
Amazon Dynamo

Quentin Dufour
Credits : Davide Frey
ASAP Team
INRIA

1
Davide Frey

Key Motivation

- 2

• CAP theorem

•[Conjectured by Brewer in 2000]

•[Proven true by Lynch and Gilber in 2002]

Consistency Availability

Partition Tolerance

No SQL

- 3

• Simpler Interface than SQL

• Only access by primary key

• No complex query operations

• Goals

•Elasticity

•Scalability

•Fault Tolerance

•Partition Tolerance

Amazon Dynamo

Davide Frey - 4

• Partition and replicate

•Consistent Hashing

•Similar to DHT

• Consistency Management

•Quorum-system

•Object versioning

•Decentralized replica synchronization

• Failure detection and membership

•Gossip

Dynamo’s Assumptions

- 5

• Objects identified by a Key.

• Read / Write operations

• Small objects <1MB

• Run on commodity hardware

• Trusted environment

Key Trade-Off

- 6

Consistency Availability

DBMS - ACID Dynamo
Weaker consistency
No isolation (single-key

updates)

Performance Goal

- 7

• 99.9th Percentile SLA

• Average or Median not enough

• Example

•300ms response time for 99.9% of requests given

peak load of 500 req/sec

Eventually Consistent

- 8

• Always writable

•As opposed to conflict avoidance

• Conflict resolution at reads

•Mostly after reads by the application

•If done by the data store: last update wins

• Data eventually reaches all replicas

Key Principles

- 9

• Eventual Consistency

• Incremental Scalablility

• Symmetry

• Decentralization

• Heterogeneity

Dynamo & Peer-To-Peer Techniques

- 10

But no routing: Zero-Hop DHT

Table from [DeCandia et al. 2007]

System Interface

- 11

• Interface

•Get(key) -> {(object, context)}

•Put(key, context, value)

• Context encodes internal information such as object

version

• MD5(Key) -> 128-bit Identifier -> storage node -> Disk

Dynamo Details

- 12

• Partitioning

• Replication

• Versioning

• Membership

• Failure Handling

• Scaling

Partitioning

- 13

• Consistent Hashing

•Each node takes random position

•Hash (key) -> position

•Store on node following key

• Dynamo’s variant

•Multiple points per node
• Virtual nodes (tokens)

• More uniform load

• Capacity -> #virtual nodes
Image from [DeCandia et al. 2007]

Replication

- 14

• Replicate each object instance on N replicas

• Coordinator (responsible node) replicates on N-1

nodes that follow

• Skip positions to have distinct

physical nodes.

Image from [DeCandia et al. 2007]

Versioning

- 15

• Eventual consistency -> asynchronous updates

•Dynamo maintains multiple versions of each object

•E.g. multiple versions of shopping cart

•Use Vector clocks to establish order of updates
• Concurrent

• Causally related

•Client encodes version in context
• Put (key, context, object)

•Client reconciles conflicting versions

Vector Clock

- 16

Diagram from wikipedia

Operation Execution

- 17

• Clients access nodes

•Through load balancer

•Through a library that determines appropriate node

for key

• Coordinator (one of the top N nodes following key)

•Read and write from/to first N healthy nodes
• Min W responses for writes

• Min R responses for reads

• W+R>N

Quorum

- 18

•Read and write from/to first N healthy nodes
• Min W responses for writes

• Min R responses for reads

• W+R>N

Guarantees an intersection between read set and write set

But may not work in case of partitions

Sloppy Quorum

- 19

• Send update to the first N “healthy” nodes

•nodes may receive update not for them

• Hinted Hand-off

•Updates contain hint for “right recipient”

•Hand off data to right recipient when available

• Works well for transient failures

• Additionally: make sure object across datacenters

Replica Synchronization

- 20

• Use Merkle tree and Anti-Entropy Gossip

•Exchange merkle hashes
• starting from root

• Descend towards children if necessary

•Effectively identify out-of-sync data

• One separate Merkle Tree for each Key range

Membership Maintenance

- 21

• Special case of RPS

•Dynamo maintains full view

•One-exchange -> multiple purposes
• Partitioning

• Membership

• External discovery mechanism for a few seed nodes
• A starts a network

• B starts a network

• A and B communicate externally

• Reconcile partitioning upon node addition-removal

Google’s BigTable

- 22

• Distributed multidimensional sorted map

• BT(row: string, column: string, timestamp: int) -> String

• Read/Write: Atomic under single row key

• Sorted by row key

• Rows grouped in ranges: tablets

• Columns grouped in families

Big Table’s Architecture

- 23

• Master node stores location information

• Tablet servers store the actual data

• Replication for fault tolerance (Chubby, Based on

Paxos)

• A 1-hop P2P DHT with additional features

•Multidimensional

•Fault tolerance

•Atomic row access

Facebook’s Cassandra

- 24

• Multi dimensional

• 0-hop DHT-like

• Simple API

•insert (table, key, rowMutation)

•get (table, key, columnName)

•delete(table,key,columnName)

• Consistent Hashing Improvement

•Lightly loaded nodes move to loaded areas

 inspired by [Chord DHT]

Replication in Cassandra

- 25

• Responsible node replicates on N-1 other hosts

•Rack Unaware
• N-1 nodes that follow

•Rack Aware
• Based on leader

•Datacenter Aware
• Based on leader

•Leader election through ZooKeeper (based on

Paxos)

Membership in Cassandra

- 26

• Anti-entropy gossip

•ScuttleButt

•Everyone knows about everyone’s position in ring

• Probabilistic Failure Detection

•Accrual Failure Detector

•Avoid communicating with unreachable nodes

•Only for temporary failures

• Manual mechanism for addition removal

Bibliography

- 27

• Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman,

Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo:

amazon's highly available key-value store. In Proceedings of twenty-first ACM SIGOPS symposium on

Operating systems principles (SOSP '07). ACM, New York, NY, USA, 205-220.

DOI=http://dx.doi.org/10.1145/1294261.1294281

• Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,

Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008. Bigtable: A Distributed Storage System

for Structured Data. ACM Trans. Comput. Syst. 26, 2, Article 4 (June 2008), 26 pages.

DOI=http://dx.doi.org/10.1145/1365815.1365816

• Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage

system. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35-40.

DOI=http://dx.doi.org/10.1145/1773912.1773922

Bibliography

- 28

• Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010. ZooKeeper: wait-free

coordination for internet-scale systems. In Proceedings of the 2010 USENIX conference on USENIX

annual technical conference (USENIXATC'10). USENIX Association, Berkeley, CA, USA, 11-11.

• Mike Burrows. 2006. The Chubby lock service for loosely-coupled distributed systems. In Proceedings

of the 7th symposium on Operating systems design and implementation (OSDI '06). USENIX

Association, Berkeley, CA, USA, 335-350

• Robbert van Renesse, Dan Dumitriu, Valient Gough, and Chris Thomas. 2008. Efficient reconciliation

and flow control for anti-entropy protocols. In Proceedings of the 2nd Workshop on Large-Scale

Distributed Systems and Middleware (LADIS '08). ACM, New York, NY, USA, , Article 6 , 7 pages.

DOI=http://dx.doi.org/10.1145/1529974.1529983

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28

