
Davide Frey

Développement logiciel
pour le Cloud (TLC)
Introduction



Source: CNRS magazine 2013

Davide Frey - Cours CLD Introduction 2



Big data

“Big data refers to data sets whose size is beyond the ability of
typical database software tools to capture, store, manage and
analyze.” — The McKinsey Global Institute, 2011.

“Big data is the term for a collection of data sets so large and
complex that it becomes difficult to process using on-hand
database management tools or traditional data processing
applications.” — Wikipedia.

Davide Frey - Cours CLD Introduction 3



How big is big data?

Earlier Berkeley studies estimated that by the end of 1999, the sum
of human-produced information (including all audio, video
recordings and text/books) was about 12 Exabytes of data (1
exabyte = 1 million TB).

Eric Schmidt: Every 2 Days We Create As Much Information As
We Did Up To 2003.

http://techcrunch.com/2010/08/04/schmidt-data/

Davide Frey - Cours CLD Introduction 4

http://techcrunch.com/2010/08/04/schmidt-data/


In 2010 the Digital Universe
contained 1.2 zettabytes
(1 zettabyte = 1 billion TB)

In 2020 the Digital Universe
will contain 35 zettabytes.

Davide Frey - Cours CLD Introduction 5



Davide Frey - Cours CLD Introduction 6



Why do we want to analyze this data?

Davide Frey - Cours CLD Introduction 7



Big data challenges: the “three V’s”

Davide Frey - Cours CLD Introduction 8



The “three V’s” are becoming the “four V’s”

Davide Frey - Cours CLD Introduction 9



Big data == big privacy concerns. . .

Davide Frey - Cours CLD Introduction 10



Davide Frey - Cours CLD Introduction 11



MapReduce

MapReduce was introduced by Google in 2004:

I Big data at that time: 20+ billion web pages x 20 kB =
400+ TB

I One computer can read 30-35 MB/sec from disk
⇒ 4 months to read the Web
⇒ ∼1000 hard drives just to store the web

I But they wanted to process the data! This requires much
more computation, data, etc.

”Google Infrastructure for Massive Parallel Processing”,

Walfredo Cirne, Presentation in the industrial track in CCGrid’2007.

Davide Frey - Cours CLD MapReduce 12



MapReduce

MapReduce was introduced by Google in 2004:

I Big data at that time: 20+ billion web pages x 20 kB =
400+ TB

I One computer can read 30-35 MB/sec from disk
⇒ 4 months to read the Web
⇒ ∼1000 hard drives just to store the web

I But they wanted to process the data! This requires much
more computation, data, etc.

”Google Infrastructure for Massive Parallel Processing”,

Walfredo Cirne, Presentation in the industrial track in CCGrid’2007.

Davide Frey - Cours CLD MapReduce 12



The Bulk Synchronous Parallel model

I Maximize I/O
I Minimize coordination

Davide Frey - Cours CLD MapReduce 13



Parallelization is not so easy

“Easy” parallelization
I Reading the Web on 1000 machines ⇒ less than 3 hours

This requires lots of programming work
I Communication & coordination
I Debugging
I Fault-tolerance
I Management and monitoring
I Optimization

Repeat the same painful process for every problem you want
to solve

Davide Frey - Cours CLD MapReduce 14



Let’s make sandwiches

https://twitter.com/tgrall

Davide Frey - Cours CLD MapReduce 15

https://twitter.com/tgrall


Let’s make sandwiches

https://twitter.com/tgrall

Davide Frey - Cours CLD MapReduce 15

https://twitter.com/tgrall


Back to MapReduce

http://www.slideshare.net/lynnlangit/hadoop-mapreduce-fundamentals-21427224/

Davide Frey - Cours CLD MapReduce 16

http://www.slideshare.net/lynnlangit/hadoop-mapreduce-fundamentals-21427224/


Programmer must write two simple functions

I map(key,value) → ¡key’,value’¿*
The map function reads input data and produces intermediate
tuples which are ready for the second phase

I reduce(key’,¡value’¿*) → ¡key’,value”¿*
The reduce function takes all intermediate tuples with the
same key, and produces output tuples

Davide Frey - Cours CLD MapReduce 17



Programmer must write two simple functions

I map(key,value) → ¡key’,value’¿*
The map function reads input data and produces intermediate
tuples which are ready for the second phase

I reduce(key’,¡value’¿*) → ¡key’,value”¿*
The reduce function takes all intermediate tuples with the
same key, and produces output tuples

Davide Frey - Cours CLD MapReduce 17



Example: word count
Let’s take a (long) piece of text. Can we compute the
number of occurrences of each word?

I Map function: take a subset of the input, generate one
intermediate tuple for every word in the text
def map(String input_key, String doc):

for each word w in doc:

EmitIntermediate(w, 1)

I Shuffle operation: all tuples with the same key are
automatically sent to the same reducer

I Reduce function: count the occurences we received for each
word
def reduce(String output_key, Iterator output_vals):

int res = 0

for each v in output_vals:

res = res + v

Emit(res)

Davide Frey - Cours CLD MapReduce 18



What makes MapReduce so great

map() functions run in parallel, creating different intermediate
values from different input data sets

reduce() functions also run in parallel, each working on a
different output key

All values are processed independently

Limitation: the reduce phase cannot start until the map phase
is totally finished

Davide Frey - Cours CLD MapReduce 19



What makes MapReduce so great

map() functions run in parallel, creating different intermediate
values from different input data sets

reduce() functions also run in parallel, each working on a
different output key

All values are processed independently

Limitation: the reduce phase cannot start until the map phase
is totally finished

Davide Frey - Cours CLD MapReduce 19



MapReduce architecture

http://www.slideshare.net/diliprk/mapreduce-paradigm

Davide Frey - Cours CLD MapReduce 20

http://www.slideshare.net/diliprk/mapreduce-paradigm


MapReduce architecture

I One master server, many worker servers
I Input data is split in chunks (∼64 MB)
I Tasks are assigned to workers dynamically

I The master assigns each map task to a free worker
I Considers locality of data to worker when assigning task
I Worker reads task input (often from local disk!)
I Worker produces R local files containing intermediate

key/value pairs

I The master assigns each reduce task to a free worker
I Worker reads intermediate key/value pairs from map workers
I Worker sorts & applies the userâĂŹs Reduce function to

produce the output

Davide Frey - Cours CLD MapReduce 21



Fault tolerance

I If a worker fails:
I The master will detect failure thanks to periodic heartbeats
I The master re-executes the completed and in-progress map()

tasks
I The re-executes the in-progress reduce() tasks

I If the same input always makes the map() function crash:
I The master will detect it and skip these values on re-execution

I If the master fails:

Davide Frey - Cours CLD MapReduce 22



Fault tolerance

I If a worker fails:
I The master will detect failure thanks to periodic heartbeats
I The master re-executes the completed and in-progress map()

tasks
I The re-executes the in-progress reduce() tasks

I If the same input always makes the map() function crash:
I The master will detect it and skip these values on re-execution

I If the master fails:

Davide Frey - Cours CLD MapReduce 22



Fault tolerance

I If a worker fails:
I The master will detect failure thanks to periodic heartbeats
I The master re-executes the completed and in-progress map()

tasks
I The re-executes the in-progress reduce() tasks

I If the same input always makes the map() function crash:
I The master will detect it and skip these values on re-execution

I If the master fails:

Davide Frey - Cours CLD MapReduce 22



MapReduce in the real world

The reference open-source
implementation: Apache

Hadoop

All the good clouds provide
Hadoop (or similar)
under a PaaS model

Davide Frey - Cours CLD MapReduce 23



Hadoop’s stack

http://bit.do/cSi9J

Davide Frey - Cours CLD MapReduce 24

http://bit.do/cSi9J


Limitations of MapReduce

I Rigid programming model
I Programs must be developed as a pair of map/reduce functions
I Complex programs may be designed as a succession of iterative

map/reduce steps

I By default, all intermediate result are stored in the HDFS file
system

I Replicated, fault-tolerant, etc.
I But there are lots of intermediate results in a

map/reduce/map/reduce/map/reduce program!
⇒ Not-so-great performance

Davide Frey - Cours CLD Spark 25



Spark

I Let’s simplify application development: write “normal” code,
let the system figure out how to execute it efficiently

I Let’s use main memory for all intermediate data
⇒ Major performance improvements

Davide Frey - Cours CLD Spark 26



Survey within the big data developer community (2015)

Davide Frey - Cours CLD Spark 27



Spark’s architecture

I One driver node
∼ master

I orchestrates
computation,
assigns work

I Many worker nodes
I execute tasks,

report to driver
node

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html

Davide Frey - Cours CLD Spark 28

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html


Spark RDDs

I RDD = Resilient Distributed Dataset

I Conceptually an array (or a map) of entries
I Entries might be strings, numbers, maps, pairs, ...
I Transparently partitioned / distributed by Spark
I Transparently resilient (either by recomputation or storage)

I Creation:
I Read from a local or distributed file system
I Or produced by another Spark computation

Davide Frey - Cours CLD Spark 29



Spark applications
A Spark application is composed of
transformations and actions:

I Transformations specify how to
produce an RDD from another
RDD

I But the system does not execute
them immediately

I Actions trigger an actual
computation

I The system explores the graph of
dependencies, and produces a
directed acyclic graph of
necessary transformations

I Optimizes computations to be
done

I Distributes and organizes work

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html

Davide Frey - Cours CLD Spark 30

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html


Spark transformations

https://spark.apache.org/docs/latest/programming-guide.html

Davide Frey - Cours CLD Spark 31

https://spark.apache.org/docs/latest/programming-guide.html


Spark actions

https://spark.apache.org/docs/latest/programming-guide.html

Davide Frey - Cours CLD Spark 32

https://spark.apache.org/docs/latest/programming-guide.html


Wide and Narrow Transformations

I Wide transformations require shuffling
I e.g., reduceByKey(. . . )
I Network costs, higher latency

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html

Davide Frey - Cours CLD Spark 33

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html


The word count example in Spark

I The developer writes simple, sequential code using the Spark
transformations and actions

I Spark automatically parallelizes the code, distributes it across
many nodes, and coordinates the distributed execution

http://spark.apache.org/examples.html

Davide Frey - Cours CLD Spark 34

http://spark.apache.org/examples.html


Spark’s stack

http://spark.apache.org/

Davide Frey - Cours CLD Spark 35

http://spark.apache.org/


Limitations of MapReduce/Spark

How can we keep up with the velocity of big data?
I Store incoming data (e.g., tweets)
I One in a while: process the new data, produce new results
⇒ The results are always late!

+ We need to be able to process incoming data in real time, not
as a succession of batch jobs

Davide Frey - Cours CLD Stream processing 36



Spark Streaming
I Spark Streaming relies on micro-batches

I Ingest incoming real-time data from various sources
I Generate a new “micro-batch” at fixed time intervals (e.g.,

1 second)
I Process each micro-batch as a separate Spark job

https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-execution-model.html

Davide Frey - Cours CLD Stream processing 37

https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-execution-model.html


Limitations of micro-batches

I Data arriving out of order is hard to handle
I How do you detect missing data, data gaps, correct out of

time order data etc?

I Batch length restricts Window-based analytics
I Large batches ⇒ poor responsiveness
I Small batches ⇒ the system is obliged to work on very small

window sizes

I Code is hard to write
I As soon as you try to update existing results with each

micro-batch

http://bit.do/cSi4L

Davide Frey - Cours CLD Stream processing 38

http://bit.do/cSi4L


Many applications are fundamentally based on streaming

Apache Flink is a big-data framework based
on a distributed streaming dataflow engine

Davide Frey - Cours CLD Stream processing 39



Flink’s architecture

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html

Davide Frey - Cours CLD Stream processing 40

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html


Streaming operators
Flink uses similar directed acyclic graphs (DAGs) of operators to
Spark. But:

I In streaming mode, the DAG remains in place, and data flows
along the DAG

I Each operator works over a window of data items

http://flink.apache.org/features.html

Davide Frey - Cours CLD Stream processing 41

http://flink.apache.org/features.html


Example: classify and count tweets

http://www.slideshare.net/tillrohrmann/apache-flink-streaming-done-right-fosdem-2016

Davide Frey - Cours CLD Stream processing 42

http://www.slideshare.net/tillrohrmann/apache-flink-streaming-done-right-fosdem-2016


Flink programs are compiled into an operator DAG
Source

DataStream<String> lines = env.addSource(
new FlinkKafkaConsumer<>(…));

DataStream<Event> events = lines.map((line) -> parse(line));

DataStream<Statistics> stats = events
.keyBy("id")
.timeWindow(Time.seconds(10))
.apply(new MyWindowAggregationFunction());

stats.addSink(new RollingSink(path));

Source map()

Transformation

Transformation

Source
Operator

keyBy()/
window()/
apply()

Sink

Transformation
Operators

Sink
Operator

Stream

Sink

Streaming Dataflow

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html

Davide Frey - Cours CLD Stream processing 43

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html


And each operator can be parallelized

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html

Davide Frey - Cours CLD Stream processing 44

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html


Flink’s stack

https://ci.apache.org/projects/flink/flink-docs-release-1.1/

Davide Frey - Cours CLD Stream processing 45

https://ci.apache.org/projects/flink/flink-docs-release-1.1/


Conclusion

I Processing big data is very difficult
I Volume, Variety, Velocity
I Parallel programming is hard!

I Cloud frameworks are being proposed to facilitate the
developers’ task

1. MapReduce automatically parallelizes programs expressed as
pairs of map/reduce functions

2. Spark simplifies the development model by automatically
compiling sequential code based on specific operators

3. Flink extends Spark with data stream processing

I Many new frameworks are being proposed. Stay tuned for
very fast progress in this exciting domain!

Davide Frey - Cours CLD Conclusion 46


	Introduction
	MapReduce
	Spark
	Stream processing
	Conclusion

