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The Cloud is great for hosting Web applications
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The Cloud is great for hosting Web applications

» “Infinite” number of computing resources

» Pay-as-you-go

» Resource provisioning
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Scaling relational databases

> Relational databases have many benefits:
> A very powerful query language (SQL)
» Strong consistency
» Mature implementations
» Well-understood by developers
> Etc.
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Scaling relational databases

> Relational databases have many benefits:
> A very powerful query language (SQL)

» Strong consistency

» Mature implementations

» Well-understood by developers

> Etc.

» But also a few drawbacks:

» Poor elasticity (ability to change the processing capacity easily)
» Poor scalability (ability to process arbitrary levels of load)
» Behavior in the presence of network partitions
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Elasticity of relational databases

P Relational databases were designed in the 1970s
» Designed for mainframes (a single super-expensive machine)
» Not for clouds (many weak machines being created/stopped at
any time)

> Master-slave replication:
» 1 master database processes and serializes all updates
» N slaves receive updates from the master and process all reads
» Designed mostly for fault-tolerance, not performance

» How can we add a replica at runtime?
» Take a snapshot of the database (very well supported by
relational databases)
» Copy the snapshot into the new replica
» Apply all updates received since the snapshot
» Add the new replica in the load balancing group
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Elasticity of relational databases

P Relational databases were designed in the 1970s
» Designed for mainframes (a single super-expensive machine)
» Not for clouds (many weak machines being created/stopped at
any time)

> Master-slave replication:
» 1 master database processes and serializes all updates
» N slaves receive updates from the master and process all reads
» Designed mostly for fault-tolerance, not performance

» How can we add a replica at runtime?
» Take a snapshot of the database (very well supported by
relational databases)
» Copy the snapshot into the new replica
» Apply all updates received since the snapshot
» Add the new replica in the load balancing group
, » This may take hours depending on the size of the database
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Scalability of relational databases

» Assuming an unlimited number of machines, can we process
arbitrary levels of load?
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Scalability of relational databases

» Assuming an unlimited number of machines, can we process
arbitrary levels of load?
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» Problem: full replication
» Each replica must process every update
» Solution: partial replication

» Each server contains a fraction of the total data
» Updates can be confined to a small number of machines
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Sharding

» Sharding = shared nothing architecture
» The programmer splits the database into independent
partitions
» Customers A-M — Database server 1
» Customers N-Z — Database server 2

> Advantage: scalability
» Each partition can work independently without processing the
updates of other partitions

» Drawback: all the work is left for the developer
» Defining the partition criterion
» Routing requests to the correct servers
» Implementing queries which span multiple partitions
» Implementing elasticity
> Etc.

Implementing sharding correctly is very difficult!
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Hash Tables

» A Distributed Hash Table is a special kind of Hash Table

» A hash table stores a large number of (key,value) pairs
» Two very efficient operations:

> PUT(key, value)
> value = GET(key)

» All other operations are unsupported (or extremely inefficient)
> E.g., find all keys whose value contains “hello”

P A hash table is normally stored in a single computer

» The storage is divided into N buckets
> A (key,value) pair is stored in bucket b = hash(key) % N

» A Distributed Hash Table uses multiple computers to store its
content

» Each computer stores only 1 bucket
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Distributed Hash Tables

» See set of slides on Pastry
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The Chord DHT

» The Chord DHT is organized as a logical ring
» Each node is assigned a random m-bit identifier
» Eack data item is assigned a unique m-bit key
» Entity with key k falls under jurisdiction of node with smallest
id > k (called its successor).
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Why is this ring structure interesting?

> Automatic data partitioning

» Automatic load balancing

» Adding a new node does not disrupt the whole system
» We just need to split one zone
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Finding which node is in charge of which key

» Bad solution #1: let each node know the full list of other
nodes
» Each time a node joins or leaves we must replicate this
information
» Nasty consistency problem. ..

l &LZJ’Q—-—- Quentin Dufour - TLC DHTs 12



Finding which node is in charge of which key

» Bad solution #1: let each node know the full list of other
nodes
» Each time a node joins or leaves we must replicate this
information
» Nasty consistency problem. ..

P> Bad solution #2: Let each node know only its own successor

(=) Local update when adding/removing nodes
(**) But finding data is very expensive

Node 1 looks for item 24
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Routing queries in Chord

» Chord nodes maintain more links than just their successor
» 1/2 ring away, 1/4 ring away, 1/8 ring away, etc.

» Good properties:
» Each node maintains /ogx (V) links (i.e., easy maintenance)
» Each query is routed in logx(N) hops (i.e., efficient routing)
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The two meanings of “Consistency”

1. For database experts: Consistency == Referential integrity in
a single database
» To make things simple: unique keys are really unique, foreign

keys map on something etc.
» This is the “C" from ACID

2. For distributed systems experts: Consistency = a property of
replicated data

» To make things simple: all copies of the same data seem to
have the same value at any time
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The CAP Theorem

» In a distributed system we want three important properties:
1. Consistency: readers always see the result of previous updates
2. Availability: the system always answers client requests
3. Partition tolerance: the system doesn't break down if the
network gets partitioned
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The CAP Theorem

» In a distributed system we want three important properties:
1. Consistency: readers always see the result of previous updates
2. Availability: the system always answers client requests
3. Partition tolerance: the system doesn't break down if the
network gets partitioned
» Brewer's theorem: you cannot get all three at the same time
» You must pick at most two out of three

P> Relational databases usually implement AC
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NoSQL takes the problem upside down

> NoSQL is designed with scalability in mind:
» The database must be elastic
» The database must be fully scalable
» The database must tolerate machine failures
» The database must tolerate network partitions
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NoSQL takes the problem upside down

> NoSQL is designed with scalability in mind:
» The database must be elastic
» The database must be fully scalable
» The database must tolerate machine failures
» The database must tolerate network partitions

» What's the catch?
» NoSQL must choose between AP and CP

» Most NoSQL systems choose AP: they do not guarantee
strong consistency

» NoSQL do not support complicated queries

» They do not support the SQL language
» Only very simple operations!

» Different NoSQL systems apply these principles differently
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NoSQL data stores rely on DHT techniques

> NoSQL data stores split data across nodes. . .
» Excellent elasticity and scalability

> ... and replicate each data item on m nodes
» For fault-tolerance

> If the network gets partitioned: serve requests within each
partition
» The system remains available
» But clients will miss updates issued in the other partitions (bad
consistency)
» When the partition is resolved, updates from different
partitions get merged
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Flexible consistency models

» Some NoSQL data stores allow users to define the level of
consistency they want

» Replicate each data item over N servers

» Associate each data item with a timestamp

P |ssue writes on all servers, consider a write to be successful
when m servers have acknowledged

> Read data from at least n servers (and return the freshest
version to the client)

» If m+ n> N then we have strong consistency
Quorum System
» For example: m=N, n=1
» But other possibilities exist: m=1, n=N
» Or anything in between: m = % +1, n= % +1
» If m+ n < N then we have weak consistency

> Faster
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What is the biggest data management problem

driving your use of NoSQL in the coming year?

Lack of flexibility/rigid schemas [N 40%
Inability to scale out data _ 35%
High latency/low performance _ 29%
Costs _ 16%
All of these _ 12%
Other _ 11%

Source: Couchbase NoSOL Suney, December 2011, n=1351
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Flexible data schemas

» In NoSQL data stores there is no need to impose a strict data
schema
» Anyway the data store treats each row as a (key,value) pair
» No requirement for the value = no fixed data schema
» Not the same as empty values!

FirstName:"Bob",
Address:"5 Oak St.",
Hobby:"sailing"

FirstName:"Jonathan",

Address:"15 Wanamassa Point Road",

Children:[
{Name:"Michael",Age:10},
{Name:"Jennifer", Age:8},
{Name: "Samantha", Age:5},
{Name:"Elena", Age:2}

NoSQL databases



Example: AppEngine's Datastore

AppEngine’s Datastore relies on Google BigTable
(the first NoSQL database: OSDI 2006)

» You can only GET and PUT entities based on their key
» No complex query

> Entities are organized into entity groups
» QOperations within one entity group are strongly consistent
» Operations spanning multiple entity groups are weakly
consistent

» The datastore supports at most 1 update per second per
entity group
> Entity groups are replicated using Paxos across multiple
machines in different data centers
@ Guaranteed strong consistency even if nodes misbehave in
strange ways

; () Paxos is known to be very slow
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Example: Dynamo

> See set of slides on Dynamo.
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Data modeling for NoSQL datastores

» Data normalization techniques will not work for NoSQL
» Forget UML and other related methodologies

» There is very little formal work on data schema design for
NoSQL :~(
» NoSQL is too young for that
» Each NoSQL datastore has specific features

» But there exists useful guidelines

» Keeping in mind that each NoSQL datastore has specific
functionality
» Exploit them to the fullest extent!
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Different types of NoSQL datastores

> Key-value stores do not attempt to interpret the content of
values

»> PUT (key,value)

> value=GET (key)

> DELETE(key)

» Examples: AppEngine's datastore, HBase, AWS Dynamo
» Ordered key-value stores let you iterate through keys

» Examples: Scalarix
» Document databases do interpret the content of values

> Impose a syntax for values (JSON, XML, etc.)
» Support value-based operations (e.g., secondary-key queries)

» With various performance behaviors depending on the
database

» Example: CouchDB, Apache Cassandra

» More exotic types of data stores: graph databases, object

databases, etc.
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Common properties

Let's compare Amazon's SimpleDB,
Google's BigTable and Yahoo's PNUTS

» Data are organized in tables

> A table contains a number of data items identified by a
primary key

» Data items are organized as a collection of key-value pairs
» Only data type: string
» Data items from the same table do not necessarily have the
same list of attributes (flexible data schema)

» Data items are accessed by PUT/GET using their primary key

» No supported operation across tables (such as joins)
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Amazon's SimpleDB / Apache’s Cassandra

» SimpleDB allows records to contain multiple values with the
same key (e.g., a multiset)

» Data are organized into “domains”

» Domains ~ tables
» No schema

» SimpleDB supports range queries
» Consistency: eventual consistency

> Also some form of strong consistency is supported (with lower
levels of performance)
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Google's BigTable / Apache's HBase

» Columns are organized in column families:
"family:column name"

» Column families are the granularity for access control

» Tables have more dimensions than the standard model
» Values are indexed by row, column and timestamp
> (row:string, column:string, time:int64) — string

"contents:" "anchor:cnnsi.com" "anchor:my.look.ca"

T *% ffffff

"com.cnn.www" —

» Rows are sorted

» BigTable allows users to iterate through records
» .. or through successive versions of the same record
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Yahoo's PNUTS

» PNUTS requires an explicit list of attributes per record (i.e., a
schema)
» But it is not necessary to use all attributes
> And it is easy to change the list at runtime

> UPDATE, DELETE and INSERT queries must specify a
primary key

» Tables can be hashed or ordered
» Hashed: excellent load balancing, efficient primary-key queries
» Ordered: less good load balancing, but support for range
queries
» In both cases: PNUTS supports “multiget” queries to retrieve
several records in parallel (from one or more tables)

» Consistency: single-row transactions

. &sz’a—— Quentin Dufour - TLC NoSQL data models 29




Comparison

consistency

transaction

Amazon’s Google’s Yahoo's
SimpleDB Bigtable PNUTS
Data Item Multi-value Multi-version Multi-version
attribute with timestamp | with timestamp
Explicitly
Schema No schema | Column-families claimed
attributes
Range queries Single-table Single-table
Operation on arbitrary scan with scan with
attributes various filtering predicates
of a table conditions
Consistency Eventual Single-row Single-row

transaction
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Denormalization

» Normalization defines data stuctures regardless of the queries

» Hidden assumption: if the data are well-organized we can

always query them easily
» This is true for SQL databases but not for NoSQL datastores

» Denormalization does the opposite of normalization: structure
data according to future queries
» Group all data necessary for a query at the same place
» We often end up copying the same data at multiple places in
the datastore
Excellent performance if we do things well
() Database consistency issues: all updates must be applied
everywhere, it is easy to introduce mistakes
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Aggregates

> NoSQL datastores allow flexible data schemas
» Stored values may have complex nested structures
» No need to pre-define these structures, we can simply create
them at runtime
» Each record may have a different structure

> Example 1: a User record links to the list of his Messages
» Normalized version: two tables (Users and Messages) with
references between the two

» NoSQL version: insert the entire messages inside the User
record

» Example 2: different types of products
> Normalized verson: one table for each type of product (with its
specific structure)

» NoSQL version: store all products with their specificities next
to each other
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Product
- ID
* Price
» Description

Normalization

Aggregation
Product {
Type :Book
D Product {
Price : Type :Album
Description : ID:
Details : { Price :
* Publication Dal . rrtist . Author Description :
* Title N Title © Details : {
: Publication_Date : Artist :
- Title
- } Track_List :
Product { =
Track2
Track ]
+ ID
+ Album ID
* Name
I
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Atomic aggregates

> Aggregates have one nice side-effect: atomic updates
» NoSQL datastores often support atomic updates per data item
» But they rarely support multi-item transactions

» If multiple updates are located in the same record they

become atomic
£ Update User Business Entity

User {
Account :

1,
Address @ |

Address

1

User_Profile 5
Profile : {

1

Normalization Aggregation

Quentin Dufour - TLC Data modeling techniques
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Application-side joins

» Very few NoSQL data stores support joins
» Denormalization and aggregates often allow us to avoid joins

» But sometimes we cannot avoid joins

» Many-to-many relationships between records
» Frequently updated data items

» Solution: application-side joins

» Let the application fetch all necessary data items
» Join them by hand
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Aggregates

loins
User User J
Message
Message
Message
Message
Message
7 Message
User J
- -
Static Dymamic
One-To-Many

Many-To-Many
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Index tables
» We can implement foreign keys by simply building index tables

P> Replace one join query with 2 simple queries
» Beware: you lose atomicity

Users

Info
City:5an Francisco, email:alef@gmail.com
City:New York, email:jsample @ yahoo.com
Clt\r Seattle,ama,u_jnovosellc@ gmail.com
=5l

UserlDs
7734,1263, ..

Quentin Dufour - TLC Data modeling techniques 37



Enumerable keys

» DHTs normally hash keys before deciding where to store each
data item

» Excellent for load balancing
» But contiguous keys end up being located in random nodes in
the system

» Some NoSQL decided to drop hashing

» Much less efficient for load balancing
» But it allows applications to iterate through keys

» You can embed information in the keys
» Example: key=userlD_messagelD
» You can easily access all messages from a user: start at
UserlD_0 and iterate
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Composite key index

» We can combine index tables with fancy key structures
P This often allows for efficient secondary-key queries

» Example: select users by their location

» SELECT * FROM users WHERE state="CA"
» SELECT * FROM users WHERE city="San Francisco"
> NoSQL solution: design keys as State:City:UserlD

San
Francisco
Users

State:City:UserlD

AR:Little Rock:543211

values

CA:Los Angeles:211123

Values

CA:Los Angeles:456546

values

CA:Dakland:666634

Values

CA:san Francisco:756322

values

CA:San Francisco:972321

Values

Quentin Dufour - TLC

CA:San Francisco:972321

Values

CO:Denver:972321

values
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Aggregation with Composite Keys

> We can also use composite keys for data aggregation
» Example: search a log file for all unique sites visited by a user
» SELECT count(distinct(user_id)) FROM clicks
GROUP BY site
» NoSQL solution: make sure to keep contiguous log records per

user
» And then eliminate redundancy in the application itself

UserlD: EventlD Site

543211:324235 t-mobhile.co.uk
i 623229:232773 google.com Frame for UserlD=623229 i
| |
| '
H £23229:345444 webehigh.com Unigue visits { !
| google.com, |
| )
! 623229:562333 sf-police.org webehigh.com, i
! sf-police.org !
i 623229:979949 google.com H i
| 1
N e S ——— S

883358345436 mongodb.org '
|

» This is much more efficient than keeping log entries from each

; user in a single record
. &bﬂ’a——« Quentin Dufour - TLC Data modeling techniques 40




Inverted search

> If we want to search items along multiple criteria we cannot
use composite keys
> With composite keys we can support only one type of search

> Example: we want to search users by their gender, city, the
sites they visit etc.

» NoSQL solution: build inverted indexes explicitly
» Key=property; Value=reference to the main table
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Event: UserlD, Category, Site, City.

| catezory-Men: [ UseriDi, Userinz, ... ] | [_useriD: Category-Men, City-hY, Sit=-gzooglecom |

| category-Women: [ UseriDL, Userinz, ... ] | [ useriD: Category-Women, City-57, Site-ya.ru |

| category-Kids: [ UseriDl, UseriD2, ...] |

[ city-nv: [usering, userinz, .1 ]

| city-SF: [ UseriD1, Userinz, ... ] |

|_site-google.com: [ UseriDL, UseriD2, .. | |

|_site-facebook.com: [ UseriDl, UseriD2, .. | |

Inverted Index Direct Index

Query: Report:
Describe (City-SF OR City-NY) AND ey _ —_—
google.com (Site-zoogle.com) Category-Men ° 20,010 unigue users
audience from Category-Women : 21,310 unigue
NY or SF users

l m—- Quentin Dufour - TLC
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Nested sets

» How do we represent a hierarchical structure in NoSQL?

» Bad solution #1: store the entire tree in one data item
» Bad solution #2: store each node separately, maintain a list of
children in all non-leaf nodes

» Solution: nested sets

» Map each leaf to one data item in the NoSQL store
» Make each non-leaf node maintain the beginning/end index

> Very efficient for read/search
» Not so efficient for updates
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Using MapReduce for complex queries

» Some queries can be unfrequent but very complex
» E.g., data mining queries

» You cannot redesign your entire data schema for just one
ad-hoc query

» Implementing the entire query in the application can be
inefficient

P In the worst case: fetch the entire data store on the client, let
the client process the query locally

» Solution: MapReduce

» Example: MongoDB is fully integrated with MapReduce
» You can request a MapReduce job over the content of the
datastore in just one command
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MapReduce queries in MongoDB

db. runCommand (
{ mapreduce : <collection>,

map : <mapfunction>,

reduce : <reducefunction>,

out : <see output options below>

[, query : <query filter object>]

[, sort : <sorts the input objects using this key. Useful for optimization, like sorting by

the emit key for fewer reduces>]

[, limit : <number of objects to return from collection, not supported with sharding>]
[, keeptemp: <true|false>]

[, finalize : <finalizefunction>]

[, scope : <object where fields go into javascript global scope >]

[, jsMode : true]

[, verbose : true]

Quentin Dufour - TLC Complex queries thank to MapReduce
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Example [1/2]

$ ./mongo

db.things.insert( { _id :
db.things.insert( { _id :
db.things.insert( { _id :
db.things.insert( { _id :

tags : ['dog', 'cat'] } );
tags : ['cat'] } ),
tags : ['mouse’', 'cat', 'dog'] } ):

tags : [1 } )

VOV W
W

W

// map function
> m = function(){
this. tags. forFach(
function(z)q{
emit( z , { count : 1 } );
}
i )
3
> // reduce function
> r = function( key , values ){
var total = 0;
for ( var i=0; i<values.length; it++ )
total += values[i].count;
return { count : total };

By
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Example [2/2]

> res = db.things.mapReduce(m, r, { out : "myoutput" } );

> res
{
"result" : "myoutput",
"timeMillis" : 12,
"counts" : {
"ipput" : 4,
"emit" : B,
"output" : 3
}
"ok" 1 1,
1
> db.myoutput. find()
{"_id" : "cat" , "value" : {"count"™ : 3}}
{"_id" : "dog" , "value" : {"count"™ : 2}}
{"_id" : "mouse" , "value" : {"count" : 1}}

> db.myoutput.drop()
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Conclusion

> NoSQL datastores are designed for scalability
» Even at the cost of reducing the set of offered functionalities

» Different NoSQL data stores can have very different properties

» |t is important to understand these specific functionalities to
make the best use of each system
> Also useful for choosing one datastore (when possible)

> Very little theoretical background on how to organize data
» But there exists useful guidelines
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