forked from Deuxfleurs/garage
846 lines
27 KiB
Rust
846 lines
27 KiB
Rust
use std::collections::HashMap;
|
|
use std::collections::HashSet;
|
|
use std::convert::TryInto;
|
|
|
|
use bytesize::ByteSize;
|
|
use itertools::Itertools;
|
|
|
|
use garage_util::crdt::{Crdt, LwwMap};
|
|
use garage_util::data::*;
|
|
use garage_util::error::*;
|
|
|
|
use super::graph_algo::*;
|
|
use super::*;
|
|
|
|
// The Message type will be used to collect information on the algorithm.
|
|
pub type Message = Vec<String>;
|
|
|
|
impl LayoutVersion {
|
|
pub fn new(replication_factor: usize) -> Self {
|
|
// We set the default zone redundancy to be Maximum, meaning that the maximum
|
|
// possible value will be used depending on the cluster topology
|
|
let parameters = LayoutParameters {
|
|
zone_redundancy: ZoneRedundancy::Maximum,
|
|
};
|
|
|
|
LayoutVersion {
|
|
version: 0,
|
|
replication_factor,
|
|
partition_size: 0,
|
|
roles: LwwMap::new(),
|
|
node_id_vec: Vec::new(),
|
|
nongateway_node_count: 0,
|
|
ring_assignment_data: Vec::new(),
|
|
parameters,
|
|
}
|
|
}
|
|
|
|
// ===================== accessors ======================
|
|
|
|
/// Returns a list of IDs of nodes that have a role in this
|
|
/// version of the cluster layout, including gateway nodes
|
|
pub fn all_nodes(&self) -> &[Uuid] {
|
|
&self.node_id_vec[..]
|
|
}
|
|
|
|
/// Returns a list of IDs of nodes that have a storage capacity
|
|
/// assigned in this version of the cluster layout
|
|
pub fn nongateway_nodes(&self) -> &[Uuid] {
|
|
&self.node_id_vec[..self.nongateway_node_count]
|
|
}
|
|
|
|
/// Returns the role of a node in the layout, if it has one
|
|
pub fn node_role(&self, node: &Uuid) -> Option<&NodeRole> {
|
|
match self.roles.get(node) {
|
|
Some(NodeRoleV(Some(v))) => Some(v),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// Returns the capacity of a node in the layout, if it has one
|
|
pub fn get_node_capacity(&self, uuid: &Uuid) -> Option<u64> {
|
|
match self.node_role(uuid) {
|
|
Some(NodeRole {
|
|
capacity: Some(cap),
|
|
zone: _,
|
|
tags: _,
|
|
}) => Some(*cap),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// Given a node uuids, this function returns the label of its zone if it has one
|
|
pub fn get_node_zone(&self, uuid: &Uuid) -> Option<&str> {
|
|
match self.node_role(uuid) {
|
|
Some(role) => Some(&role.zone),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// Returns the number of partitions associated to this node in the ring
|
|
pub fn get_node_usage(&self, uuid: &Uuid) -> Result<usize, Error> {
|
|
for (i, id) in self.node_id_vec.iter().enumerate() {
|
|
if id == uuid {
|
|
let mut count = 0;
|
|
for nod in self.ring_assignment_data.iter() {
|
|
if i as u8 == *nod {
|
|
count += 1
|
|
}
|
|
}
|
|
return Ok(count);
|
|
}
|
|
}
|
|
Err(Error::Message(
|
|
"The Uuid does not correspond to a node present in the \
|
|
cluster or this node does not have a positive capacity."
|
|
.into(),
|
|
))
|
|
}
|
|
|
|
/// Get the partition in which data would fall on
|
|
pub fn partition_of(&self, position: &Hash) -> Partition {
|
|
let top = u16::from_be_bytes(position.as_slice()[0..2].try_into().unwrap());
|
|
top >> (16 - PARTITION_BITS)
|
|
}
|
|
|
|
/// Get the list of partitions and the first hash of a partition key that would fall in it
|
|
pub fn partitions(&self) -> impl Iterator<Item = (Partition, Hash)> + '_ {
|
|
(0..(1 << PARTITION_BITS)).map(|i| {
|
|
let top = (i as u16) << (16 - PARTITION_BITS);
|
|
let mut location = [0u8; 32];
|
|
location[..2].copy_from_slice(&u16::to_be_bytes(top)[..]);
|
|
(i as u16, Hash::from(location))
|
|
})
|
|
}
|
|
|
|
/// Return the n servers in which data for this hash should be replicated
|
|
pub fn nodes_of(&self, position: &Hash, n: usize) -> impl Iterator<Item = Uuid> + '_ {
|
|
assert_eq!(n, self.replication_factor);
|
|
|
|
let data = &self.ring_assignment_data;
|
|
|
|
let partition_nodes = if data.len() == self.replication_factor * (1 << PARTITION_BITS) {
|
|
let partition_idx = self.partition_of(position) as usize;
|
|
let partition_start = partition_idx * self.replication_factor;
|
|
let partition_end = (partition_idx + 1) * self.replication_factor;
|
|
&data[partition_start..partition_end]
|
|
} else {
|
|
warn!("Ring not yet ready, read/writes will be lost!");
|
|
&[]
|
|
};
|
|
|
|
partition_nodes
|
|
.iter()
|
|
.map(move |i| self.node_id_vec[*i as usize])
|
|
}
|
|
|
|
// ===================== internal information extractors ======================
|
|
|
|
pub(crate) fn expect_get_node_capacity(&self, uuid: &Uuid) -> u64 {
|
|
self.get_node_capacity(uuid)
|
|
.expect("non-gateway node with zero capacity")
|
|
}
|
|
|
|
pub(crate) fn expect_get_node_zone(&self, uuid: &Uuid) -> &str {
|
|
self.get_node_zone(uuid).expect("node without a zone")
|
|
}
|
|
|
|
/// Returns the sum of capacities of non gateway nodes in the cluster
|
|
fn get_total_capacity(&self) -> u64 {
|
|
let mut total_capacity = 0;
|
|
for uuid in self.nongateway_nodes() {
|
|
total_capacity += self.expect_get_node_capacity(uuid);
|
|
}
|
|
total_capacity
|
|
}
|
|
|
|
/// Returns the effective value of the zone_redundancy parameter
|
|
pub(crate) fn effective_zone_redundancy(&self) -> usize {
|
|
match self.parameters.zone_redundancy {
|
|
ZoneRedundancy::AtLeast(v) => v,
|
|
ZoneRedundancy::Maximum => {
|
|
let n_zones = self
|
|
.roles
|
|
.items()
|
|
.iter()
|
|
.filter_map(|(_, _, role)| role.0.as_ref().map(|x| x.zone.as_str()))
|
|
.collect::<HashSet<&str>>()
|
|
.len();
|
|
std::cmp::min(n_zones, self.replication_factor)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check a cluster layout for internal consistency
|
|
/// (assignment, roles, parameters, partition size)
|
|
/// returns true if consistent, false if error
|
|
pub fn check(&self) -> Result<(), String> {
|
|
// Check that the assignment data has the correct length
|
|
let expected_assignment_data_len = (1 << PARTITION_BITS) * self.replication_factor;
|
|
if self.ring_assignment_data.len() != expected_assignment_data_len {
|
|
return Err(format!(
|
|
"ring_assignment_data has incorrect length {} instead of {}",
|
|
self.ring_assignment_data.len(),
|
|
expected_assignment_data_len
|
|
));
|
|
}
|
|
|
|
// Check that node_id_vec contains the correct list of nodes
|
|
let mut expected_nodes = self
|
|
.roles
|
|
.items()
|
|
.iter()
|
|
.filter(|(_, _, v)| v.0.is_some())
|
|
.map(|(id, _, _)| *id)
|
|
.collect::<Vec<_>>();
|
|
expected_nodes.sort();
|
|
let mut node_id_vec = self.node_id_vec.clone();
|
|
node_id_vec.sort();
|
|
if expected_nodes != node_id_vec {
|
|
return Err(format!("node_id_vec does not contain the correct set of nodes\nnode_id_vec: {:?}\nexpected: {:?}", node_id_vec, expected_nodes));
|
|
}
|
|
|
|
// Check that the assigned nodes are correct identifiers
|
|
// of nodes that are assigned a role
|
|
// and that role is not the role of a gateway nodes
|
|
for x in self.ring_assignment_data.iter() {
|
|
if *x as usize >= self.node_id_vec.len() {
|
|
return Err(format!(
|
|
"ring_assignment_data contains invalid node id {}",
|
|
*x
|
|
));
|
|
}
|
|
let node = self.node_id_vec[*x as usize];
|
|
match self.roles.get(&node) {
|
|
Some(NodeRoleV(Some(x))) if x.capacity.is_some() => (),
|
|
_ => return Err("ring_assignment_data contains id of a gateway node".into()),
|
|
}
|
|
}
|
|
|
|
// Check that every partition is associated to distinct nodes
|
|
let zone_redundancy = self.effective_zone_redundancy();
|
|
let rf = self.replication_factor;
|
|
for p in 0..(1 << PARTITION_BITS) {
|
|
let nodes_of_p = self.ring_assignment_data[rf * p..rf * (p + 1)].to_vec();
|
|
if nodes_of_p.iter().unique().count() != rf {
|
|
return Err(format!("partition does not contain {} unique node ids", rf));
|
|
}
|
|
// Check that every partition is spread over at least zone_redundancy zones.
|
|
let zones_of_p = nodes_of_p
|
|
.iter()
|
|
.map(|n| self.expect_get_node_zone(&self.node_id_vec[*n as usize]))
|
|
.collect::<Vec<_>>();
|
|
if zones_of_p.iter().unique().count() < zone_redundancy {
|
|
return Err(format!(
|
|
"nodes of partition are in less than {} distinct zones",
|
|
zone_redundancy
|
|
));
|
|
}
|
|
}
|
|
|
|
// Check that the nodes capacities is consistent with the stored partitions
|
|
let mut node_usage = vec![0; MAX_NODE_NUMBER];
|
|
for n in self.ring_assignment_data.iter() {
|
|
node_usage[*n as usize] += 1;
|
|
}
|
|
for (n, usage) in node_usage.iter().enumerate() {
|
|
if *usage > 0 {
|
|
let uuid = self.node_id_vec[n];
|
|
let partusage = usage * self.partition_size;
|
|
let nodecap = self.expect_get_node_capacity(&uuid);
|
|
if partusage > nodecap {
|
|
return Err(format!(
|
|
"node usage ({}) is bigger than node capacity ({})",
|
|
usage * self.partition_size,
|
|
nodecap
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that the partition size stored is the one computed by the asignation
|
|
// algorithm.
|
|
let cl2 = self.clone();
|
|
let (_, zone_to_id) = cl2.generate_nongateway_zone_ids().unwrap();
|
|
match cl2.compute_optimal_partition_size(&zone_to_id, zone_redundancy) {
|
|
Ok(s) if s != self.partition_size => {
|
|
return Err(format!(
|
|
"partition_size ({}) is different than optimal value ({})",
|
|
self.partition_size, s
|
|
))
|
|
}
|
|
Err(e) => return Err(format!("could not calculate optimal partition size: {}", e)),
|
|
_ => (),
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// ================== updates to layout, internals ===================
|
|
|
|
pub(crate) fn calculate_next_version(
|
|
mut self,
|
|
staging: &LayoutStaging,
|
|
) -> Result<(Self, Message), Error> {
|
|
self.version += 1;
|
|
|
|
self.roles.merge(&staging.roles);
|
|
self.roles.retain(|(_, _, v)| v.0.is_some());
|
|
self.parameters = *staging.parameters.get();
|
|
|
|
let msg = self.calculate_partition_assignment()?;
|
|
|
|
Ok((self, msg))
|
|
}
|
|
|
|
/// This function calculates a new partition-to-node assignment.
|
|
/// The computed assignment respects the node replication factor
|
|
/// and the zone redundancy parameter It maximizes the capacity of a
|
|
/// partition (assuming all partitions have the same size).
|
|
/// Among such optimal assignment, it minimizes the distance to
|
|
/// the former assignment (if any) to minimize the amount of
|
|
/// data to be moved.
|
|
/// Staged role changes must be merged with nodes roles before calling this function,
|
|
/// hence it must only be called from apply_staged_changes() and hence is not public.
|
|
fn calculate_partition_assignment(&mut self) -> Result<Message, Error> {
|
|
// We update the node ids, since the node role list might have changed with the
|
|
// changes in the layout. We retrieve the old_assignment reframed with new ids
|
|
let old_assignment_opt = self.update_node_id_vec()?;
|
|
|
|
let zone_redundancy = self.effective_zone_redundancy();
|
|
|
|
let mut msg = Message::new();
|
|
msg.push("==== COMPUTATION OF A NEW PARTITION ASSIGNATION ====".into());
|
|
msg.push("".into());
|
|
msg.push(format!(
|
|
"Partitions are \
|
|
replicated {} times on at least {} distinct zones.",
|
|
self.replication_factor, zone_redundancy
|
|
));
|
|
|
|
// We generate for once numerical ids for the zones of non gateway nodes,
|
|
// to use them as indices in the flow graphs.
|
|
let (id_to_zone, zone_to_id) = self.generate_nongateway_zone_ids()?;
|
|
|
|
if self.nongateway_nodes().len() < self.replication_factor {
|
|
return Err(Error::Message(format!(
|
|
"The number of nodes with positive \
|
|
capacity ({}) is smaller than the replication factor ({}).",
|
|
self.nongateway_nodes().len(),
|
|
self.replication_factor
|
|
)));
|
|
}
|
|
if id_to_zone.len() < zone_redundancy {
|
|
return Err(Error::Message(format!(
|
|
"The number of zones with non-gateway \
|
|
nodes ({}) is smaller than the redundancy parameter ({})",
|
|
id_to_zone.len(),
|
|
zone_redundancy
|
|
)));
|
|
}
|
|
|
|
// We compute the optimal partition size
|
|
// Capacities should be given in a unit so that partition size is at least 100.
|
|
// In this case, integer rounding plays a marginal role in the percentages of
|
|
// optimality.
|
|
let partition_size = self.compute_optimal_partition_size(&zone_to_id, zone_redundancy)?;
|
|
|
|
msg.push("".into());
|
|
if old_assignment_opt.is_some() {
|
|
msg.push(format!(
|
|
"Optimal partition size: {} ({} in previous layout)",
|
|
ByteSize::b(partition_size).to_string_as(false),
|
|
ByteSize::b(self.partition_size).to_string_as(false)
|
|
));
|
|
} else {
|
|
msg.push(format!(
|
|
"Optimal partition size: {}",
|
|
ByteSize::b(partition_size).to_string_as(false)
|
|
));
|
|
}
|
|
// We write the partition size.
|
|
self.partition_size = partition_size;
|
|
|
|
if partition_size < 100 {
|
|
msg.push(
|
|
"WARNING: The partition size is low (< 100), make sure the capacities of your nodes are correct and are of at least a few MB"
|
|
.into(),
|
|
);
|
|
}
|
|
|
|
// We compute a first flow/assignment that is heuristically close to the previous
|
|
// assignment
|
|
let mut gflow =
|
|
self.compute_candidate_assignment(&zone_to_id, &old_assignment_opt, zone_redundancy)?;
|
|
if let Some(assoc) = &old_assignment_opt {
|
|
// We minimize the distance to the previous assignment.
|
|
self.minimize_rebalance_load(&mut gflow, &zone_to_id, assoc)?;
|
|
}
|
|
|
|
// We display statistics of the computation
|
|
msg.extend(self.output_stat(&gflow, &old_assignment_opt, &zone_to_id, &id_to_zone)?);
|
|
|
|
// We update the layout structure
|
|
self.update_ring_from_flow(id_to_zone.len(), &gflow)?;
|
|
|
|
if let Err(e) = self.check() {
|
|
return Err(Error::Message(
|
|
format!("Layout check returned an error: {}\nOriginal result of computation: <<<<\n{}\n>>>>", e, msg.join("\n"))
|
|
));
|
|
}
|
|
|
|
Ok(msg)
|
|
}
|
|
|
|
/// The LwwMap of node roles might have changed. This function updates the node_id_vec
|
|
/// and returns the assignment given by ring, with the new indices of the nodes, and
|
|
/// None if the node is not present anymore.
|
|
/// We work with the assumption that only this function and calculate_new_assignment
|
|
/// do modify assignment_ring and node_id_vec.
|
|
fn update_node_id_vec(&mut self) -> Result<Option<Vec<Vec<usize>>>, Error> {
|
|
// (1) We compute the new node list
|
|
// Non gateway nodes should be coded on 8bits, hence they must be first in the list
|
|
// We build the new node ids
|
|
let new_non_gateway_nodes: Vec<Uuid> = self
|
|
.roles
|
|
.items()
|
|
.iter()
|
|
.filter(|(_, _, v)| matches!(&v.0, Some(r) if r.capacity.is_some()))
|
|
.map(|(k, _, _)| *k)
|
|
.collect();
|
|
|
|
if new_non_gateway_nodes.len() > MAX_NODE_NUMBER {
|
|
return Err(Error::Message(format!(
|
|
"There are more than {} non-gateway nodes in the new \
|
|
layout. This is not allowed.",
|
|
MAX_NODE_NUMBER
|
|
)));
|
|
}
|
|
|
|
let new_gateway_nodes: Vec<Uuid> = self
|
|
.roles
|
|
.items()
|
|
.iter()
|
|
.filter(|(_, _, v)| matches!(v, NodeRoleV(Some(r)) if r.capacity.is_none()))
|
|
.map(|(k, _, _)| *k)
|
|
.collect();
|
|
|
|
let old_node_id_vec = std::mem::take(&mut self.node_id_vec);
|
|
|
|
self.nongateway_node_count = new_non_gateway_nodes.len();
|
|
self.node_id_vec.clear();
|
|
self.node_id_vec.extend(new_non_gateway_nodes);
|
|
self.node_id_vec.extend(new_gateway_nodes);
|
|
|
|
let new_node_id_vec = &self.node_id_vec;
|
|
|
|
// (2) We retrieve the old association
|
|
// We rewrite the old association with the new indices. We only consider partition
|
|
// to node assignments where the node is still in use.
|
|
if self.ring_assignment_data.is_empty() {
|
|
// This is a new association
|
|
return Ok(None);
|
|
}
|
|
|
|
if self.ring_assignment_data.len() != NB_PARTITIONS * self.replication_factor {
|
|
return Err(Error::Message(
|
|
"The old assignment does not have a size corresponding to \
|
|
the old replication factor or the number of partitions."
|
|
.into(),
|
|
));
|
|
}
|
|
|
|
// We build a translation table between the uuid and new ids
|
|
let mut uuid_to_new_id = HashMap::<Uuid, usize>::new();
|
|
|
|
// We add the indices of only the new non-gateway nodes that can be used in the
|
|
// association ring
|
|
for (i, uuid) in new_node_id_vec.iter().enumerate() {
|
|
uuid_to_new_id.insert(*uuid, i);
|
|
}
|
|
|
|
let mut old_assignment = vec![Vec::<usize>::new(); NB_PARTITIONS];
|
|
let rf = self.replication_factor;
|
|
|
|
for (p, old_assign_p) in old_assignment.iter_mut().enumerate() {
|
|
for old_id in &self.ring_assignment_data[p * rf..(p + 1) * rf] {
|
|
let uuid = old_node_id_vec[*old_id as usize];
|
|
if uuid_to_new_id.contains_key(&uuid) {
|
|
old_assign_p.push(uuid_to_new_id[&uuid]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// We clear the ring assignemnt data
|
|
self.ring_assignment_data = Vec::<CompactNodeType>::new();
|
|
|
|
Ok(Some(old_assignment))
|
|
}
|
|
|
|
/// This function generates ids for the zone of the nodes appearing in
|
|
/// self.node_id_vec.
|
|
pub(crate) fn generate_nongateway_zone_ids(
|
|
&self,
|
|
) -> Result<(Vec<String>, HashMap<String, usize>), Error> {
|
|
let mut id_to_zone = Vec::<String>::new();
|
|
let mut zone_to_id = HashMap::<String, usize>::new();
|
|
|
|
for uuid in self.nongateway_nodes().iter() {
|
|
let r = self.node_role(uuid).unwrap();
|
|
if !zone_to_id.contains_key(&r.zone) && r.capacity.is_some() {
|
|
zone_to_id.insert(r.zone.clone(), id_to_zone.len());
|
|
id_to_zone.push(r.zone.clone());
|
|
}
|
|
}
|
|
Ok((id_to_zone, zone_to_id))
|
|
}
|
|
|
|
/// This function computes by dichotomy the largest realizable partition size, given
|
|
/// the layout roles and parameters.
|
|
fn compute_optimal_partition_size(
|
|
&self,
|
|
zone_to_id: &HashMap<String, usize>,
|
|
zone_redundancy: usize,
|
|
) -> Result<u64, Error> {
|
|
let empty_set = HashSet::<(usize, usize)>::new();
|
|
let mut g = self.generate_flow_graph(1, zone_to_id, &empty_set, zone_redundancy)?;
|
|
g.compute_maximal_flow()?;
|
|
if g.get_flow_value()? < (NB_PARTITIONS * self.replication_factor) as i64 {
|
|
return Err(Error::Message(
|
|
"The storage capacity of he cluster is to small. It is \
|
|
impossible to store partitions of size 1."
|
|
.into(),
|
|
));
|
|
}
|
|
|
|
let mut s_down = 1;
|
|
let mut s_up = self.get_total_capacity();
|
|
while s_down + 1 < s_up {
|
|
g = self.generate_flow_graph(
|
|
(s_down + s_up) / 2,
|
|
zone_to_id,
|
|
&empty_set,
|
|
zone_redundancy,
|
|
)?;
|
|
g.compute_maximal_flow()?;
|
|
if g.get_flow_value()? < (NB_PARTITIONS * self.replication_factor) as i64 {
|
|
s_up = (s_down + s_up) / 2;
|
|
} else {
|
|
s_down = (s_down + s_up) / 2;
|
|
}
|
|
}
|
|
|
|
Ok(s_down)
|
|
}
|
|
|
|
fn generate_graph_vertices(nb_zones: usize, nb_nodes: usize) -> Vec<Vertex> {
|
|
let mut vertices = vec![Vertex::Source, Vertex::Sink];
|
|
for p in 0..NB_PARTITIONS {
|
|
vertices.push(Vertex::Pup(p));
|
|
vertices.push(Vertex::Pdown(p));
|
|
for z in 0..nb_zones {
|
|
vertices.push(Vertex::PZ(p, z));
|
|
}
|
|
}
|
|
for n in 0..nb_nodes {
|
|
vertices.push(Vertex::N(n));
|
|
}
|
|
vertices
|
|
}
|
|
|
|
/// Generates the graph to compute the maximal flow corresponding to the optimal
|
|
/// partition assignment.
|
|
/// exclude_assoc is the set of (partition, node) association that we are forbidden
|
|
/// to use (hence we do not add the corresponding edge to the graph). This parameter
|
|
/// is used to compute a first flow that uses only edges appearing in the previous
|
|
/// assignment. This produces a solution that heuristically should be close to the
|
|
/// previous one.
|
|
fn generate_flow_graph(
|
|
&self,
|
|
partition_size: u64,
|
|
zone_to_id: &HashMap<String, usize>,
|
|
exclude_assoc: &HashSet<(usize, usize)>,
|
|
zone_redundancy: usize,
|
|
) -> Result<Graph<FlowEdge>, Error> {
|
|
let vertices =
|
|
LayoutVersion::generate_graph_vertices(zone_to_id.len(), self.nongateway_nodes().len());
|
|
let mut g = Graph::<FlowEdge>::new(&vertices);
|
|
let nb_zones = zone_to_id.len();
|
|
for p in 0..NB_PARTITIONS {
|
|
g.add_edge(Vertex::Source, Vertex::Pup(p), zone_redundancy as u64)?;
|
|
g.add_edge(
|
|
Vertex::Source,
|
|
Vertex::Pdown(p),
|
|
(self.replication_factor - zone_redundancy) as u64,
|
|
)?;
|
|
for z in 0..nb_zones {
|
|
g.add_edge(Vertex::Pup(p), Vertex::PZ(p, z), 1)?;
|
|
g.add_edge(
|
|
Vertex::Pdown(p),
|
|
Vertex::PZ(p, z),
|
|
self.replication_factor as u64,
|
|
)?;
|
|
}
|
|
}
|
|
for n in 0..self.nongateway_nodes().len() {
|
|
let node_capacity = self.expect_get_node_capacity(&self.node_id_vec[n]);
|
|
let node_zone = zone_to_id[self.expect_get_node_zone(&self.node_id_vec[n])];
|
|
g.add_edge(Vertex::N(n), Vertex::Sink, node_capacity / partition_size)?;
|
|
for p in 0..NB_PARTITIONS {
|
|
if !exclude_assoc.contains(&(p, n)) {
|
|
g.add_edge(Vertex::PZ(p, node_zone), Vertex::N(n), 1)?;
|
|
}
|
|
}
|
|
}
|
|
Ok(g)
|
|
}
|
|
|
|
/// This function computes a first optimal assignment (in the form of a flow graph).
|
|
fn compute_candidate_assignment(
|
|
&self,
|
|
zone_to_id: &HashMap<String, usize>,
|
|
prev_assign_opt: &Option<Vec<Vec<usize>>>,
|
|
zone_redundancy: usize,
|
|
) -> Result<Graph<FlowEdge>, Error> {
|
|
// We list the (partition,node) associations that are not used in the
|
|
// previous assignment
|
|
let mut exclude_edge = HashSet::<(usize, usize)>::new();
|
|
if let Some(prev_assign) = prev_assign_opt {
|
|
let nb_nodes = self.nongateway_nodes().len();
|
|
for (p, prev_assign_p) in prev_assign.iter().enumerate() {
|
|
for n in 0..nb_nodes {
|
|
exclude_edge.insert((p, n));
|
|
}
|
|
for n in prev_assign_p.iter() {
|
|
exclude_edge.remove(&(p, *n));
|
|
}
|
|
}
|
|
}
|
|
|
|
// We compute the best flow using only the edges used in the previous assignment
|
|
let mut g = self.generate_flow_graph(
|
|
self.partition_size,
|
|
zone_to_id,
|
|
&exclude_edge,
|
|
zone_redundancy,
|
|
)?;
|
|
g.compute_maximal_flow()?;
|
|
|
|
// We add the excluded edges and compute the maximal flow with the full graph.
|
|
// The algorithm is such that it will start with the flow that we just computed
|
|
// and find ameliorating paths from that.
|
|
for (p, n) in exclude_edge.iter() {
|
|
let node_zone = zone_to_id[self.expect_get_node_zone(&self.node_id_vec[*n])];
|
|
g.add_edge(Vertex::PZ(*p, node_zone), Vertex::N(*n), 1)?;
|
|
}
|
|
g.compute_maximal_flow()?;
|
|
Ok(g)
|
|
}
|
|
|
|
/// This function updates the flow graph gflow to minimize the distance between
|
|
/// its corresponding assignment and the previous one
|
|
fn minimize_rebalance_load(
|
|
&self,
|
|
gflow: &mut Graph<FlowEdge>,
|
|
zone_to_id: &HashMap<String, usize>,
|
|
prev_assign: &[Vec<usize>],
|
|
) -> Result<(), Error> {
|
|
// We define a cost function on the edges (pairs of vertices) corresponding
|
|
// to the distance between the two assignments.
|
|
let mut cost = CostFunction::new();
|
|
for (p, assoc_p) in prev_assign.iter().enumerate() {
|
|
for n in assoc_p.iter() {
|
|
let node_zone = zone_to_id[self.expect_get_node_zone(&self.node_id_vec[*n])];
|
|
cost.insert((Vertex::PZ(p, node_zone), Vertex::N(*n)), -1);
|
|
}
|
|
}
|
|
|
|
// We compute the maximal length of a simple path in gflow. It is used in the
|
|
// Bellman-Ford algorithm in optimize_flow_with_cost to set the number
|
|
// of iterations.
|
|
let nb_nodes = self.nongateway_nodes().len();
|
|
let path_length = 4 * nb_nodes;
|
|
gflow.optimize_flow_with_cost(&cost, path_length)?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// This function updates the assignment ring from the flow graph.
|
|
fn update_ring_from_flow(
|
|
&mut self,
|
|
nb_zones: usize,
|
|
gflow: &Graph<FlowEdge>,
|
|
) -> Result<(), Error> {
|
|
self.ring_assignment_data = Vec::<CompactNodeType>::new();
|
|
for p in 0..NB_PARTITIONS {
|
|
for z in 0..nb_zones {
|
|
let assoc_vertex = gflow.get_positive_flow_from(Vertex::PZ(p, z))?;
|
|
for vertex in assoc_vertex.iter() {
|
|
if let Vertex::N(n) = vertex {
|
|
self.ring_assignment_data.push((*n).try_into().unwrap());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if self.ring_assignment_data.len() != NB_PARTITIONS * self.replication_factor {
|
|
return Err(Error::Message(
|
|
"Critical Error : the association ring we produced does not \
|
|
have the right size."
|
|
.into(),
|
|
));
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// This function returns a message summing up the partition repartition of the new
|
|
/// layout, and other statistics of the partition assignment computation.
|
|
fn output_stat(
|
|
&self,
|
|
gflow: &Graph<FlowEdge>,
|
|
prev_assign_opt: &Option<Vec<Vec<usize>>>,
|
|
zone_to_id: &HashMap<String, usize>,
|
|
id_to_zone: &[String],
|
|
) -> Result<Message, Error> {
|
|
let mut msg = Message::new();
|
|
|
|
let used_cap = self.partition_size * NB_PARTITIONS as u64 * self.replication_factor as u64;
|
|
let total_cap = self.get_total_capacity();
|
|
let percent_cap = 100.0 * (used_cap as f32) / (total_cap as f32);
|
|
msg.push(format!(
|
|
"Usable capacity / total cluster capacity: {} / {} ({:.1} %)",
|
|
ByteSize::b(used_cap).to_string_as(false),
|
|
ByteSize::b(total_cap).to_string_as(false),
|
|
percent_cap
|
|
));
|
|
msg.push(format!(
|
|
"Effective capacity (replication factor {}): {}",
|
|
self.replication_factor,
|
|
ByteSize::b(used_cap / self.replication_factor as u64).to_string_as(false)
|
|
));
|
|
if percent_cap < 80. {
|
|
msg.push("".into());
|
|
msg.push(
|
|
"If the percentage is too low, it might be that the \
|
|
cluster topology and redundancy constraints are forcing the use of nodes/zones with small \
|
|
storage capacities."
|
|
.into(),
|
|
);
|
|
msg.push(
|
|
"You might want to move storage capacity between zones or relax the redundancy constraint."
|
|
.into(),
|
|
);
|
|
msg.push(
|
|
"See the detailed statistics below and look for saturated nodes/zones.".into(),
|
|
);
|
|
}
|
|
|
|
// We define and fill in the following tables
|
|
let storing_nodes = self.nongateway_nodes();
|
|
let mut new_partitions = vec![0; storing_nodes.len()];
|
|
let mut stored_partitions = vec![0; storing_nodes.len()];
|
|
|
|
let mut new_partitions_zone = vec![0; id_to_zone.len()];
|
|
let mut stored_partitions_zone = vec![0; id_to_zone.len()];
|
|
|
|
for p in 0..NB_PARTITIONS {
|
|
for z in 0..id_to_zone.len() {
|
|
let pz_nodes = gflow.get_positive_flow_from(Vertex::PZ(p, z))?;
|
|
if !pz_nodes.is_empty() {
|
|
stored_partitions_zone[z] += 1;
|
|
if let Some(prev_assign) = prev_assign_opt {
|
|
let mut old_zones_of_p = Vec::<usize>::new();
|
|
for n in prev_assign[p].iter() {
|
|
old_zones_of_p
|
|
.push(zone_to_id[self.expect_get_node_zone(&self.node_id_vec[*n])]);
|
|
}
|
|
if !old_zones_of_p.contains(&z) {
|
|
new_partitions_zone[z] += 1;
|
|
}
|
|
}
|
|
}
|
|
for vert in pz_nodes.iter() {
|
|
if let Vertex::N(n) = *vert {
|
|
stored_partitions[n] += 1;
|
|
if let Some(prev_assign) = prev_assign_opt {
|
|
if !prev_assign[p].contains(&n) {
|
|
new_partitions[n] += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if prev_assign_opt.is_none() {
|
|
new_partitions = stored_partitions.clone();
|
|
//new_partitions_zone = stored_partitions_zone.clone();
|
|
}
|
|
|
|
// We display the statistics
|
|
|
|
msg.push("".into());
|
|
if prev_assign_opt.is_some() {
|
|
let total_new_partitions: usize = new_partitions.iter().sum();
|
|
msg.push(format!(
|
|
"A total of {} new copies of partitions need to be \
|
|
transferred.",
|
|
total_new_partitions
|
|
));
|
|
msg.push("".into());
|
|
}
|
|
|
|
let mut table = vec![];
|
|
for z in 0..id_to_zone.len() {
|
|
let mut nodes_of_z = Vec::<usize>::new();
|
|
for n in 0..storing_nodes.len() {
|
|
if self.expect_get_node_zone(&self.node_id_vec[n]) == id_to_zone[z] {
|
|
nodes_of_z.push(n);
|
|
}
|
|
}
|
|
let replicated_partitions: usize =
|
|
nodes_of_z.iter().map(|n| stored_partitions[*n]).sum();
|
|
table.push(format!(
|
|
"{}\tTags\tPartitions\tCapacity\tUsable capacity",
|
|
id_to_zone[z]
|
|
));
|
|
|
|
let available_cap_z: u64 = self.partition_size * replicated_partitions as u64;
|
|
let mut total_cap_z = 0;
|
|
for n in nodes_of_z.iter() {
|
|
total_cap_z += self.expect_get_node_capacity(&self.node_id_vec[*n]);
|
|
}
|
|
let percent_cap_z = 100.0 * (available_cap_z as f32) / (total_cap_z as f32);
|
|
|
|
for n in nodes_of_z.iter() {
|
|
let available_cap_n = stored_partitions[*n] as u64 * self.partition_size;
|
|
let total_cap_n = self.expect_get_node_capacity(&self.node_id_vec[*n]);
|
|
let tags_n = (self.node_role(&self.node_id_vec[*n]).ok_or("<??>"))?.tags_string();
|
|
table.push(format!(
|
|
" {:?}\t{}\t{} ({} new)\t{}\t{} ({:.1}%)",
|
|
self.node_id_vec[*n],
|
|
tags_n,
|
|
stored_partitions[*n],
|
|
new_partitions[*n],
|
|
ByteSize::b(total_cap_n).to_string_as(false),
|
|
ByteSize::b(available_cap_n).to_string_as(false),
|
|
(available_cap_n as f32) / (total_cap_n as f32) * 100.0,
|
|
));
|
|
}
|
|
|
|
table.push(format!(
|
|
" TOTAL\t\t{} ({} unique)\t{}\t{} ({:.1}%)",
|
|
replicated_partitions,
|
|
stored_partitions_zone[z],
|
|
//new_partitions_zone[z],
|
|
ByteSize::b(total_cap_z).to_string_as(false),
|
|
ByteSize::b(available_cap_z).to_string_as(false),
|
|
percent_cap_z
|
|
));
|
|
table.push("".into());
|
|
}
|
|
msg.push(format_table::format_table_to_string(table));
|
|
|
|
Ok(msg)
|
|
}
|
|
}
|