From bd842e1388a324e2a3956465e9b32d0dc739a8d9 Mon Sep 17 00:00:00 2001 From: Mendes Date: Thu, 22 Sep 2022 19:30:01 +0200 Subject: [PATCH] Correction of a few bugs in the tests, modification of ClusterLayout::check --- src/rpc/graph_algo.rs | 41 +++++----- src/rpc/layout.rs | 173 +++++++++++++++++++++++++++++------------- 2 files changed, 137 insertions(+), 77 deletions(-) diff --git a/src/rpc/graph_algo.rs b/src/rpc/graph_algo.rs index 1a809b809..a5a1e4ba8 100644 --- a/src/rpc/graph_algo.rs +++ b/src/rpc/graph_algo.rs @@ -182,7 +182,7 @@ impl Graph{ //assignation, we shuffle the neighbours of the nodes. Hence, //the vertices do not consider their neighbours in the same order. self.shuffle_edges(); - + //We run Dinic's max flow algorithm loop { //We build the level array from Dinic's algorithm. @@ -206,7 +206,6 @@ impl Graph{ //There is no residual flow break; } - //Now we run DFS respecting the level array let mut next_nbd = vec![0; nb_vertices]; let mut lifo = VecDeque::new(); @@ -220,14 +219,12 @@ impl Graph{ //The DFS reached the sink, we can add a //residual flow. lifo.pop_back(); - while !lifo.is_empty() { - if let Some((id, _)) = lifo.pop_back() { - let nbd = next_nbd[id]; - self.graph[id][nbd].flow += f as i32; - let id_rev = self.graph[id][nbd].dest; - let nbd_rev = self.graph[id][nbd].rev; - self.graph[id_rev][nbd_rev].flow -= f as i32; - } + while let Some((id, _)) = lifo.pop_back() { + let nbd = next_nbd[id]; + self.graph[id][nbd].flow += f as i32; + let id_rev = self.graph[id][nbd].dest; + let nbd_rev = self.graph[id][nbd].rev; + self.graph[id_rev][nbd_rev].flow -= f as i32; } lifo.push_back((idsource, flow_upper_bound)); continue; @@ -243,10 +240,14 @@ impl Graph{ continue; } //else we can try to send flow from id to its nbd - let new_flow = min(f, self.graph[id][nbd].cap - self.graph[id][nbd].flow as u32 ); + let new_flow = min(f as i32, self.graph[id][nbd].cap as i32 - self.graph[id][nbd].flow) as u32; + if new_flow == 0 { + next_nbd[id] += 1; + continue; + } if let (Some(lvldest), Some(lvlid)) = (level[self.graph[id][nbd].dest], level[id]){ - if lvldest <= lvlid || new_flow == 0 { + if lvldest <= lvlid { //We cannot send flow to nbd. next_nbd[id] += 1; continue; @@ -266,7 +267,6 @@ impl Graph{ // one needs to be present in the cost function. pub fn optimize_flow_with_cost(&mut self , cost: &CostFunction, path_length: usize ) -> Result<(),String>{ - //We build the weighted graph g where we will look for negative cycle let mut gf = self.build_cost_graph(cost)?; let mut cycles = gf.list_negative_cycles(path_length); @@ -364,6 +364,7 @@ impl Graph{ } } + //If self.graph contains a negative cycle, then at this point the graph described //by prev (which is a directed 1-forest/functional graph) //must contain a cycle. We list the cycles of prev. @@ -401,8 +402,9 @@ fn cycles_of_1_forest(forest: &[Option]) -> Vec> { //We discovered an id that we explored at this iteration t. //It means we are on a cycle let mut cy = vec![id; 1]; - let id2 = id; - while let Some(id2) = forest[id2] { + let mut id2 = id; + while let Some(id_next) = forest[id2] { + id2 = id_next; if id2 != id { cy.push(id2); } @@ -429,12 +431,5 @@ fn cycles_of_1_forest(forest: &[Option]) -> Vec> { mod tests { use super::*; - #[test] - fn test_flow() { - let left_vec = vec![3; 8]; - let right_vec = vec![0, 4, 8, 4, 8]; - //There are asserts in the function that computes the flow - } - - //maybe add tests relative to the matching optilization ? } + diff --git a/src/rpc/layout.rs b/src/rpc/layout.rs index ff60ce988..a878f19c0 100644 --- a/src/rpc/layout.rs +++ b/src/rpc/layout.rs @@ -3,6 +3,7 @@ use std::collections::HashMap; use std::collections::HashSet; use hex::ToHex; +use itertools::Itertools; use serde::{Deserialize, Serialize}; @@ -185,7 +186,8 @@ impl ClusterLayout { pub fn get_node_capacity(&self, uuid : &Uuid) -> Result { match self.node_role(uuid) { Some(NodeRole{capacity : Some(cap), zone: _, tags: _}) => return Ok(*cap), - _ => return Err("The Uuid does not correspond to a node present in the cluster or this node does not have a positive capacity.".to_string()) + _ => return Err("The Uuid does not correspond to a node present in the \ + cluster or this node does not have a positive capacity.".to_string()) } } @@ -242,6 +244,47 @@ impl ClusterLayout { } } + //Check that every partition is associated to distinct nodes + let rf = self.replication_factor; + for p in 0..(1 << PARTITION_BITS) { + let nodes_of_p = self.ring_assignation_data[rf*p..rf*(p+1)].to_vec(); + if nodes_of_p.iter().unique().count() != rf { + return false; + } + //Check that every partition is spread over at least zone_redundancy zones. + let zones_of_p = nodes_of_p.iter() + .map(|n| self.get_node_zone(&self.node_id_vec[*n as usize]) + .expect("Zone not found.")); + if zones_of_p.unique().count() < self.zone_redundancy { + return false; + } + } + + //Check that the nodes capacities is consistent with the stored partitions + let mut node_usage = vec![0; MAX_NODE_NUMBER]; + for n in self.ring_assignation_data.iter() { + node_usage[*n as usize] += 1; + } + for n in 0..MAX_NODE_NUMBER { + if node_usage[n] > 0 { + let uuid = self.node_id_vec[n]; + if node_usage[n]*self.partition_size > self.get_node_capacity(&uuid) + .expect("Critical Error"){ + return false; + } + } + } + + //Check that the partition size stored is the one computed by the asignation + //algorithm. + let cl2 = self.clone(); + let (_ , zone_to_id) = cl2.generate_zone_ids().expect("Critical Error"); + let partition_size = cl2.compute_optimal_partition_size(&zone_to_id).expect("Critical Error"); + if partition_size != self.partition_size { + return false; + } + + true } @@ -267,7 +310,7 @@ impl ClusterLayout { self.zone_redundancy = redundancy; let mut msg = Message::new(); - msg.push(format!("Computation of a new cluster layout where partitions are + msg.push(format!("Computation of a new cluster layout where partitions are \ replicated {} times on at least {} distinct zones.", replication, redundancy)); //We generate for once numerical ids for the zone, to use them as indices in the @@ -276,16 +319,19 @@ impl ClusterLayout { msg.push(format!("The cluster contains {} nodes spread over {} zones.", self.useful_nodes().len(), id_to_zone.len())); - + //We compute the optimal partition size + //Capacities should be given in a unit so that partition size is at least 100. + //In this case, integer rounding plays a marginal role in the percentages of + //optimality. let partition_size = self.compute_optimal_partition_size(&zone_to_id)?; if old_assignation_opt != None { - msg.push(format!("Given the replication and redundancy constraint, the - optimal size of a partition is {}. In the previous layout, it used to + msg.push(format!("Given the replication and redundancy constraint, the \ + optimal size of a partition is {}. In the previous layout, it used to \ be {}.", partition_size, self.partition_size)); } else { - msg.push(format!("Given the replication and redundancy constraints, the + msg.push(format!("Given the replication and redundancy constraints, the \ optimal size of a partition is {}.", partition_size)); } self.partition_size = partition_size; @@ -293,13 +339,13 @@ impl ClusterLayout { //We compute a first flow/assignment that is heuristically close to the previous //assignment let mut gflow = self.compute_candidate_assignment( &zone_to_id, &old_assignation_opt)?; - if let Some(assoc) = &old_assignation_opt { //We minimize the distance to the previous assignment. self.minimize_rebalance_load(&mut gflow, &zone_to_id, &assoc)?; } msg.append(&mut self.output_stat(&gflow, &old_assignation_opt, &zone_to_id,&id_to_zone)?); + msg.push("".to_string()); //We update the layout structure self.update_ring_from_flow(id_to_zone.len() , &gflow)?; @@ -321,7 +367,8 @@ impl ClusterLayout { .map(|(k, _, _)| *k).collect(); if new_non_gateway_nodes.len() > MAX_NODE_NUMBER { - return Err(format!("There are more than {} non-gateway nodes in the new layout. This is not allowed.", MAX_NODE_NUMBER).to_string()); + return Err(format!("There are more than {} non-gateway nodes in the new \ + layout. This is not allowed.", MAX_NODE_NUMBER).to_string()); } let mut new_gateway_nodes: Vec = self.roles.items().iter() @@ -346,7 +393,8 @@ impl ClusterLayout { return Ok(None); } if self.ring_assignation_data.len() != nb_partitions * self.replication_factor { - return Err("The old assignation does not have a size corresponding to the old replication factor or the number of partitions.".to_string()); + return Err("The old assignation does not have a size corresponding to \ + the old replication factor or the number of partitions.".to_string()); } //We build a translation table between the uuid and new ids @@ -384,7 +432,8 @@ impl ClusterLayout { for uuid in self.node_id_vec.iter() { if self.roles.get(uuid) == None { - return Err("The uuid was not found in the node roles (this should not happen, it might be a critical error).".to_string()); + return Err("The uuid was not found in the node roles (this should \ + not happen, it might be a critical error).".to_string()); } match self.node_role(&uuid) { Some(r) => if !zone_to_id.contains_key(&r.zone) && r.capacity != None { @@ -405,7 +454,8 @@ impl ClusterLayout { let mut g = self.generate_flow_graph(1, zone_to_id, &empty_set)?; g.compute_maximal_flow()?; if g.get_flow_value()? < (nb_partitions*self.replication_factor).try_into().unwrap() { - return Err("The storage capacity of he cluster is to small. It is impossible to store partitions of size 1.".to_string()); + return Err("The storage capacity of he cluster is to small. It is \ + impossible to store partitions of size 1.".to_string()); } let mut s_down = 1; @@ -525,11 +575,12 @@ impl ClusterLayout { } if self.ring_assignation_data.len() != NB_PARTITIONS*self.replication_factor { - return Err("Critical Error : the association ring we produced does not have the right size.".to_string()); + return Err("Critical Error : the association ring we produced does not \ + have the right size.".to_string()); } return Ok(()); } - + //This function returns a message summing up the partition repartition of the new //layout. @@ -546,9 +597,16 @@ impl ClusterLayout { let percent_cap = 100.0*(used_cap as f32)/(total_cap as f32); msg.push(format!("Available capacity / Total cluster capacity: {} / {} ({:.1} %)", used_cap , total_cap , percent_cap )); - msg.push(format!("If the percentage is to low, it might be that the replication/redundancy constraints force the use of nodes/zones with small storage capacities. - You might want to rebalance the storage capacities or relax the constraints. See the detailed statistics below and look for saturated nodes/zones.")); - msg.push(format!("Recall that because of the replication, the actual available storage capacity is {} / {} = {}.", used_cap , self.replication_factor , used_cap/self.replication_factor as u32)); + msg.push(format!("")); + msg.push(format!("If the percentage is to low, it might be that the \ + replication/redundancy constraints force the use of nodes/zones with small \ + storage capacities. \ + You might want to rebalance the storage capacities or relax the constraints. \ + See the detailed statistics below and look for saturated nodes/zones.")); + msg.push(format!("Recall that because of the replication, the actual available \ + storage capacity is {} / {} = {}.", + used_cap , self.replication_factor , + used_cap/self.replication_factor as u32)); //We define and fill in the following tables let storing_nodes = self.useful_nodes(); @@ -563,6 +621,16 @@ impl ClusterLayout { let pz_nodes = gflow.get_positive_flow_from(Vertex::PZ(p,z))?; if pz_nodes.len() > 0 { stored_partitions_zone[z] += 1; + if let Some(old_assoc) = old_assoc_opt { + let mut old_zones_of_p = Vec::::new(); + for n in old_assoc[p].iter() { + old_zones_of_p.push( + zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?]); + } + if !old_zones_of_p.contains(&z) { + new_partitions_zone[z] += 1; + } + } } for vert in pz_nodes.iter() { if let Vertex::N(n) = *vert { @@ -574,21 +642,17 @@ impl ClusterLayout { } } } - if let Some(old_assoc) = old_assoc_opt { - let mut old_zones_of_p = Vec::::new(); - for n in old_assoc[p].iter() { - old_zones_of_p.push( - zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?]); - } - if !old_zones_of_p.contains(&z) { - new_partitions_zone[z] += 1; - } - } } } + + if *old_assoc_opt == None { + new_partitions = stored_partitions.clone(); + new_partitions_zone = stored_partitions_zone.clone(); + } //We display the statistics + msg.push(format!("")); if *old_assoc_opt != None { let total_new_partitions : usize = new_partitions.iter().sum(); msg.push(format!("A total of {} new copies of partitions need to be \ @@ -608,16 +672,9 @@ impl ClusterLayout { .map(|n| stored_partitions[*n]).sum(); msg.push(format!("")); - if *old_assoc_opt != None { - msg.push(format!("Zone {}: {} distinct partitions stored ({} new, \ + msg.push(format!("Zone {}: {} distinct partitions stored ({} new, \ {} partition copies) ", id_to_zone[z], stored_partitions_zone[z], new_partitions_zone[z], replicated_partitions)); - } - else{ - msg.push(format!("Zone {}: {} distinct partitions stored ({} partition \ - copies) ", - id_to_zone[z], stored_partitions_zone[z], replicated_partitions)); - } let available_cap_z : u32 = self.partition_size*replicated_partitions as u32; let mut total_cap_z = 0; @@ -625,18 +682,17 @@ impl ClusterLayout { total_cap_z += self.get_node_capacity(&self.node_id_vec[*n])?; } let percent_cap_z = 100.0*(available_cap_z as f32)/(total_cap_z as f32); - msg.push(format!(" Available capacity / Total capacity: {}/{} ({:.1}%).", + msg.push(format!(" Available capacity / Total capacity: {}/{} ({:.1}%).", available_cap_z, total_cap_z, percent_cap_z)); - msg.push(format!("")); for n in nodes_of_z.iter() { let available_cap_n = stored_partitions[*n] as u32 *self.partition_size; let total_cap_n =self.get_node_capacity(&self.node_id_vec[*n])?; let tags_n = (self.node_role(&self.node_id_vec[*n]) .ok_or("Node not found."))?.tags_string(); - msg.push(format!(" Node {}: {} partitions ({} new) ; \ + msg.push(format!(" Node {}: {} partitions ({} new) ; \ available/total capacity: {} / {} ({:.1}%) ; tags:{}", - &self.node_id_vec[*n].to_vec().encode_hex::(), + &self.node_id_vec[*n].to_vec()[0..2].to_vec().encode_hex::(), stored_partitions[*n], new_partitions[*n], available_cap_n, total_cap_n, (available_cap_n as f32)/(total_cap_n as f32)*100.0 , @@ -654,16 +710,14 @@ impl ClusterLayout { #[cfg(test)] mod tests { use super::*; - use itertools::Itertools; - + use std::io::*; +// use itertools::Itertools; +/* fn check_assignation(cl: &ClusterLayout) { //Check that input data has the right format let nb_partitions = 1usize << PARTITION_BITS; - assert!([1, 2, 3].contains(&cl.replication_factor)); assert!(cl.ring_assignation_data.len() == nb_partitions * cl.replication_factor); - let (node_zone, node_capacity) = cl.get_node_zone_capacity(); - //Check that is is a correct assignation with zone redundancy let rf = cl.replication_factor; for i in 0..nb_partitions { @@ -743,6 +797,13 @@ mod tests { } } } +*/ + + fn show_msg(msg : &Message) { + for s in msg.iter(){ + println!("{}",s); + } + } fn update_layout( cl: &mut ClusterLayout, @@ -769,7 +830,8 @@ mod tests { #[test] fn test_assignation() { - let mut node_id_vec = vec![1, 2, 3]; + std::io::stdout().flush().ok().expect("Could not flush stdout"); + let mut node_id_vec = vec![1, 2, 3]; let mut node_capacity_vec = vec![4000, 1000, 2000]; let mut node_zone_vec = vec!["A", "B", "C"] .into_iter() @@ -782,14 +844,16 @@ mod tests { roles: LwwMap::new(), replication_factor: 3, + zone_redundancy: 1, + partition_size: 0, ring_assignation_data: vec![], version: 0, staging: LwwMap::new(), - staging_hash: sha256sum(&[1; 32]), + staging_hash: blake2sum(&rmp_to_vec_all_named(&LwwMap::::new()).unwrap()[..]), }; update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec); - cl.calculate_partition_assignation(); - check_assignation(&cl); + show_msg(&cl.calculate_partition_assignation(3,3).unwrap()); + assert!(cl.check()); node_id_vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9]; node_capacity_vec = vec![4000, 1000, 1000, 3000, 1000, 1000, 2000, 10000, 2000]; @@ -798,17 +862,18 @@ mod tests { .map(|x| x.to_string()) .collect(); update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec); - cl.calculate_partition_assignation(); - check_assignation(&cl); + show_msg(&cl.calculate_partition_assignation(3,3).unwrap()); + assert!(cl.check()); node_capacity_vec = vec![4000, 1000, 2000, 7000, 1000, 1000, 2000, 10000, 2000]; update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec); - cl.calculate_partition_assignation(); - check_assignation(&cl); + show_msg(&cl.calculate_partition_assignation(3,3).unwrap()); + assert!(cl.check()); - node_capacity_vec = vec![4000, 4000, 2000, 7000, 1000, 9000, 2000, 10, 2000]; + node_capacity_vec = vec![4000000, 4000000, 2000000, 7000000, 1000000, 9000000, 2000000, 10000, 2000000]; update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec); - cl.calculate_partition_assignation(); - check_assignation(&cl); + show_msg(&cl.calculate_partition_assignation(3,1).unwrap()); + assert!(cl.check()); + } }