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Key Motivation
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• CAP theorem

•[Conjectured by Brewer in 2000]

•[Proven true by Lynch and Gilber in 2002]

Consistency Availability

Partition Tolerance



No SQL
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• Simpler Interface than SQL

• Only access by primary key

• No complex query operations

• Goals

•Elasticity

•Scalability

•Fault Tolerance

•Partition Tolerance



Amazon Dynamo
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• Partition and replicate

•Consistent Hashing

•Similar to DHT

• Consistency Management

•Quorum-system

•Object versioning

•Decentralized replica synchronization

• Failure detection and membership

•Gossip



Dynamo’s Assumptions
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• Objects identified by a Key. 

• Read / Write operations 

• Small objects <1MB

• Run on commodity hardware

• Trusted environment



Key Trade-Off
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Consistency Availability

DBMS - ACID Dynamo 
Weaker consistency
No isolation (single-key 

updates)



Performance Goal
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• 99.9th Percentile SLA

• Average or Median not enough

• Example

•300ms response time for 99.9% of requests given 

peak load of 500 req/sec



Eventually Consistent
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• Always writable

•As opposed to conflict avoidance

• Conflict resolution at reads

•Mostly after reads by the application

•If done by the data store: last update wins

• Data eventually reaches all replicas



Key Principles
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• Eventual Consistency

• Incremental Scalablility

• Symmetry

• Decentralization

• Heterogeneity



Dynamo & Peer-To-Peer Techniques
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But no routing: Zero-Hop DHT

Table from [DeCandia et al. 2007]



System Interface
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• Interface

•Get(key) -> {(object, context)}

•Put(key, context, value)

• Context encodes internal information such as object 

version 

• MD5(Key) -> 128-bit Identifier -> storage node -> Disk



Dynamo Details
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• Partitioning

• Replication

• Versioning

• Membership

• Failure Handling

• Scaling



Partitioning
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• Consistent Hashing

•Each node takes random position

•Hash (key) -> position

•Store on node following key

• Dynamo’s variant

•Multiple points per node
• Virtual nodes  (tokens)

• More uniform load

• Capacity -> #virtual nodes
Image from [DeCandia et al. 2007]



Replication
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• Replicate each object instance on N replicas

• Coordinator (responsible node) replicates on N-1 

nodes that follow

• Skip positions to have distinct 

physical nodes.

Image from [DeCandia et al. 2007]



Versioning
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• Eventual consistency -> asynchronous updates

•Dynamo maintains multiple versions of each object

•E.g. multiple versions of shopping cart

•Use Vector clocks to establish order of updates
• Concurrent

• Causally related

•Client encodes version in context
• Put (key, context, object)

•Client reconciles conflicting versions



Vector Clock
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Diagram from wikipedia



Operation Execution
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• Clients access nodes

•Through load balancer

•Through a library that determines appropriate node 

for key

• Coordinator (one of the top N nodes following key)

•Read and write from/to first N healthy nodes
• Min W responses for writes

• Min R responses for reads

• W+R>N



Quorum 
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•Read and write from/to first N healthy nodes
• Min W responses for writes

• Min R responses for reads

• W+R>N

Guarantees an intersection between read set and write set

But may not work in case of partitions



Sloppy Quorum
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• Send update to the first N “healthy” nodes

•nodes may receive update not for them

• Hinted Hand-off

•Updates contain hint for “right recipient”

•Hand off data to right recipient when available

• Works well for transient failures

• Additionally: make sure object across datacenters



Replica Synchronization
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• Use Merkle tree  and Anti-Entropy Gossip

•Exchange merkle hashes 
• starting from root

• Descend towards children if necessary

•Effectively identify out-of-sync data

• One separate Merkle Tree for each Key range 



Membership Maintenance
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• Special case of RPS

•Dynamo maintains full view

•One-exchange -> multiple purposes
• Partitioning

• Membership

• External discovery mechanism for a few seed nodes
• A starts a network

• B starts a network

• A and B communicate externally

• Reconcile partitioning upon node addition-removal



Google’s BigTable
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• Distributed multidimensional sorted map

• BT(row: string, column: string, timestamp: int) -> String

• Read/Write: Atomic under single row key

• Sorted by row key

• Rows grouped in ranges: tablets

• Columns grouped in families



Big Table’s Architecture
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• Master node stores location information

• Tablet servers store the actual data

• Replication for fault tolerance (Chubby, Based on 

Paxos) 

• A 1-hop P2P DHT with additional features

•Multidimensional

•Fault tolerance

•Atomic row access



Facebook’s Cassandra 
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• Multi dimensional

• 0-hop DHT-like

• Simple API

•insert (table, key, rowMutation)

•get (table, key, columnName)

•delete(table,key,columnName) 

• Consistent Hashing Improvement

•Lightly loaded nodes move to loaded areas 

     inspired by [Chord DHT]



Replication in Cassandra
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• Responsible node replicates on N-1 other hosts

•Rack Unaware
• N-1 nodes that follow

•Rack Aware
• Based on leader

•Datacenter Aware
• Based on leader

•Leader election through  ZooKeeper (based on 

Paxos)



Membership in Cassandra
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• Anti-entropy gossip

•ScuttleButt

•Everyone knows about everyone’s position in ring

• Probabilistic Failure Detection

•Accrual Failure Detector 

•Avoid communicating with unreachable nodes

•Only for temporary failures

• Manual mechanism for addition removal
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