netapp/src/proto.rs

342 lines
9.8 KiB
Rust
Raw Normal View History

use std::collections::{HashMap, VecDeque};
2020-12-02 12:30:47 +00:00
use std::sync::Arc;
use log::{error, trace};
2020-12-02 12:30:47 +00:00
use futures::{AsyncReadExt, AsyncWriteExt};
2021-10-25 07:27:57 +00:00
use kuska_handshake::async_std::BoxStreamWrite;
2020-12-02 12:30:47 +00:00
use tokio::sync::mpsc;
use async_trait::async_trait;
2020-12-02 12:30:47 +00:00
use crate::error::*;
/// Tag which is exchanged between client and server upon connection establishment
/// to check that they are running compatible versions of Netapp
pub const VERSION_TAG: [u8; 8] = [b'n', b'e', b't', b'a', b'p', b'p', 0x00, 0x04];
2020-12-02 19:12:24 +00:00
/// Priority of a request (click to read more about priorities).
///
/// This priority value is used to priorize messages
/// in the send queue of the client, and their responses in the send queue of the
/// server. Lower values mean higher priority.
///
/// This mechanism is usefull for messages bigger than the maximum chunk size
/// (set at `0x4000` bytes), such as large file transfers.
/// In such case, all of the messages in the send queue with the highest priority
/// will take turns to send individual chunks, in a round-robin fashion.
/// Once all highest priority messages are sent successfully, the messages with
/// the next highest priority will begin being sent in the same way.
///
/// The same priority value is given to a request and to its associated response.
pub type RequestPriority = u8;
2020-12-02 12:30:47 +00:00
2020-12-02 19:12:24 +00:00
/// Priority class: high
pub const PRIO_HIGH: RequestPriority = 0x20;
/// Priority class: normal
pub const PRIO_NORMAL: RequestPriority = 0x40;
/// Priority class: background
pub const PRIO_BACKGROUND: RequestPriority = 0x80;
/// Priority: primary among given class
pub const PRIO_PRIMARY: RequestPriority = 0x00;
2021-10-12 11:07:34 +00:00
/// Priority: secondary among given class (ex: `PRIO_HIGH | PRIO_SECONDARY`)
2020-12-02 19:12:24 +00:00
pub const PRIO_SECONDARY: RequestPriority = 0x01;
2020-12-02 12:30:47 +00:00
// Messages are sent by chunks
// Chunk format:
// - u32 BE: request id (same for request and response)
// - u16 BE: chunk length, possibly with CHUNK_HAS_CONTINUATION flag
// when this is not the last chunk of the message
// - [u8; chunk_length] chunk data
2021-10-12 15:59:46 +00:00
pub(crate) type RequestID = u32;
type ChunkLength = u16;
const MAX_CHUNK_LENGTH: ChunkLength = 0x4000;
const CHUNK_HAS_CONTINUATION: ChunkLength = 0x8000;
2020-12-02 12:30:47 +00:00
struct SendQueueItem {
id: RequestID,
prio: RequestPriority,
data: Vec<u8>,
cursor: usize,
}
struct SendQueue {
items: VecDeque<(u8, VecDeque<SendQueueItem>)>,
2020-12-02 12:30:47 +00:00
}
impl SendQueue {
fn new() -> Self {
Self {
items: VecDeque::with_capacity(64),
2020-12-02 12:30:47 +00:00
}
}
fn push(&mut self, item: SendQueueItem) {
let prio = item.prio;
let pos_prio = match self.items.binary_search_by(|(p, _)| p.cmp(&prio)) {
Ok(i) => i,
Err(i) => {
self.items.insert(i, (prio, VecDeque::new()));
i
}
};
self.items[pos_prio].1.push_back(item);
2020-12-02 12:30:47 +00:00
}
fn pop(&mut self) -> Option<SendQueueItem> {
match self.items.pop_front() {
2020-12-02 12:30:47 +00:00
None => None,
Some((prio, mut items_at_prio)) => {
let ret = items_at_prio.pop_front();
if !items_at_prio.is_empty() {
self.items.push_front((prio, items_at_prio));
2020-12-02 12:30:47 +00:00
}
2020-12-07 15:00:12 +00:00
ret.or_else(|| self.pop())
2020-12-02 12:30:47 +00:00
}
}
}
fn is_empty(&self) -> bool {
self.items.iter().all(|(_k, v)| v.is_empty())
}
2020-12-02 12:30:47 +00:00
}
2022-02-21 11:01:04 +00:00
/// The SendLoop trait, which is implemented both by the client and the server
/// connection objects (ServerConna and ClientConn) adds a method `.send_loop()`
/// that takes a channel of messages to send and an asynchronous writer,
/// and sends messages from the channel to the async writer, putting them in a queue
/// before being sent and doing the round-robin sending strategy.
///
/// The `.send_loop()` exits when the sending end of the channel is closed,
/// or if there is an error at any time writing to the async writer.
2020-12-02 12:30:47 +00:00
#[async_trait]
pub(crate) trait SendLoop: Sync {
2020-12-07 17:07:55 +00:00
async fn send_loop<W>(
2020-12-02 12:30:47 +00:00
self: Arc<Self>,
mut msg_recv: mpsc::UnboundedReceiver<(RequestID, RequestPriority, Vec<u8>)>,
2021-10-25 07:27:57 +00:00
mut write: BoxStreamWrite<W>,
2020-12-07 17:07:55 +00:00
) -> Result<(), Error>
where
W: AsyncWriteExt + Unpin + Send + Sync,
2020-12-07 17:07:55 +00:00
{
// Before anything, send version tag, which is checked in recv_loop
write.write_all(&VERSION_TAG[..]).await?;
write.flush().await?;
2020-12-02 12:30:47 +00:00
let mut sending = SendQueue::new();
let mut should_exit = false;
while !should_exit || !sending.is_empty() {
if let Ok((id, prio, data)) = msg_recv.try_recv() {
trace!("send_loop: got {}, {} bytes", id, data.len());
sending.push(SendQueueItem {
id,
prio,
data,
cursor: 0,
});
2020-12-02 12:30:47 +00:00
} else if let Some(mut item) = sending.pop() {
trace!(
"send_loop: sending bytes for {} ({} bytes, {} already sent)",
item.id,
item.data.len(),
item.cursor
);
2021-10-12 15:59:46 +00:00
let header_id = RequestID::to_be_bytes(item.id);
write.write_all(&header_id[..]).await?;
2020-12-02 12:30:47 +00:00
2021-10-12 15:59:46 +00:00
if item.data.len() - item.cursor > MAX_CHUNK_LENGTH as usize {
2022-02-21 11:01:04 +00:00
let size_header =
2021-10-12 15:59:46 +00:00
ChunkLength::to_be_bytes(MAX_CHUNK_LENGTH | CHUNK_HAS_CONTINUATION);
2022-02-21 11:01:04 +00:00
write.write_all(&size_header[..]).await?;
2020-12-02 12:30:47 +00:00
2021-10-12 15:59:46 +00:00
let new_cursor = item.cursor + MAX_CHUNK_LENGTH as usize;
write.write_all(&item.data[item.cursor..new_cursor]).await?;
2020-12-02 12:30:47 +00:00
item.cursor = new_cursor;
sending.push(item);
} else {
2021-10-12 15:59:46 +00:00
let send_len = (item.data.len() - item.cursor) as ChunkLength;
2020-12-02 12:30:47 +00:00
2022-02-21 11:01:04 +00:00
let size_header = ChunkLength::to_be_bytes(send_len);
write.write_all(&size_header[..]).await?;
2020-12-02 12:30:47 +00:00
write.write_all(&item.data[item.cursor..]).await?;
2020-12-02 12:30:47 +00:00
}
2020-12-07 15:00:12 +00:00
write.flush().await?;
2020-12-02 12:30:47 +00:00
} else {
let sth = msg_recv.recv().await;
if let Some((id, prio, data)) = sth {
trace!("send_loop: got {}, {} bytes", id, data.len());
sending.push(SendQueueItem {
id,
prio,
data,
cursor: 0,
});
} else {
should_exit = true;
}
2020-12-02 12:30:47 +00:00
}
}
2021-10-25 11:58:42 +00:00
let _ = write.goodbye().await;
2020-12-02 12:30:47 +00:00
Ok(())
}
}
2022-02-21 11:01:04 +00:00
/// The RecvLoop trait, which is implemented both by the client and the server
/// connection objects (ServerConn and ClientConn) adds a method `.recv_loop()`
/// and a prototype of a handler for received messages `.recv_handler()` that
/// must be filled by implementors. `.recv_loop()` receives messages in a loop
/// according to the protocol defined above: chunks of message in progress of being
/// received are stored in a buffer, and when the last chunk of a message is received,
/// the full message is passed to the receive handler.
2020-12-02 12:30:47 +00:00
#[async_trait]
pub(crate) trait RecvLoop: Sync + 'static {
fn recv_handler(self: &Arc<Self>, id: RequestID, msg: Vec<u8>);
2020-12-02 12:30:47 +00:00
2020-12-07 17:07:55 +00:00
async fn recv_loop<R>(self: Arc<Self>, mut read: R) -> Result<(), Error>
where
R: AsyncReadExt + Unpin + Send + Sync,
2020-12-07 17:07:55 +00:00
{
let mut their_version_tag = [0u8; 8];
read.read_exact(&mut their_version_tag[..]).await?;
if their_version_tag != VERSION_TAG {
let msg = format!(
"Different netapp versions: {:?} (theirs) vs. {:?} (ours)",
their_version_tag, VERSION_TAG
);
error!("{}", msg);
return Err(Error::VersionMismatch(msg));
}
2020-12-02 12:30:47 +00:00
let mut receiving = HashMap::new();
loop {
2020-12-02 12:30:47 +00:00
trace!("recv_loop: reading packet");
2021-10-12 15:59:46 +00:00
let mut header_id = [0u8; RequestID::BITS as usize / 8];
2021-10-25 07:27:57 +00:00
match read.read_exact(&mut header_id[..]).await {
Ok(_) => (),
Err(e) if e.kind() == std::io::ErrorKind::UnexpectedEof => break,
Err(e) => return Err(e.into()),
};
2020-12-02 12:30:47 +00:00
let id = RequestID::from_be_bytes(header_id);
trace!("recv_loop: got header id: {:04x}", id);
2021-10-12 15:59:46 +00:00
let mut header_size = [0u8; ChunkLength::BITS as usize / 8];
read.read_exact(&mut header_size[..]).await?;
2021-10-12 15:59:46 +00:00
let size = ChunkLength::from_be_bytes(header_size);
2020-12-07 15:00:12 +00:00
trace!("recv_loop: got header size: {:04x}", size);
2020-12-02 12:30:47 +00:00
2021-10-12 15:59:46 +00:00
let has_cont = (size & CHUNK_HAS_CONTINUATION) != 0;
let size = size & !CHUNK_HAS_CONTINUATION;
2020-12-02 12:30:47 +00:00
let mut next_slice = vec![0; size as usize];
read.read_exact(&mut next_slice[..]).await?;
2020-12-07 15:00:12 +00:00
trace!("recv_loop: read {} bytes", next_slice.len());
2020-12-02 12:30:47 +00:00
2021-10-12 11:18:24 +00:00
let mut msg_bytes: Vec<_> = receiving.remove(&id).unwrap_or_default();
2020-12-02 12:30:47 +00:00
msg_bytes.extend_from_slice(&next_slice[..]);
if has_cont {
receiving.insert(id, msg_bytes);
} else {
self.recv_handler(id, msg_bytes);
2020-12-02 12:30:47 +00:00
}
}
2021-10-25 07:27:57 +00:00
Ok(())
2020-12-02 12:30:47 +00:00
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_priority_queue() {
let i1 = SendQueueItem {
id: 1,
prio: PRIO_NORMAL,
data: vec![],
cursor: 0,
};
let i2 = SendQueueItem {
id: 2,
prio: PRIO_HIGH,
data: vec![],
cursor: 0,
};
let i2bis = SendQueueItem {
id: 20,
prio: PRIO_HIGH,
data: vec![],
cursor: 0,
};
let i3 = SendQueueItem {
id: 3,
prio: PRIO_HIGH | PRIO_SECONDARY,
data: vec![],
cursor: 0,
};
let i4 = SendQueueItem {
id: 4,
prio: PRIO_BACKGROUND | PRIO_SECONDARY,
data: vec![],
cursor: 0,
};
let i5 = SendQueueItem {
id: 5,
prio: PRIO_BACKGROUND | PRIO_PRIMARY,
data: vec![],
cursor: 0,
};
let mut q = SendQueue::new();
q.push(i1); // 1
let a = q.pop().unwrap(); // empty -> 1
assert_eq!(a.id, 1);
assert!(q.pop().is_none());
q.push(a); // 1
q.push(i2); // 2 1
q.push(i2bis); // [2 20] 1
let a = q.pop().unwrap(); // 20 1 -> 2
assert_eq!(a.id, 2);
let b = q.pop().unwrap(); // 1 -> 20
assert_eq!(b.id, 20);
let c = q.pop().unwrap(); // empty -> 1
assert_eq!(c.id, 1);
assert!(q.pop().is_none());
q.push(a); // 2
q.push(b); // [2 20]
q.push(c); // [2 20] 1
q.push(i3); // [2 20] 3 1
q.push(i4); // [2 20] 3 1 4
q.push(i5); // [2 20] 3 1 5 4
let a = q.pop().unwrap(); // 20 3 1 5 4 -> 2
assert_eq!(a.id, 2);
q.push(a); // [20 2] 3 1 5 4
let a = q.pop().unwrap(); // 2 3 1 5 4 -> 20
assert_eq!(a.id, 20);
let b = q.pop().unwrap(); // 3 1 5 4 -> 2
assert_eq!(b.id, 2);
q.push(b); // 2 3 1 5 4
let b = q.pop().unwrap(); // 3 1 5 4 -> 2
assert_eq!(b.id, 2);
let c = q.pop().unwrap(); // 1 5 4 -> 3
assert_eq!(c.id, 3);
q.push(b); // 2 1 5 4
let b = q.pop().unwrap(); // 1 5 4 -> 2
assert_eq!(b.id, 2);
let e = q.pop().unwrap(); // 5 4 -> 1
assert_eq!(e.id, 1);
let f = q.pop().unwrap(); // 4 -> 5
assert_eq!(f.id, 5);
let g = q.pop().unwrap(); // empty -> 4
assert_eq!(g.id, 4);
assert!(q.pop().is_none());
}
}