![0 ; nb_vertices]; + //The prev vector collects for every vertex from where does the shortest path come + let mut prev = vec![None; nb_vertices]; + + for _ in 0..path_length +1 { + for id in 0..nb_vertices{ + for e in self.graph[id].iter(){ + if distance[id] + e.w < distance[e.dest] { + distance[e.dest] = distance[id] + e.w; + prev[e.dest] = Some(id); + } + } + } + } + + //If self.graph contains a negative cycle, then at this point the graph described + //by prev (which is a directed 1-forest/functional graph) + //must contain a cycle. We list the cycles of prev. + let cycles_prev = cycles_of_1_forest(&prev); + + //Remark that the cycle in prev is in the reverse order compared to the cycle + //in the graph. Thus the .rev(). + return cycles_prev.iter().map(|cycle| cycle.iter().rev().map( + |id| self.idtovertex[*id] + ).collect() ).collect(); + } + +} + + +//This function returns the list of cycles of a directed 1 forest. It does not +//check for the consistency of the input. +fn cycles_of_1_forest(forest: &[Option]) -> Vec> { + let mut cycles = Vec::>::new(); + let mut time_of_discovery = vec![None; forest.len()]; + + for t in 0..forest.len(){ + let mut id = t; + //while we are on a valid undiscovered node + while time_of_discovery[id] == None { + time_of_discovery[id] = Some(t); + if let Some(i) = forest[id] { + id = i; + } + else{ + break; + } + } + if forest[id] != None && time_of_discovery[id] == Some(t) { + //We discovered an id that we explored at this iteration t. + //It means we are on a cycle + let mut cy = vec![id; 1]; + let id2 = id; + while let Some(id2) = forest[id2] { + if id2 != id { + cy.push(id2); + } + else { + break; + } + } + cycles.push(cy); + } + } + return cycles; +} + + +//==================================================================================== +//==================================================================================== +//==================================================================================== +//==================================================================================== +//==================================================================================== +//==================================================================================== + + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn test_flow() { + let left_vec = vec![3; 8]; + let right_vec = vec![0, 4, 8, 4, 8]; + //There are asserts in the function that computes the flow + } + + //maybe add tests relative to the matching optilization ? +} diff --git a/src/rpc/layout.rs b/src/rpc/layout.rs index 40f973689..ff60ce988 100644 --- a/src/rpc/layout.rs +++ b/src/rpc/layout.rs @@ -1,17 +1,23 @@ -use std::cmp::min; use std::cmp::Ordering; use std::collections::HashMap; +use std::collections::HashSet; + +use hex::ToHex; use serde::{Deserialize, Serialize}; -use garage_util::bipartite::*; use garage_util::crdt::{AutoCrdt, Crdt, LwwMap}; use garage_util::data::*; -use rand::prelude::SliceRandom; +use crate::graph_algo::*; use crate::ring::*; +use std::convert::TryInto; + +//The Message type will be used to collect information on the algorithm. +type Message = Vec; + /// The layout of the cluster, i.e. the list of roles /// which are assigned to each cluster node #[derive(Clone, Debug, Serialize, Deserialize)] @@ -19,12 +25,21 @@ pub struct ClusterLayout { pub version: u64, pub replication_factor: usize, + #[serde(default="default_one")] + pub zone_redundancy: usize, + + //This attribute is only used to retain the previously computed partition size, + //to know to what extent does it change with the layout update. + #[serde(default="default_zero")] + pub partition_size: u32, + pub roles: LwwMap, /// node_id_vec: a vector of node IDs with a role assigned /// in the system (this includes gateway nodes). /// The order here is different than the vec stored by `roles`, because: - /// 1. non-gateway nodes are first so that they have lower numbers + /// 1. non-gateway nodes are first so that they have lower numbers holding + /// in u8 (the number of non-gateway nodes is at most 256). /// 2. nodes that don't have a role are excluded (but they need to /// stay in the CRDT as tombstones) pub node_id_vec: Vec, @@ -38,6 +53,15 @@ pub struct ClusterLayout { pub staging_hash: Hash, } +fn default_one() -> usize{ + return 1; +} +fn default_zero() -> u32{ + return 0; +} + +const NB_PARTITIONS : usize = 1usize << PARTITION_BITS; + #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)] pub struct NodeRoleV(pub Option); @@ -66,16 +90,31 @@ impl NodeRole { None => "gateway".to_string(), } } + + pub fn tags_string(&self) -> String { + let mut tags = String::new(); + if self.tags.len() == 0 { + return tags + } + tags.push_str(&self.tags[0].clone()); + for t in 1..self.tags.len(){ + tags.push_str(","); + tags.push_str(&self.tags[t].clone()); + } + return tags; + } } impl ClusterLayout { - pub fn new(replication_factor: usize) -> Self { + pub fn new(replication_factor: usize, zone_redundancy: usize) -> Self { let empty_lwwmap = LwwMap::new(); let empty_lwwmap_hash = blake2sum(&rmp_to_vec_all_named(&empty_lwwmap).unwrap()[..]); ClusterLayout { version: 0, replication_factor, + zone_redundancy, + partition_size: 0, roles: LwwMap::new(), node_id_vec: Vec::new(), ring_assignation_data: Vec::new(), @@ -122,6 +161,44 @@ impl ClusterLayout { } } + ///Returns the uuids of the non_gateway nodes in self.node_id_vec. + pub fn useful_nodes(&self) -> Vec { + let mut result = Vec::::new(); + for uuid in self.node_id_vec.iter() { + match self.node_role(uuid) { + Some(role) if role.capacity != None => result.push(*uuid), + _ => () + } + } + return result; + } + + ///Given a node uuids, this function returns the label of its zone + pub fn get_node_zone(&self, uuid : &Uuid) -> Result { + match self.node_role(uuid) { + Some(role) => return Ok(role.zone.clone()), + _ => return Err("The Uuid does not correspond to a node present in the cluster.".to_string()) + } + } + + ///Given a node uuids, this function returns its capacity or fails if it does not have any + pub fn get_node_capacity(&self, uuid : &Uuid) -> Result { + match self.node_role(uuid) { + Some(NodeRole{capacity : Some(cap), zone: _, tags: _}) => return Ok(*cap), + _ => return Err("The Uuid does not correspond to a node present in the cluster or this node does not have a positive capacity.".to_string()) + } + } + + ///Returns the sum of capacities of non gateway nodes in the cluster + pub fn get_total_capacity(&self) -> Result { + let mut total_capacity = 0; + for uuid in self.useful_nodes().iter() { + total_capacity += self.get_node_capacity(uuid)?; + } + return Ok(total_capacity); + } + + /// Check a cluster layout for internal consistency /// returns true if consistent, false if error pub fn check(&self) -> bool { @@ -168,342 +245,412 @@ impl ClusterLayout { true } +} + +impl ClusterLayout { /// This function calculates a new partition-to-node assignation. - /// The computed assignation maximizes the capacity of a + /// The computed assignation respects the node replication factor + /// and the zone redundancy parameter It maximizes the capacity of a /// partition (assuming all partitions have the same size). /// Among such optimal assignation, it minimizes the distance to /// the former assignation (if any) to minimize the amount of - /// data to be moved. A heuristic ensures node triplets - /// dispersion (in garage_util::bipartite::optimize_matching()). - pub fn calculate_partition_assignation(&mut self) -> bool { + /// data to be moved. + pub fn calculate_partition_assignation(&mut self, replication:usize, redundancy:usize) -> Result { //The nodes might have been updated, some might have been deleted. //So we need to first update the list of nodes and retrieve the //assignation. - let old_node_assignation = self.update_nodes_and_ring(); + + //We update the node ids, since the node list might have changed with the staged + //changes in the layout. We retrieve the old_assignation reframed with the new ids + let old_assignation_opt = self.update_node_id_vec()?; + self.replication_factor = replication; + self.zone_redundancy = redundancy; + + let mut msg = Message::new(); + msg.push(format!("Computation of a new cluster layout where partitions are + replicated {} times on at least {} distinct zones.", replication, redundancy)); - let (node_zone, _) = self.get_node_zone_capacity(); + //We generate for once numerical ids for the zone, to use them as indices in the + //flow graphs. + let (id_to_zone , zone_to_id) = self.generate_zone_ids()?; - //We compute the optimal number of partition to assign to - //every node and zone. - if let Some((part_per_nod, part_per_zone)) = self.optimal_proportions() { - //We collect part_per_zone in a vec to not rely on the - //arbitrary order in which elements are iterated in - //Hashmap::iter() - let part_per_zone_vec = part_per_zone - .iter() - .map(|(x, y)| (x.clone(), *y)) - .collect::>(); - //We create an indexing of the zones - let mut zone_id = HashMap::::new(); - for (i, ppz) in part_per_zone_vec.iter().enumerate() { - zone_id.insert(ppz.0.clone(), i); - } + msg.push(format!("The cluster contains {} nodes spread over {} zones.", + self.useful_nodes().len(), id_to_zone.len())); + + //We compute the optimal partition size + let partition_size = self.compute_optimal_partition_size(&zone_to_id)?; + if old_assignation_opt != None { + msg.push(format!("Given the replication and redundancy constraint, the + optimal size of a partition is {}. In the previous layout, it used to + be {}.", partition_size, self.partition_size)); + } + else { + msg.push(format!("Given the replication and redundancy constraints, the + optimal size of a partition is {}.", partition_size)); + } + self.partition_size = partition_size; - //We compute a candidate for the new partition to zone - //assignation. - let nb_zones = part_per_zone.len(); - let nb_nodes = part_per_nod.len(); - let nb_partitions = 1 << PARTITION_BITS; - let left_cap_vec = vec![self.replication_factor as u32; nb_partitions]; - let right_cap_vec = part_per_zone_vec.iter().map(|(_, y)| *y as u32).collect(); - let mut zone_assignation = dinic_compute_matching(left_cap_vec, right_cap_vec); + //We compute a first flow/assignment that is heuristically close to the previous + //assignment + let mut gflow = self.compute_candidate_assignment( &zone_to_id, &old_assignation_opt)?; - //We create the structure for the partition-to-node assignation. - let mut node_assignation = vec![vec![None; self.replication_factor]; nb_partitions]; - //We will decrement part_per_nod to keep track of the number - //of partitions that we still have to associate. - let mut part_per_nod = part_per_nod; + if let Some(assoc) = &old_assignation_opt { + //We minimize the distance to the previous assignment. + self.minimize_rebalance_load(&mut gflow, &zone_to_id, &assoc)?; + } - //We minimize the distance to the former assignation(if any) + msg.append(&mut self.output_stat(&gflow, &old_assignation_opt, &zone_to_id,&id_to_zone)?); - //We get the id of the zones of the former assignation - //(and the id no_zone if there is no node assignated) - let no_zone = part_per_zone_vec.len(); - let old_zone_assignation: Vec> = old_node_assignation - .iter() - .map(|x| { - x.iter() - .map(|id| match *id { - Some(i) => zone_id[&node_zone[i]], - None => no_zone, - }) - .collect() - }) - .collect(); - - //We minimize the distance to the former zone assignation - zone_assignation = - optimize_matching(&old_zone_assignation, &zone_assignation, nb_zones + 1); //+1 for no_zone - - //We need to assign partitions to nodes in their zone - //We first put the nodes assignation that can stay the same - for i in 0..nb_partitions { - for j in 0..self.replication_factor { - if let Some(Some(former_node)) = old_node_assignation[i].iter().find(|x| { - if let Some(id) = x { - zone_id[&node_zone[*id]] == zone_assignation[i][j] - } else { - false - } - }) { - if part_per_nod[*former_node] > 0 { - node_assignation[i][j] = Some(*former_node); - part_per_nod[*former_node] -= 1; - } - } - } - } - - //We complete the assignation of partitions to nodes - let mut rng = rand::thread_rng(); - for i in 0..nb_partitions { - for j in 0..self.replication_factor { - if node_assignation[i][j] == None { - let possible_nodes: Vec = (0..nb_nodes) - .filter(|id| { - zone_id[&node_zone[*id]] == zone_assignation[i][j] - && part_per_nod[*id] > 0 - }) - .collect(); - assert!(!possible_nodes.is_empty()); - //We randomly pick a node - if let Some(nod) = possible_nodes.choose(&mut rng) { - node_assignation[i][j] = Some(*nod); - part_per_nod[*nod] -= 1; - } - } - } - } - - //We write the assignation in the 1D table - self.ring_assignation_data = Vec::::new(); - for ass in node_assignation { - for nod in ass { - if let Some(id) = nod { - self.ring_assignation_data.push(id as CompactNodeType); - } else { - panic!() - } - } - } - - true - } else { - false - } - } + //We update the layout structure + self.update_ring_from_flow(id_to_zone.len() , &gflow)?; + return Ok(msg); + } /// The LwwMap of node roles might have changed. This function updates the node_id_vec /// and returns the assignation given by ring, with the new indices of the nodes, and - /// None of the node is not present anymore. + /// None if the node is not present anymore. /// We work with the assumption that only this function and calculate_new_assignation /// do modify assignation_ring and node_id_vec. - fn update_nodes_and_ring(&mut self) -> Vec>> { + fn update_node_id_vec(&mut self) -> Result< Option< Vec > > ,String> { + // (1) We compute the new node list + //Non gateway nodes should be coded on 8bits, hence they must be first in the list + //We build the new node ids + let mut new_non_gateway_nodes: Vec = self.roles.items().iter() + .filter(|(_, _, v)| + match &v.0 {Some(r) if r.capacity != None => true, _=> false }) + .map(|(k, _, _)| *k).collect(); + + if new_non_gateway_nodes.len() > MAX_NODE_NUMBER { + return Err(format!("There are more than {} non-gateway nodes in the new layout. This is not allowed.", MAX_NODE_NUMBER).to_string()); + } + + let mut new_gateway_nodes: Vec = self.roles.items().iter() + .filter(|(_, _, v)| + match v {NodeRoleV(Some(r)) if r.capacity == None => true, _=> false }) + .map(|(k, _, _)| *k).collect(); + + let nb_useful_nodes = new_non_gateway_nodes.len(); + let mut new_node_id_vec = Vec::::new(); + new_node_id_vec.append(&mut new_non_gateway_nodes); + new_node_id_vec.append(&mut new_gateway_nodes); + + + // (2) We retrieve the old association + //We rewrite the old association with the new indices. We only consider partition + //to node assignations where the node is still in use. + let nb_partitions = 1usize << PARTITION_BITS; + let mut old_assignation = vec![ Vec::::new() ; nb_partitions]; + + if self.ring_assignation_data.len() == 0 { + //This is a new association + return Ok(None); + } + if self.ring_assignation_data.len() != nb_partitions * self.replication_factor { + return Err("The old assignation does not have a size corresponding to the old replication factor or the number of partitions.".to_string()); + } + + //We build a translation table between the uuid and new ids + let mut uuid_to_new_id = HashMap::::new(); + + //We add the indices of only the new non-gateway nodes that can be used in the + //association ring + for i in 0..nb_useful_nodes { + uuid_to_new_id.insert(new_node_id_vec[i], i ); + } + + let rf= self.replication_factor; + for p in 0..nb_partitions { + for old_id in &self.ring_assignation_data[p*rf..(p+1)*rf] { + let uuid = self.node_id_vec[*old_id as usize]; + if uuid_to_new_id.contains_key(&uuid) { + old_assignation[p].push(uuid_to_new_id[&uuid]); + } + } + } + + //We write the results + self.node_id_vec = new_node_id_vec; + self.ring_assignation_data = Vec::::new(); + + return Ok(Some(old_assignation)); + } + + + ///This function generates ids for the zone of the nodes appearing in + ///self.node_id_vec. + fn generate_zone_ids(&self) -> Result<(Vec, HashMap),String>{ + let mut id_to_zone = Vec::::new(); + let mut zone_to_id = HashMap::::new(); + + for uuid in self.node_id_vec.iter() { + if self.roles.get(uuid) == None { + return Err("The uuid was not found in the node roles (this should not happen, it might be a critical error).".to_string()); + } + match self.node_role(&uuid) { + Some(r) => if !zone_to_id.contains_key(&r.zone) && r.capacity != None { + zone_to_id.insert(r.zone.clone() , id_to_zone.len()); + id_to_zone.push(r.zone.clone()); + } + _ => () + } + } + return Ok((id_to_zone, zone_to_id)); + } + + ///This function computes by dichotomy the largest realizable partition size, given + ///the layout. + fn compute_optimal_partition_size(&self, zone_to_id: &HashMap) -> Result{ + let nb_partitions = 1usize << PARTITION_BITS; + let empty_set = HashSet::<(usize,usize)>::new(); + let mut g = self.generate_flow_graph(1, zone_to_id, &empty_set)?; + g.compute_maximal_flow()?; + if g.get_flow_value()? < (nb_partitions*self.replication_factor).try_into().unwrap() { + return Err("The storage capacity of he cluster is to small. It is impossible to store partitions of size 1.".to_string()); + } + + let mut s_down = 1; + let mut s_up = self.get_total_capacity()?; + while s_down +1 < s_up { + g = self.generate_flow_graph((s_down+s_up)/2, zone_to_id, &empty_set)?; + g.compute_maximal_flow()?; + if g.get_flow_value()? < (nb_partitions*self.replication_factor).try_into().unwrap() { + s_up = (s_down+s_up)/2; + } + else { + s_down = (s_down+s_up)/2; + } + } + + return Ok(s_down); + } + + fn generate_graph_vertices(nb_zones : usize, nb_nodes : usize) -> Vec { + let mut vertices = vec![Vertex::Source, Vertex::Sink]; + for p in 0..NB_PARTITIONS { + vertices.push(Vertex::Pup(p)); + vertices.push(Vertex::Pdown(p)); + for z in 0..nb_zones { + vertices.push(Vertex::PZ(p, z)); + } + } + for n in 0..nb_nodes { + vertices.push(Vertex::N(n)); + } + return vertices; + } + + fn generate_flow_graph(&self, size: u32, zone_to_id: &HashMap, exclude_assoc : &HashSet<(usize,usize)>) -> Result, String> { + let vertices = ClusterLayout::generate_graph_vertices(zone_to_id.len(), + self.useful_nodes().len()); + let mut g= Graph::::new(&vertices); + let nb_zones = zone_to_id.len(); + for p in 0..NB_PARTITIONS { + g.add_edge(Vertex::Source, Vertex::Pup(p), self.zone_redundancy as u32)?; + g.add_edge(Vertex::Source, Vertex::Pdown(p), (self.replication_factor - self.zone_redundancy) as u32)?; + for z in 0..nb_zones { + g.add_edge(Vertex::Pup(p) , Vertex::PZ(p,z) , 1)?; + g.add_edge(Vertex::Pdown(p) , Vertex::PZ(p,z) , + self.replication_factor as u32)?; + } + } + for n in 0..self.useful_nodes().len() { + let node_capacity = self.get_node_capacity(&self.node_id_vec[n])?; + let node_zone = zone_to_id[&self.get_node_zone(&self.node_id_vec[n])?]; + g.add_edge(Vertex::N(n), Vertex::Sink, node_capacity/size)?; + for p in 0..NB_PARTITIONS { + if !exclude_assoc.contains(&(p,n)) { + g.add_edge(Vertex::PZ(p, node_zone), Vertex::N(n), 1)?; + } + } + } + return Ok(g); + } + + + fn compute_candidate_assignment(&self, zone_to_id: &HashMap, + old_assoc_opt : &Option >>) -> Result, String > { + + //We list the edges that are not used in the old association + let mut exclude_edge = HashSet::<(usize,usize)>::new(); + if let Some(old_assoc) = old_assoc_opt { + let nb_nodes = self.useful_nodes().len(); + for p in 0..NB_PARTITIONS { + for n in 0..nb_nodes { + exclude_edge.insert((p,n)); + } + for n in old_assoc[p].iter() { + exclude_edge.remove(&(p,*n)); + } + } + } + + //We compute the best flow using only the edges used in the old assoc + let mut g = self.generate_flow_graph(self.partition_size, zone_to_id, &exclude_edge )?; + g.compute_maximal_flow()?; + for (p,n) in exclude_edge.iter() { + let node_zone = zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?]; + g.add_edge(Vertex::PZ(*p,node_zone), Vertex::N(*n), 1)?; + } + g.compute_maximal_flow()?; + return Ok(g); + } + + fn minimize_rebalance_load(&self, gflow: &mut Graph, zone_to_id: &HashMap, old_assoc : &Vec< Vec >) -> Result<(), String > { + let mut cost = CostFunction::new(); + for p in 0..NB_PARTITIONS { + for n in old_assoc[p].iter() { + let node_zone = zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?]; + cost.insert((Vertex::PZ(p,node_zone), Vertex::N(*n)), -1); + } + } + let nb_nodes = self.useful_nodes().len(); + let path_length = 4*nb_nodes; + gflow.optimize_flow_with_cost(&cost, path_length)?; + + return Ok(()); + } + + fn update_ring_from_flow(&mut self, nb_zones : usize, gflow: &Graph ) -> Result<(), String>{ + self.ring_assignation_data = Vec::::new(); + for p in 0..NB_PARTITIONS { + for z in 0..nb_zones { + let assoc_vertex = gflow.get_positive_flow_from(Vertex::PZ(p,z))?; + for vertex in assoc_vertex.iter() { + match vertex{ + Vertex::N(n) => self.ring_assignation_data.push((*n).try_into().unwrap()), + _ => () + } + } + } + } + + if self.ring_assignation_data.len() != NB_PARTITIONS*self.replication_factor { + return Err("Critical Error : the association ring we produced does not have the right size.".to_string()); + } + return Ok(()); + } + + + //This function returns a message summing up the partition repartition of the new + //layout. + fn output_stat(&self , gflow : &Graph, + old_assoc_opt : &Option< Vec> >, + zone_to_id: &HashMap, + id_to_zone : &Vec) -> Result{ + let mut msg = Message::new(); + let nb_partitions = 1usize << PARTITION_BITS; - let mut node_assignation = vec![vec![None; self.replication_factor]; nb_partitions]; - let rf = self.replication_factor; - let ring = &self.ring_assignation_data; + let used_cap = self.partition_size * nb_partitions as u32 * + self.replication_factor as u32; + let total_cap = self.get_total_capacity()?; + let percent_cap = 100.0*(used_cap as f32)/(total_cap as f32); + msg.push(format!("Available capacity / Total cluster capacity: {} / {} ({:.1} %)", + used_cap , total_cap , percent_cap )); + msg.push(format!("If the percentage is to low, it might be that the replication/redundancy constraints force the use of nodes/zones with small storage capacities. + You might want to rebalance the storage capacities or relax the constraints. See the detailed statistics below and look for saturated nodes/zones.")); + msg.push(format!("Recall that because of the replication, the actual available storage capacity is {} / {} = {}.", used_cap , self.replication_factor , used_cap/self.replication_factor as u32)); + + //We define and fill in the following tables + let storing_nodes = self.useful_nodes(); + let mut new_partitions = vec![0; storing_nodes.len()]; + let mut stored_partitions = vec![0; storing_nodes.len()]; - let new_node_id_vec: Vec = self.roles.items().iter().map(|(k, _, _)| *k).collect(); + let mut new_partitions_zone = vec![0; id_to_zone.len()]; + let mut stored_partitions_zone = vec![0; id_to_zone.len()]; - if ring.len() == rf * nb_partitions { - for i in 0..nb_partitions { - for j in 0..self.replication_factor { - node_assignation[i][j] = new_node_id_vec - .iter() - .position(|id| *id == self.node_id_vec[ring[i * rf + j] as usize]); - } - } - } + for p in 0..nb_partitions { + for z in 0..id_to_zone.len() { + let pz_nodes = gflow.get_positive_flow_from(Vertex::PZ(p,z))?; + if pz_nodes.len() > 0 { + stored_partitions_zone[z] += 1; + } + for vert in pz_nodes.iter() { + if let Vertex::N(n) = *vert { + stored_partitions[n] += 1; + if let Some(old_assoc) = old_assoc_opt { + if !old_assoc[p].contains(&n) { + new_partitions[n] += 1; + } + } + } + } + if let Some(old_assoc) = old_assoc_opt { + let mut old_zones_of_p = Vec::::new(); + for n in old_assoc[p].iter() { + old_zones_of_p.push( + zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?]); + } + if !old_zones_of_p.contains(&z) { + new_partitions_zone[z] += 1; + } + } + } + } + + //We display the statistics - self.node_id_vec = new_node_id_vec; - self.ring_assignation_data = vec![]; - node_assignation - } + if *old_assoc_opt != None { + let total_new_partitions : usize = new_partitions.iter().sum(); + msg.push(format!("A total of {} new copies of partitions need to be \ + transferred.", total_new_partitions)); + } + msg.push(format!("")); + msg.push(format!("Detailed statistics by zones and nodes.")); + + for z in 0..id_to_zone.len(){ + let mut nodes_of_z = Vec::::new(); + for n in 0..storing_nodes.len(){ + if self.get_node_zone(&self.node_id_vec[n])? == id_to_zone[z] { + nodes_of_z.push(n); + } + } + let replicated_partitions : usize = nodes_of_z.iter() + .map(|n| stored_partitions[*n]).sum(); + msg.push(format!("")); + + if *old_assoc_opt != None { + msg.push(format!("Zone {}: {} distinct partitions stored ({} new, \ + {} partition copies) ", id_to_zone[z], stored_partitions_zone[z], + new_partitions_zone[z], replicated_partitions)); + } + else{ + msg.push(format!("Zone {}: {} distinct partitions stored ({} partition \ + copies) ", + id_to_zone[z], stored_partitions_zone[z], replicated_partitions)); + } + + let available_cap_z : u32 = self.partition_size*replicated_partitions as u32; + let mut total_cap_z = 0; + for n in nodes_of_z.iter() { + total_cap_z += self.get_node_capacity(&self.node_id_vec[*n])?; + } + let percent_cap_z = 100.0*(available_cap_z as f32)/(total_cap_z as f32); + msg.push(format!(" Available capacity / Total capacity: {}/{} ({:.1}%).", + available_cap_z, total_cap_z, percent_cap_z)); + msg.push(format!("")); + + for n in nodes_of_z.iter() { + let available_cap_n = stored_partitions[*n] as u32 *self.partition_size; + let total_cap_n =self.get_node_capacity(&self.node_id_vec[*n])?; + let tags_n = (self.node_role(&self.node_id_vec[*n]) + .ok_or("Node not found."))?.tags_string(); + msg.push(format!(" Node {}: {} partitions ({} new) ; \ + available/total capacity: {} / {} ({:.1}%) ; tags:{}", + &self.node_id_vec[*n].to_vec().encode_hex::(), + stored_partitions[*n], + new_partitions[*n], available_cap_n, total_cap_n, + (available_cap_n as f32)/(total_cap_n as f32)*100.0 , + tags_n)); + } + } - ///This function compute the number of partition to assign to - ///every node and zone, so that every partition is replicated - ///self.replication_factor times and the capacity of a partition - ///is maximized. - fn optimal_proportions(&mut self) -> Option<(Vec, HashMap)> { - let mut zone_capacity: HashMap = HashMap::new(); - - let (node_zone, node_capacity) = self.get_node_zone_capacity(); - let nb_nodes = self.node_id_vec.len(); - - for i in 0..nb_nodes { - if zone_capacity.contains_key(&node_zone[i]) { - zone_capacity.insert( - node_zone[i].clone(), - zone_capacity[&node_zone[i]] + node_capacity[i], - ); - } else { - zone_capacity.insert(node_zone[i].clone(), node_capacity[i]); - } - } - - //Compute the optimal number of partitions per zone - let sum_capacities: u32 = zone_capacity.values().sum(); - - if sum_capacities == 0 { - println!("No storage capacity in the network."); - return None; - } - - let nb_partitions = 1 << PARTITION_BITS; - - //Initially we would like to use zones porportionally to - //their capacity. - //However, a large zone can be associated to at most - //nb_partitions to ensure replication of the date. - //So we take the min with nb_partitions: - let mut part_per_zone: HashMap = zone_capacity - .iter() - .map(|(k, v)| { - ( - k.clone(), - min( - nb_partitions, - (self.replication_factor * nb_partitions * *v as usize) - / sum_capacities as usize, - ), - ) - }) - .collect(); - - //The replication_factor-1 upper bounds the number of - //part_per_zones that are greater than nb_partitions - for _ in 1..self.replication_factor { - //The number of partitions that are not assignated to - //a zone that takes nb_partitions. - let sum_capleft: u32 = zone_capacity - .keys() - .filter(|k| part_per_zone[*k] < nb_partitions) - .map(|k| zone_capacity[k]) - .sum(); - - //The number of replication of the data that we need - //to ensure. - let repl_left = self.replication_factor - - part_per_zone - .values() - .filter(|x| **x == nb_partitions) - .count(); - if repl_left == 0 { - break; - } - - for k in zone_capacity.keys() { - if part_per_zone[k] != nb_partitions { - part_per_zone.insert( - k.to_string(), - min( - nb_partitions, - (nb_partitions * zone_capacity[k] as usize * repl_left) - / sum_capleft as usize, - ), - ); - } - } - } - - //Now we divide the zone's partition share proportionally - //between their nodes. - - let mut part_per_nod: Vec = (0..nb_nodes) - .map(|i| { - (part_per_zone[&node_zone[i]] * node_capacity[i] as usize) - / zone_capacity[&node_zone[i]] as usize - }) - .collect(); - - //We must update the part_per_zone to make it correspond to - //part_per_nod (because of integer rounding) - part_per_zone = part_per_zone.iter().map(|(k, _)| (k.clone(), 0)).collect(); - for i in 0..nb_nodes { - part_per_zone.insert( - node_zone[i].clone(), - part_per_zone[&node_zone[i]] + part_per_nod[i], - ); - } - - //Because of integer rounding, the total sum of part_per_nod - //might not be replication_factor*nb_partitions. - // We need at most to add 1 to every non maximal value of - // part_per_nod. The capacity of a partition will be bounded - // by the minimal value of - // node_capacity_vec[i]/part_per_nod[i] - // so we try to maximize this minimal value, keeping the - // part_per_zone capped - - let discrepancy: usize = - nb_partitions * self.replication_factor - part_per_nod.iter().sum::(); - - //We use a stupid O(N^2) algorithm. If the number of nodes - //is actually expected to be high, one should optimize this. - - for _ in 0..discrepancy { - if let Some(idmax) = (0..nb_nodes) - .filter(|i| part_per_zone[&node_zone[*i]] < nb_partitions) - .max_by(|i, j| { - (node_capacity[*i] * (part_per_nod[*j] + 1) as u32) - .cmp(&(node_capacity[*j] * (part_per_nod[*i] + 1) as u32)) - }) { - part_per_nod[idmax] += 1; - part_per_zone.insert( - node_zone[idmax].clone(), - part_per_zone[&node_zone[idmax]] + 1, - ); - } - } - - //We check the algorithm consistency - - let discrepancy: usize = - nb_partitions * self.replication_factor - part_per_nod.iter().sum::(); - assert!(discrepancy == 0); - assert!(if let Some(v) = part_per_zone.values().max() { - *v <= nb_partitions - } else { - false - }); - - Some((part_per_nod, part_per_zone)) - } - - //Returns vectors of zone and capacity; indexed by the same (temporary) - //indices as node_id_vec. - fn get_node_zone_capacity(&self) -> (Vec, Vec) { - let node_zone = self - .node_id_vec - .iter() - .map(|id_nod| match self.node_role(id_nod) { - Some(NodeRole { - zone, - capacity: _, - tags: _, - }) => zone.clone(), - _ => "".to_string(), - }) - .collect(); - - let node_capacity = self - .node_id_vec - .iter() - .map(|id_nod| match self.node_role(id_nod) { - Some(NodeRole { - zone: _, - capacity: Some(c), - tags: _, - }) => *c, - _ => 0, - }) - .collect(); - - (node_zone, node_capacity) - } + return Ok(msg); + } + } +//==================================================================================== + #[cfg(test)] mod tests { use super::*; diff --git a/src/rpc/lib.rs b/src/rpc/lib.rs index 392ff48f2..1036a8e18 100644 --- a/src/rpc/lib.rs +++ b/src/rpc/lib.rs @@ -8,9 +8,11 @@ mod consul; mod kubernetes; pub mod layout; +pub mod graph_algo; pub mod ring; pub mod system; + mod metrics; pub mod rpc_helper; diff --git a/src/rpc/ring.rs b/src/rpc/ring.rs index 73a126a28..743a5cba2 100644 --- a/src/rpc/ring.rs +++ b/src/rpc/ring.rs @@ -40,6 +40,7 @@ pub struct Ring { // Type to store compactly the id of a node in the system // Change this to u16 the day we want to have more than 256 nodes in a cluster pub type CompactNodeType = u8; +pub const MAX_NODE_NUMBER: usize = 256; // The maximum number of times an object might get replicated // This must be at least 3 because Garage supports 3-way replication diff --git a/src/rpc/system.rs b/src/rpc/system.rs index 68d94ea57..313671ca3 100644 --- a/src/rpc/system.rs +++ b/src/rpc/system.rs @@ -97,6 +97,7 @@ pub struct System { kubernetes_discovery: Option, replication_factor: usize, + zone_redundancy: usize, /// The ring pub ring: watch::Receiver>, @@ -192,6 +193,7 @@ impl System { network_key: NetworkKey, background: Arc, replication_factor: usize, + zone_redundancy: usize, config: &Config, ) -> Arc { let node_key = @@ -211,7 +213,7 @@ impl System { "No valid previous cluster layout stored ({}), starting fresh.", e ); - ClusterLayout::new(replication_factor) + ClusterLayout::new(replication_factor, zone_redundancy) } }; @@ -285,6 +287,7 @@ impl System { rpc: RpcHelper::new(netapp.id.into(), fullmesh, background.clone(), ring.clone()), system_endpoint, replication_factor, + zone_redundancy, rpc_listen_addr: config.rpc_bind_addr, rpc_public_addr, bootstrap_peers: config.bootstrap_peers.clone(), diff --git a/src/util/bipartite.rs b/src/util/bipartite.rs deleted file mode 100644 index 1e1e9caaa..000000000 --- a/src/util/bipartite.rs +++ /dev/null @@ -1,363 +0,0 @@ -/* - * This module deals with graph algorithm in complete bipartite - * graphs. It is used in layout.rs to build the partition to node - * assignation. - * */ - -use rand::prelude::SliceRandom; -use std::cmp::{max, min}; -use std::collections::VecDeque; - -//Graph data structure for the flow algorithm. -#[derive(Clone, Copy, Debug)] -struct EdgeFlow { - c: i32, - flow: i32, - v: usize, - rev: usize, -} - -//Graph data structure for the detection of positive cycles. -#[derive(Clone, Copy, Debug)] -struct WeightedEdge { - w: i32, - u: usize, - v: usize, -} - -/* This function takes two matchings (old_match and new_match) in a - * complete bipartite graph. It returns a matching that has the - * same degree as new_match at every vertex, and that is as close - * as possible to old_match. - * */ -pub fn optimize_matching( - old_match: &[Vec], - new_match: &[Vec], - nb_right: usize, -) -> Vec> { - let nb_left = old_match.len(); - let ed = WeightedEdge { w: -1, u: 0, v: 0 }; - let mut edge_vec = vec![ed; nb_left * nb_right]; - - //We build the complete bipartite graph structure, represented - //by the list of all edges. - for i in 0..nb_left { - for j in 0..nb_right { - edge_vec[i * nb_right + j].u = i; - edge_vec[i * nb_right + j].v = nb_left + j; - } - } - - for i in 0..edge_vec.len() { - //We add the old matchings - if old_match[edge_vec[i].u].contains(&(edge_vec[i].v - nb_left)) { - edge_vec[i].w *= -1; - } - //We add the new matchings - if new_match[edge_vec[i].u].contains(&(edge_vec[i].v - nb_left)) { - (edge_vec[i].u, edge_vec[i].v) = (edge_vec[i].v, edge_vec[i].u); - edge_vec[i].w *= -1; - } - } - //Now edge_vec is a graph where edges are oriented LR if we - //can add them to new_match, and RL otherwise. If - //adding/removing them makes the matching closer to old_match - //they have weight 1; and -1 otherwise. - - //We shuffle the edge list so that there is no bias depending in - //partitions/zone label in the triplet dispersion - let mut rng = rand::thread_rng(); - edge_vec.shuffle(&mut rng); - - //Discovering and flipping a cycle with positive weight in this - //graph will make the matching closer to old_match. - //We use Bellman Ford algorithm to discover positive cycles - while let Some(cycle) = positive_cycle(&edge_vec, nb_left, nb_right) { - for i in cycle { - //We flip the edges of the cycle. - (edge_vec[i].u, edge_vec[i].v) = (edge_vec[i].v, edge_vec[i].u); - edge_vec[i].w *= -1; - } - } - - //The optimal matching is build from the graph structure. - let mut matching = vec![Vec::::new(); nb_left]; - for e in edge_vec { - if e.u > e.v { - matching[e.v].push(e.u - nb_left); - } - } - matching -} - -//This function finds a positive cycle in a bipartite wieghted graph. -fn positive_cycle( - edge_vec: &[WeightedEdge], - nb_left: usize, - nb_right: usize, -) -> Option> { - let nb_side_min = min(nb_left, nb_right); - let nb_vertices = nb_left + nb_right; - let weight_lowerbound = -((nb_left + nb_right) as i32) - 1; - let mut accessed = vec![false; nb_left]; - - //We try to find a positive cycle accessible from the left - //vertex i. - for i in 0..nb_left { - if accessed[i] { - continue; - } - let mut weight = vec![weight_lowerbound; nb_vertices]; - let mut prev = vec![edge_vec.len(); nb_vertices]; - weight[i] = 0; - //We compute largest weighted paths from i. - //Since the graph is bipartite, any simple cycle has length - //at most 2*nb_side_min. In the general Bellman-Ford - //algorithm, the bound here is the number of vertices. Since - //the number of partitions can be much larger than the - //number of nodes, we optimize that. - for _ in 0..(2 * nb_side_min) { - for (j, e) in edge_vec.iter().enumerate() { - if weight[e.v] < weight[e.u] + e.w { - weight[e.v] = weight[e.u] + e.w; - prev[e.v] = j; - } - } - } - //We update the accessed table - for i in 0..nb_left { - if weight[i] > weight_lowerbound { - accessed[i] = true; - } - } - //We detect positive cycle - for e in edge_vec { - if weight[e.v] < weight[e.u] + e.w { - //it means e is on a path branching from a positive cycle - let mut was_seen = vec![false; nb_vertices]; - let mut curr = e.u; - //We track back with prev until we reach the cycle. - while !was_seen[curr] { - was_seen[curr] = true; - curr = edge_vec[prev[curr]].u; - } - //Now curr is on the cycle. We collect the edges ids. - let mut cycle = vec![prev[curr]]; - let mut cycle_vert = edge_vec[prev[curr]].u; - while cycle_vert != curr { - cycle.push(prev[cycle_vert]); - cycle_vert = edge_vec[prev[cycle_vert]].u; - } - - return Some(cycle); - } - } - } - - None -} - -// This function takes two arrays of capacity and computes the -// maximal matching in the complete bipartite graph such that the -// left vertex i is matched to left_cap_vec[i] right vertices, and -// the right vertex j is matched to right_cap_vec[j] left vertices. -// To do so, we use Dinic's maximum flow algorithm. -pub fn dinic_compute_matching(left_cap_vec: Vec, right_cap_vec: Vec) -> Vec> { - let mut graph = Vec::>::new(); - let ed = EdgeFlow { - c: 0, - flow: 0, - v: 0, - rev: 0, - }; - - // 0 will be the source - graph.push(vec![ed; left_cap_vec.len()]); - for (i, c) in left_cap_vec.iter().enumerate() { - graph[0][i].c = *c as i32; - graph[0][i].v = i + 2; - graph[0][i].rev = 0; - } - - //1 will be the sink - graph.push(vec![ed; right_cap_vec.len()]); - for (i, c) in right_cap_vec.iter().enumerate() { - graph[1][i].c = *c as i32; - graph[1][i].v = i + 2 + left_cap_vec.len(); - graph[1][i].rev = 0; - } - - //we add left vertices - for i in 0..left_cap_vec.len() { - graph.push(vec![ed; 1 + right_cap_vec.len()]); - graph[i + 2][0].c = 0; //directed - graph[i + 2][0].v = 0; - graph[i + 2][0].rev = i; - - for j in 0..right_cap_vec.len() { - graph[i + 2][j + 1].c = 1; - graph[i + 2][j + 1].v = 2 + left_cap_vec.len() + j; - graph[i + 2][j + 1].rev = i + 1; - } - } - - //we add right vertices - for i in 0..right_cap_vec.len() { - let lft_ln = left_cap_vec.len(); - graph.push(vec![ed; 1 + lft_ln]); - graph[i + lft_ln + 2][0].c = graph[1][i].c; - graph[i + lft_ln + 2][0].v = 1; - graph[i + lft_ln + 2][0].rev = i; - - for j in 0..left_cap_vec.len() { - graph[i + 2 + lft_ln][j + 1].c = 0; //directed - graph[i + 2 + lft_ln][j + 1].v = j + 2; - graph[i + 2 + lft_ln][j + 1].rev = i + 1; - } - } - - //To ensure the dispersion of the triplets generated by the - //assignation, we shuffle the neighbours of the nodes. Hence, - //left vertices do not consider the right ones in the same order. - let mut rng = rand::thread_rng(); - for i in 0..graph.len() { - graph[i].shuffle(&mut rng); - //We need to update the ids of the reverse edges. - for j in 0..graph[i].len() { - let target_v = graph[i][j].v; - let target_rev = graph[i][j].rev; - graph[target_v][target_rev].rev = j; - } - } - - let nb_vertices = graph.len(); - - //We run Dinic's max flow algorithm - loop { - //We build the level array from Dinic's algorithm. - let mut level = vec![-1; nb_vertices]; - - let mut fifo = VecDeque::new(); - fifo.push_back((0, 0)); - while !fifo.is_empty() { - if let Some((id, lvl)) = fifo.pop_front() { - if level[id] == -1 { - level[id] = lvl; - for e in graph[id].iter() { - if e.c - e.flow > 0 { - fifo.push_back((e.v, lvl + 1)); - } - } - } - } - } - if level[1] == -1 { - //There is no residual flow - break; - } - - //Now we run DFS respecting the level array - let mut next_nbd = vec![0; nb_vertices]; - let mut lifo = VecDeque::new(); - - let flow_upper_bound = if let Some(x) = left_cap_vec.iter().max() { - *x as i32 - } else { - panic!(); - }; - - lifo.push_back((0, flow_upper_bound)); - - while let Some((id_tmp, f_tmp)) = lifo.back() { - let id = *id_tmp; - let f = *f_tmp; - if id == 1 { - //The DFS reached the sink, we can add a - //residual flow. - lifo.pop_back(); - while !lifo.is_empty() { - if let Some((id, _)) = lifo.pop_back() { - let nbd = next_nbd[id]; - graph[id][nbd].flow += f; - let id_v = graph[id][nbd].v; - let nbd_v = graph[id][nbd].rev; - graph[id_v][nbd_v].flow -= f; - } - } - lifo.push_back((0, flow_upper_bound)); - continue; - } - //else we did not reach the sink - let nbd = next_nbd[id]; - if nbd >= graph[id].len() { - //There is nothing to explore from id anymore - lifo.pop_back(); - if let Some((parent, _)) = lifo.back() { - next_nbd[*parent] += 1; - } - continue; - } - //else we can try to send flow from id to its nbd - let new_flow = min(f, graph[id][nbd].c - graph[id][nbd].flow); - if level[graph[id][nbd].v] <= level[id] || new_flow == 0 { - //We cannot send flow to nbd. - next_nbd[id] += 1; - continue; - } - //otherwise, we send flow to nbd. - lifo.push_back((graph[id][nbd].v, new_flow)); - } - } - - //We return the association - let assoc_table = (0..left_cap_vec.len()) - .map(|id| { - graph[id + 2] - .iter() - .filter(|e| e.flow > 0) - .map(|e| e.v - 2 - left_cap_vec.len()) - .collect() - }) - .collect(); - - //consistency check - - //it is a flow - for i in 3..graph.len() { - assert!(graph[i].iter().map(|e| e.flow).sum::() == 0); - for e in graph[i].iter() { - assert!(e.flow + graph[e.v][e.rev].flow == 0); - } - } - - //it solves the matching problem - for i in 0..left_cap_vec.len() { - assert!(left_cap_vec[i] as i32 == graph[i + 2].iter().map(|e| max(0, e.flow)).sum::()); - } - for i in 0..right_cap_vec.len() { - assert!( - right_cap_vec[i] as i32 - == graph[i + 2 + left_cap_vec.len()] - .iter() - .map(|e| max(0, e.flow)) - .sum::() - ); - } - - assoc_table -} - -#[cfg(test)] -mod tests { - use super::*; - - #[test] - fn test_flow() { - let left_vec = vec![3; 8]; - let right_vec = vec![0, 4, 8, 4, 8]; - //There are asserts in the function that computes the flow - let _ = dinic_compute_matching(left_vec, right_vec); - } - - //maybe add tests relative to the matching optilization ? -} diff --git a/src/util/lib.rs b/src/util/lib.rs index 891549c38..e83fc2e6b 100644 --- a/src/util/lib.rs +++ b/src/util/lib.rs @@ -4,7 +4,6 @@ extern crate tracing; pub mod background; -pub mod bipartite; pub mod config; pub mod crdt; pub mod data;