
Quentin Dufour

Développement logiciel
pour le Cloud (TLC)
Introduction

The Cloud is great for hosting Web applications

I “Infinite” number of computing resources
I Pay-as-you-go
I Resource provisioning

Quentin Dufour - TLC Introduction 2

The Cloud is great for hosting Web applications

I “Infinite” number of computing resources
I Pay-as-you-go
I Resource provisioning

Quentin Dufour - TLC Introduction 2

Web applications

Quentin Dufour - TLC Introduction 3

Web applications

Quentin Dufour - TLC Introduction 3

Web applications

Quentin Dufour - TLC Introduction 3

Scaling relational databases

I Relational databases have many benefits:
I A very powerful query language (SQL)
I Strong consistency
I Mature implementations
I Well-understood by developers
I Etc.

I But also a few drawbacks:
I Poor elasticity (ability to change the processing capacity easily)
I Poor scalability (ability to process arbitrary levels of load)
I Behavior in the presence of network partitions

Quentin Dufour - TLC Introduction 4

Scaling relational databases

I Relational databases have many benefits:
I A very powerful query language (SQL)
I Strong consistency
I Mature implementations
I Well-understood by developers
I Etc.

I But also a few drawbacks:
I Poor elasticity (ability to change the processing capacity easily)
I Poor scalability (ability to process arbitrary levels of load)
I Behavior in the presence of network partitions

Quentin Dufour - TLC Introduction 4

Elasticity of relational databases
I Relational databases were designed in the 1970s

I Designed for mainframes (a single super-expensive machine)
I Not for clouds (many weak machines being created/stopped at

any time)

I Master-slave replication:
I 1 master database processes and serializes all updates
I N slaves receive updates from the master and process all reads
I Designed mostly for fault-tolerance, not performance

I How can we add a replica at runtime?
I Take a snapshot of the database (very well supported by

relational databases)
I Copy the snapshot into the new replica
I Apply all updates received since the snapshot
I Add the new replica in the load balancing group

I This may take hours depending on the size of the database

Quentin Dufour - TLC Introduction 5

Elasticity of relational databases
I Relational databases were designed in the 1970s

I Designed for mainframes (a single super-expensive machine)
I Not for clouds (many weak machines being created/stopped at

any time)

I Master-slave replication:
I 1 master database processes and serializes all updates
I N slaves receive updates from the master and process all reads
I Designed mostly for fault-tolerance, not performance

I How can we add a replica at runtime?
I Take a snapshot of the database (very well supported by

relational databases)
I Copy the snapshot into the new replica
I Apply all updates received since the snapshot
I Add the new replica in the load balancing group
I This may take hours depending on the size of the database
Quentin Dufour - TLC Introduction 5

Scalability of relational databases
I Assuming an unlimited number of machines, can we process

arbitrary levels of load?

T
h
ro

u
g
h
p
u
t

(t
ra

n
s
a
c
ti
o
n
s
/s

e
c
o
n
d
)

20000

15000

10000

5000

0

0 10 20 30 40 50 60

Number of server machines

Master−slave DB

What we want

I Problem: full replication
I Each replica must process every update

I Solution: partial replication
I Each server contains a fraction of the total data
I Updates can be confined to a small number of machines

Quentin Dufour - TLC Introduction 6

Scalability of relational databases
I Assuming an unlimited number of machines, can we process

arbitrary levels of load?

T
h
ro

u
g
h
p
u
t

(t
ra

n
s
a
c
ti
o
n
s
/s

e
c
o
n
d
)

20000

15000

10000

5000

0

0 10 20 30 40 50 60

Number of server machines

Master−slave DB

What we want

I Problem: full replication
I Each replica must process every update

I Solution: partial replication
I Each server contains a fraction of the total data
I Updates can be confined to a small number of machines
Quentin Dufour - TLC Introduction 6

Sharding
I Sharding = shared nothing architecture
I The programmer splits the database into independent

partitions
I Customers A-M → Database server 1
I Customers N-Z → Database server 2

I Advantage: scalability
I Each partition can work independently without processing the

updates of other partitions

I Drawback: all the work is left for the developer
I Defining the partition criterion
I Routing requests to the correct servers
I Implementing queries which span multiple partitions
I Implementing elasticity
I Etc.

Implementing sharding correctly is very difficult!
Quentin Dufour - TLC Introduction 7

Hash Tables

I A Distributed Hash Table is a special kind of Hash Table
I A hash table stores a large number of (key,value) pairs
I Two very efficient operations:

I PUT(key, value)
I value = GET(key)

I All other operations are unsupported (or extremely inefficient)
I E.g., find all keys whose value contains “hello”

I A hash table is normally stored in a single computer
I The storage is divided into N buckets
I A (key,value) pair is stored in bucket b = hash(key)%N

I A Distributed Hash Table uses multiple computers to store its
content
I Each computer stores only 1 bucket

Quentin Dufour - TLC DHTs 8

Distributed Hash Tables

I See set of slides on Pastry

Quentin Dufour - TLC DHTs 9

The Chord DHT
I The Chord DHT is organized as a logical ring

I Each node is assigned a random m-bit identifier
I Eack data item is assigned a unique m-bit key
I Entity with key k falls under jurisdiction of node with smallest

id ≥ k (called its successor).

0 1
2

3

4

5

6

7

8

9

10

11

12

13
14

151617
18

19

20

21

22

23

24

25

26

27

28

29
30

31

Node 4 stores data items

with key=4, 5, 6, 7 or 8

Node 9 stores data items
with key=9 or 10

Node 11 stores data items
with key=11, 12 or or 13

Quentin Dufour - TLC DHTs 10

Why is this ring structure interesting?

I Automatic data partitioning

I Automatic load balancing

I Adding a new node does not disrupt the whole system
I We just need to split one zone

Quentin Dufour - TLC DHTs 11

Finding which node is in charge of which key
I Bad solution #1: let each node know the full list of other

nodes
I Each time a node joins or leaves we must replicate this

information
I Nasty consistency problem. . .

I Bad solution #2: Let each node know only its own successor
Local update when adding/removing nodes
But finding data is very expensive

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

Node 1 looks for item 24

Quentin Dufour - TLC DHTs 12

Finding which node is in charge of which key
I Bad solution #1: let each node know the full list of other

nodes
I Each time a node joins or leaves we must replicate this

information
I Nasty consistency problem. . .

I Bad solution #2: Let each node know only its own successor
Local update when adding/removing nodes
But finding data is very expensive

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

Node 1 looks for item 24

Quentin Dufour - TLC DHTs 12

Routing queries in Chord
I Chord nodes maintain more links than just their successor

I 1/2 ring away, 1/4 ring away, 1/8 ring away, etc.
I Good properties:

I Each node maintains log2(N) links (i.e., easy maintenance)
I Each query is routed in log2(N) hops (i.e., efficient routing)

0 1
2

3

4

5

6

7

8

9

10

11

12

13
14

151617
18

19

20

21

22

23

24

25

26

27

28

29
30

31

1 4
2 4
3 9
4 9
5 18

1 9
2 9
3 9
4 14
5 20

1 11
2 11
3 14
4 18
5 28

1 14
2 14
3 18
4 20
5 28

1 18
2 18
3 18
4 28
5 1

1 20
2 20
3 28
4 28
5 4

1 21
2 28
3 28
4 28
5 4

1 28
2 28
3 28
4 1
5 9

1 1
2 1
3 1
4 4
5 14

Resolve k = 26

from node 1

i su
cc

(p
 +

 2

)
i−

1

Finger table

Quentin Dufour - TLC DHTs 13

The two meanings of “Consistency”

1. For database experts: Consistency == Referential integrity in
a single database
I To make things simple: unique keys are really unique, foreign

keys map on something etc.
I This is the “C” from ACID

2. For distributed systems experts: Consistency = a property of
replicated data
I To make things simple: all copies of the same data seem to

have the same value at any time

Quentin Dufour - TLC Few words about data consistency 14

The CAP Theorem
I In a distributed system we want three important properties:

1. Consistency: readers always see the result of previous updates
2. Availability: the system always answers client requests
3. Partition tolerance: the system doesn’t break down if the

network gets partitioned

I Brewer’s theorem: you cannot get all three at the same time
I You must pick at most two out of three

I Relational databases usually implement AC

Quentin Dufour - TLC Few words about data consistency 15

The CAP Theorem
I In a distributed system we want three important properties:

1. Consistency: readers always see the result of previous updates
2. Availability: the system always answers client requests
3. Partition tolerance: the system doesn’t break down if the

network gets partitioned
I Brewer’s theorem: you cannot get all three at the same time

I You must pick at most two out of three

I Relational databases usually implement AC
Quentin Dufour - TLC Few words about data consistency 15

NoSQL takes the problem upside down

I NoSQL is designed with scalability in mind:
I The database must be elastic
I The database must be fully scalable
I The database must tolerate machine failures
I The database must tolerate network partitions

I What’s the catch?
I NoSQL must choose between AP and CP

I Most NoSQL systems choose AP: they do not guarantee
strong consistency

I NoSQL do not support complicated queries
I They do not support the SQL language
I Only very simple operations!

I Different NoSQL systems apply these principles differently

Quentin Dufour - TLC NoSQL databases 16

NoSQL takes the problem upside down

I NoSQL is designed with scalability in mind:
I The database must be elastic
I The database must be fully scalable
I The database must tolerate machine failures
I The database must tolerate network partitions

I What’s the catch?
I NoSQL must choose between AP and CP

I Most NoSQL systems choose AP: they do not guarantee
strong consistency

I NoSQL do not support complicated queries
I They do not support the SQL language
I Only very simple operations!

I Different NoSQL systems apply these principles differently

Quentin Dufour - TLC NoSQL databases 16

NoSQL data stores rely on DHT techniques

I NoSQL data stores split data across nodes. . .
I Excellent elasticity and scalability

I . . . and replicate each data item on m nodes
I For fault-tolerance

I If the network gets partitioned: serve requests within each
partition
I The system remains available
I But clients will miss updates issued in the other partitions (bad

consistency)
I When the partition is resolved, updates from different

partitions get merged

Quentin Dufour - TLC NoSQL databases 17

Flexible consistency models
I Some NoSQL data stores allow users to define the level of

consistency they want
I Replicate each data item over N servers
I Associate each data item with a timestamp
I Issue writes on all servers, consider a write to be successful

when m servers have acknowledged
I Read data from at least n servers (and return the freshest

version to the client)

I If m + n > N then we have strong consistency
Quorum System
I For example: m = N, n = 1
I But other possibilities exist: m = 1, n = N
I Or anything in between: m = N

2 + 1, n = N
2 + 1

I If m + n ≤ N then we have weak consistency
I Faster
Quentin Dufour - TLC NoSQL databases 18

Quentin Dufour - TLC NoSQL databases 19

Flexible data schemas
I In NoSQL data stores there is no need to impose a strict data

schema
I Anyway the data store treats each row as a (key,value) pair
I No requirement for the value ⇒ no fixed data schema
I Not the same as empty values!

Quentin Dufour - TLC NoSQL databases 20

Example: AppEngine’s Datastore
AppEngine’s Datastore relies on Google BigTable

(the first NoSQL database: OSDI 2006)

I You can only GET and PUT entities based on their key
I No complex query

I Entities are organized into entity groups
I Operations within one entity group are strongly consistent
I Operations spanning multiple entity groups are weakly

consistent

I The datastore supports at most 1 update per second per
entity group
I Entity groups are replicated using Paxos across multiple

machines in different data centers
Guaranteed strong consistency even if nodes misbehave in
strange ways
Paxos is known to be very slow

Quentin Dufour - TLC NoSQL databases 21

Example: Dynamo

I See set of slides on Dynamo.

Quentin Dufour - TLC NoSQL databases 22

Data modeling for NoSQL datastores

I Data normalization techniques will not work for NoSQL
I Forget UML and other related methodologies

I There is very little formal work on data schema design for
NoSQL :-(
I NoSQL is too young for that
I Each NoSQL datastore has specific features

I But there exists useful guidelines
I Keeping in mind that each NoSQL datastore has specific

functionality
I Exploit them to the fullest extent!

Quentin Dufour - TLC NoSQL data models 23

Different types of NoSQL datastores
I Key-value stores do not attempt to interpret the content of

values
I PUT(key,value)
I value=GET(key)
I DELETE(key)
I Examples: AppEngine’s datastore, HBase, AWS Dynamo

I Ordered key-value stores let you iterate through keys
I Examples: Scalarix

I Document databases do interpret the content of values
I Impose a syntax for values (JSON, XML, etc.)
I Support value-based operations (e.g., secondary-key queries)

I With various performance behaviors depending on the
database

I Example: CouchDB, Apache Cassandra
I More exotic types of data stores: graph databases, object

databases, etc.
Quentin Dufour - TLC NoSQL data models 24

Quentin Dufour - TLC NoSQL data models 25

Common properties
Let’s compare Amazon’s SimpleDB,

Google’s BigTable and Yahoo’s PNUTS

I Data are organized in tables

I A table contains a number of data items identified by a
primary key

I Data items are organized as a collection of key-value pairs
I Only data type: string
I Data items from the same table do not necessarily have the

same list of attributes (flexible data schema)

I Data items are accessed by PUT/GET using their primary key

I No supported operation across tables (such as joins)
Quentin Dufour - TLC NoSQL data models 26

Amazon’s SimpleDB / Apache’s Cassandra

I SimpleDB allows records to contain multiple values with the
same key (e.g., a multiset)

I Data are organized into “domains”
I Domains ∼ tables
I No schema

I SimpleDB supports range queries

I Consistency: eventual consistency
I Also some form of strong consistency is supported (with lower

levels of performance)

Quentin Dufour - TLC NoSQL data models 27

Google’s BigTable / Apache’s HBase
I Columns are organized in column families:

"family:column name"
I Column families are the granularity for access control

I Tables have more dimensions than the standard model
I Values are indexed by row, column and timestamp
I (row:string, column:string, time:int64) → string

I Rows are sorted
I BigTable allows users to iterate through records
I . . . or through successive versions of the same record

Quentin Dufour - TLC NoSQL data models 28

Yahoo’s PNUTS
I PNUTS requires an explicit list of attributes per record (i.e., a

schema)
I But it is not necessary to use all attributes
I And it is easy to change the list at runtime

I UPDATE, DELETE and INSERT queries must specify a
primary key

I Tables can be hashed or ordered
I Hashed: excellent load balancing, efficient primary-key queries
I Ordered: less good load balancing, but support for range

queries
I In both cases: PNUTS supports “multiget” queries to retrieve

several records in parallel (from one or more tables)

I Consistency: single-row transactions
Quentin Dufour - TLC NoSQL data models 29

Comparison

Amazon’s Google’s Yahoo’s
SimpleDB Bigtable PNUTS

Data Item Multi-value Multi-version Multi-version
attribute with timestamp with timestamp

Explicitly
Schema No schema Column-families claimed

attributes
Range queries Single-table Single-table

Operation on arbitrary scan with scan with
attributes various filtering predicates
of a table conditions

Consistency Eventual Single-row Single-row
consistency transaction transaction

Quentin Dufour - TLC NoSQL data models 30

Denormalization

I Normalization defines data stuctures regardless of the queries
I Hidden assumption: if the data are well-organized we can

always query them easily
I This is true for SQL databases but not for NoSQL datastores

I Denormalization does the opposite of normalization: structure
data according to future queries
I Group all data necessary for a query at the same place
I We often end up copying the same data at multiple places in

the datastore
Excellent performance if we do things well
Database consistency issues: all updates must be applied
everywhere, it is easy to introduce mistakes

Quentin Dufour - TLC Data modeling techniques 31

Aggregates
I NoSQL datastores allow flexible data schemas

I Stored values may have complex nested structures
I No need to pre-define these structures, we can simply create

them at runtime
I Each record may have a different structure

I Example 1: a User record links to the list of his Messages
I Normalized version: two tables (Users and Messages) with

references between the two
I NoSQL version: insert the entire messages inside the User

record

I Example 2: different types of products
I Normalized verson: one table for each type of product (with its

specific structure)
I NoSQL version: store all products with their specificities next

to each other
Quentin Dufour - TLC Data modeling techniques 32

Quentin Dufour - TLC Data modeling techniques 33

Atomic aggregates
I Aggregates have one nice side-effect: atomic updates

I NoSQL datastores often support atomic updates per data item
I But they rarely support multi-item transactions

I If multiple updates are located in the same record they
become atomic

Quentin Dufour - TLC Data modeling techniques 34

Application-side joins

I Very few NoSQL data stores support joins
I Denormalization and aggregates often allow us to avoid joins

I But sometimes we cannot avoid joins
I Many-to-many relationships between records
I Frequently updated data items

I Solution: application-side joins
I Let the application fetch all necessary data items
I Join them by hand

Quentin Dufour - TLC Data modeling techniques 35

Quentin Dufour - TLC Data modeling techniques 36

Index tables
I We can implement foreign keys by simply building index tables

I Replace one join query with 2 simple queries
I Beware: you lose atomicity

Quentin Dufour - TLC Data modeling techniques 37

Enumerable keys

I DHTs normally hash keys before deciding where to store each
data item
I Excellent for load balancing
I But contiguous keys end up being located in random nodes in

the system

I Some NoSQL decided to drop hashing
I Much less efficient for load balancing
I But it allows applications to iterate through keys

I You can embed information in the keys
I Example: key=userID messageID
I You can easily access all messages from a user: start at

UserID 0 and iterate

Quentin Dufour - TLC Data modeling techniques 38

Composite key index
I We can combine index tables with fancy key structures

I This often allows for efficient secondary-key queries
I Example: select users by their location

I SELECT * FROM users WHERE state="CA"
I SELECT * FROM users WHERE city="San Francisco"
I NoSQL solution: design keys as State:City:UserID

Quentin Dufour - TLC Data modeling techniques 39

Aggregation with Composite Keys
I We can also use composite keys for data aggregation
I Example: search a log file for all unique sites visited by a user

I SELECT count(distinct(user id)) FROM clicks

GROUP BY site
I NoSQL solution: make sure to keep contiguous log records per

user
I And then eliminate redundancy in the application itself

I This is much more efficient than keeping log entries from each
user in a single record

Quentin Dufour - TLC Data modeling techniques 40

Inverted search

I If we want to search items along multiple criteria we cannot
use composite keys
I With composite keys we can support only one type of search

I Example: we want to search users by their gender, city, the
sites they visit etc.
I NoSQL solution: build inverted indexes explicitly
I Key=property; Value=reference to the main table

Quentin Dufour - TLC Data modeling techniques 41

Quentin Dufour - TLC Data modeling techniques 42

Nested sets

I How do we represent a hierarchical structure in NoSQL?
I Bad solution #1: store the entire tree in one data item
I Bad solution #2: store each node separately, maintain a list of

children in all non-leaf nodes

I Solution: nested sets
I Map each leaf to one data item in the NoSQL store
I Make each non-leaf node maintain the beginning/end index

I Very efficient for read/search
I Not so efficient for updates

Quentin Dufour - TLC Data modeling techniques 43

Quentin Dufour - TLC Data modeling techniques 44

Using MapReduce for complex queries
I Some queries can be unfrequent but very complex

I E.g., data mining queries

I You cannot redesign your entire data schema for just one
ad-hoc query

I Implementing the entire query in the application can be
inefficient
I In the worst case: fetch the entire data store on the client, let

the client process the query locally

I Solution: MapReduce
I Example: MongoDB is fully integrated with MapReduce
I You can request a MapReduce job over the content of the

datastore in just one command

Quentin Dufour - TLC Complex queries thank to MapReduce 45

MapReduce queries in MongoDB

Quentin Dufour - TLC Complex queries thank to MapReduce 46

Example [1/2]

Quentin Dufour - TLC Complex queries thank to MapReduce 47

Example [2/2]

Quentin Dufour - TLC Complex queries thank to MapReduce 48

Conclusion

I NoSQL datastores are designed for scalability
I Even at the cost of reducing the set of offered functionalities

I Different NoSQL data stores can have very different properties

I It is important to understand these specific functionalities to
make the best use of each system

I Also useful for choosing one datastore (when possible)

I Very little theoretical background on how to organize data
I But there exists useful guidelines

Quentin Dufour - TLC Complex queries thank to MapReduce 49

	Introduction
	DHTs
	Few words about data consistency
	NoSQL databases
	NoSQL data models
	Data modeling techniques
	Complex queries thank to MapReduce

