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The Cloud is great for hosting Web applications

I “Infinite” number of computing resources
I Pay-as-you-go
I Resource provisioning
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Web applications
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Scaling relational databases

I Relational databases have many benefits:
I A very powerful query language (SQL)
I Strong consistency
I Mature implementations
I Well-understood by developers
I Etc.

I But also a few drawbacks:
I Poor elasticity (ability to change the processing capacity easily)
I Poor scalability (ability to process arbitrary levels of load)
I Behavior in the presence of network partitions
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Elasticity of relational databases
I Relational databases were designed in the 1970s

I Designed for mainframes (a single super-expensive machine)
I Not for clouds (many weak machines being created/stopped at

any time)

I Master-slave replication:
I 1 master database processes and serializes all updates
I N slaves receive updates from the master and process all reads
I Designed mostly for fault-tolerance, not performance

I How can we add a replica at runtime?
I Take a snapshot of the database (very well supported by

relational databases)
I Copy the snapshot into the new replica
I Apply all updates received since the snapshot
I Add the new replica in the load balancing group

I This may take hours depending on the size of the database
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Scalability of relational databases
I Assuming an unlimited number of machines, can we process

arbitrary levels of load?
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I Problem: full replication
I Each replica must process every update

I Solution: partial replication
I Each server contains a fraction of the total data
I Updates can be confined to a small number of machines
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Sharding
I Sharding = shared nothing architecture
I The programmer splits the database into independent

partitions
I Customers A-M → Database server 1
I Customers N-Z → Database server 2

I Advantage: scalability
I Each partition can work independently without processing the

updates of other partitions

I Drawback: all the work is left for the developer
I Defining the partition criterion
I Routing requests to the correct servers
I Implementing queries which span multiple partitions
I Implementing elasticity
I Etc.

Implementing sharding correctly is very difficult!
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Hash Tables

I A Distributed Hash Table is a special kind of Hash Table
I A hash table stores a large number of (key,value) pairs
I Two very efficient operations:

I PUT(key, value)
I value = GET(key)

I All other operations are unsupported (or extremely inefficient)
I E.g., find all keys whose value contains “hello”

I A hash table is normally stored in a single computer
I The storage is divided into N buckets
I A (key,value) pair is stored in bucket b = hash(key)%N

I A Distributed Hash Table uses multiple computers to store its
content
I Each computer stores only 1 bucket
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Distributed Hash Tables

I See set of slides on Pastry

Quentin Dufour - TLC DHTs 9



The Chord DHT
I The Chord DHT is organized as a logical ring

I Each node is assigned a random m-bit identifier
I Eack data item is assigned a unique m-bit key
I Entity with key k falls under jurisdiction of node with smallest

id ≥ k (called its successor).
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Why is this ring structure interesting?

I Automatic data partitioning

I Automatic load balancing

I Adding a new node does not disrupt the whole system
I We just need to split one zone
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Finding which node is in charge of which key
I Bad solution #1: let each node know the full list of other

nodes
I Each time a node joins or leaves we must replicate this

information
I Nasty consistency problem. . .

I Bad solution #2: Let each node know only its own successor
Local update when adding/removing nodes
But finding data is very expensive
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Routing queries in Chord
I Chord nodes maintain more links than just their successor

I 1/2 ring away, 1/4 ring away, 1/8 ring away, etc.
I Good properties:

I Each node maintains log2(N) links (i.e., easy maintenance)
I Each query is routed in log2(N) hops (i.e., efficient routing)
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The two meanings of “Consistency”

1. For database experts: Consistency == Referential integrity in
a single database
I To make things simple: unique keys are really unique, foreign

keys map on something etc.
I This is the “C” from ACID

2. For distributed systems experts: Consistency = a property of
replicated data
I To make things simple: all copies of the same data seem to

have the same value at any time
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The CAP Theorem
I In a distributed system we want three important properties:

1. Consistency: readers always see the result of previous updates
2. Availability: the system always answers client requests
3. Partition tolerance: the system doesn’t break down if the

network gets partitioned

I Brewer’s theorem: you cannot get all three at the same time
I You must pick at most two out of three

I Relational databases usually implement AC
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NoSQL takes the problem upside down

I NoSQL is designed with scalability in mind:
I The database must be elastic
I The database must be fully scalable
I The database must tolerate machine failures
I The database must tolerate network partitions

I What’s the catch?
I NoSQL must choose between AP and CP

I Most NoSQL systems choose AP: they do not guarantee
strong consistency

I NoSQL do not support complicated queries
I They do not support the SQL language
I Only very simple operations!

I Different NoSQL systems apply these principles differently
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NoSQL data stores rely on DHT techniques

I NoSQL data stores split data across nodes. . .
I Excellent elasticity and scalability

I . . . and replicate each data item on m nodes
I For fault-tolerance

I If the network gets partitioned: serve requests within each
partition
I The system remains available
I But clients will miss updates issued in the other partitions (bad

consistency)
I When the partition is resolved, updates from different

partitions get merged
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Flexible consistency models
I Some NoSQL data stores allow users to define the level of

consistency they want
I Replicate each data item over N servers
I Associate each data item with a timestamp
I Issue writes on all servers, consider a write to be successful

when m servers have acknowledged
I Read data from at least n servers (and return the freshest

version to the client)

I If m + n > N then we have strong consistency
Quorum System
I For example: m = N, n = 1
I But other possibilities exist: m = 1, n = N
I Or anything in between: m = N

2 + 1, n = N
2 + 1

I If m + n ≤ N then we have weak consistency
I Faster
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Flexible data schemas
I In NoSQL data stores there is no need to impose a strict data

schema
I Anyway the data store treats each row as a (key,value) pair
I No requirement for the value ⇒ no fixed data schema
I Not the same as empty values!
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Example: AppEngine’s Datastore
AppEngine’s Datastore relies on Google BigTable

(the first NoSQL database: OSDI 2006)

I You can only GET and PUT entities based on their key
I No complex query

I Entities are organized into entity groups
I Operations within one entity group are strongly consistent
I Operations spanning multiple entity groups are weakly

consistent

I The datastore supports at most 1 update per second per
entity group
I Entity groups are replicated using Paxos across multiple

machines in different data centers
Guaranteed strong consistency even if nodes misbehave in
strange ways
Paxos is known to be very slow

Quentin Dufour - TLC NoSQL databases 21



Example: Dynamo

I See set of slides on Dynamo.
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Data modeling for NoSQL datastores

I Data normalization techniques will not work for NoSQL
I Forget UML and other related methodologies

I There is very little formal work on data schema design for
NoSQL :-(
I NoSQL is too young for that
I Each NoSQL datastore has specific features

I But there exists useful guidelines
I Keeping in mind that each NoSQL datastore has specific

functionality
I Exploit them to the fullest extent!
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Different types of NoSQL datastores
I Key-value stores do not attempt to interpret the content of

values
I PUT(key,value)
I value=GET(key)
I DELETE(key)
I Examples: AppEngine’s datastore, HBase, AWS Dynamo

I Ordered key-value stores let you iterate through keys
I Examples: Scalarix

I Document databases do interpret the content of values
I Impose a syntax for values (JSON, XML, etc.)
I Support value-based operations (e.g., secondary-key queries)

I With various performance behaviors depending on the
database

I Example: CouchDB, Apache Cassandra
I More exotic types of data stores: graph databases, object

databases, etc.
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Common properties
Let’s compare Amazon’s SimpleDB,

Google’s BigTable and Yahoo’s PNUTS

I Data are organized in tables

I A table contains a number of data items identified by a
primary key

I Data items are organized as a collection of key-value pairs
I Only data type: string
I Data items from the same table do not necessarily have the

same list of attributes (flexible data schema)

I Data items are accessed by PUT/GET using their primary key

I No supported operation across tables (such as joins)
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Amazon’s SimpleDB / Apache’s Cassandra

I SimpleDB allows records to contain multiple values with the
same key (e.g., a multiset)

I Data are organized into “domains”
I Domains ∼ tables
I No schema

I SimpleDB supports range queries

I Consistency: eventual consistency
I Also some form of strong consistency is supported (with lower

levels of performance)
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Google’s BigTable / Apache’s HBase
I Columns are organized in column families:

"family:column name"
I Column families are the granularity for access control

I Tables have more dimensions than the standard model
I Values are indexed by row, column and timestamp
I (row:string, column:string, time:int64) → string

I Rows are sorted
I BigTable allows users to iterate through records
I . . . or through successive versions of the same record
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Yahoo’s PNUTS
I PNUTS requires an explicit list of attributes per record (i.e., a

schema)
I But it is not necessary to use all attributes
I And it is easy to change the list at runtime

I UPDATE, DELETE and INSERT queries must specify a
primary key

I Tables can be hashed or ordered
I Hashed: excellent load balancing, efficient primary-key queries
I Ordered: less good load balancing, but support for range

queries
I In both cases: PNUTS supports “multiget” queries to retrieve

several records in parallel (from one or more tables)

I Consistency: single-row transactions
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Comparison

Amazon’s Google’s Yahoo’s
SimpleDB Bigtable PNUTS

Data Item Multi-value Multi-version Multi-version
attribute with timestamp with timestamp

Explicitly
Schema No schema Column-families claimed

attributes
Range queries Single-table Single-table

Operation on arbitrary scan with scan with
attributes various filtering predicates
of a table conditions

Consistency Eventual Single-row Single-row
consistency transaction transaction
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Denormalization

I Normalization defines data stuctures regardless of the queries
I Hidden assumption: if the data are well-organized we can

always query them easily
I This is true for SQL databases but not for NoSQL datastores

I Denormalization does the opposite of normalization: structure
data according to future queries
I Group all data necessary for a query at the same place
I We often end up copying the same data at multiple places in

the datastore
Excellent performance if we do things well
Database consistency issues: all updates must be applied
everywhere, it is easy to introduce mistakes
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Aggregates
I NoSQL datastores allow flexible data schemas

I Stored values may have complex nested structures
I No need to pre-define these structures, we can simply create

them at runtime
I Each record may have a different structure

I Example 1: a User record links to the list of his Messages
I Normalized version: two tables (Users and Messages) with

references between the two
I NoSQL version: insert the entire messages inside the User

record

I Example 2: different types of products
I Normalized verson: one table for each type of product (with its

specific structure)
I NoSQL version: store all products with their specificities next

to each other
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Atomic aggregates
I Aggregates have one nice side-effect: atomic updates

I NoSQL datastores often support atomic updates per data item
I But they rarely support multi-item transactions

I If multiple updates are located in the same record they
become atomic
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Application-side joins

I Very few NoSQL data stores support joins
I Denormalization and aggregates often allow us to avoid joins

I But sometimes we cannot avoid joins
I Many-to-many relationships between records
I Frequently updated data items

I Solution: application-side joins
I Let the application fetch all necessary data items
I Join them by hand
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Index tables
I We can implement foreign keys by simply building index tables

I Replace one join query with 2 simple queries
I Beware: you lose atomicity
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Enumerable keys

I DHTs normally hash keys before deciding where to store each
data item
I Excellent for load balancing
I But contiguous keys end up being located in random nodes in

the system

I Some NoSQL decided to drop hashing
I Much less efficient for load balancing
I But it allows applications to iterate through keys

I You can embed information in the keys
I Example: key=userID messageID
I You can easily access all messages from a user: start at

UserID 0 and iterate
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Composite key index
I We can combine index tables with fancy key structures

I This often allows for efficient secondary-key queries
I Example: select users by their location

I SELECT * FROM users WHERE state="CA"
I SELECT * FROM users WHERE city="San Francisco"
I NoSQL solution: design keys as State:City:UserID
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Aggregation with Composite Keys
I We can also use composite keys for data aggregation
I Example: search a log file for all unique sites visited by a user

I SELECT count(distinct(user id)) FROM clicks

GROUP BY site
I NoSQL solution: make sure to keep contiguous log records per

user
I And then eliminate redundancy in the application itself

I This is much more efficient than keeping log entries from each
user in a single record
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Inverted search

I If we want to search items along multiple criteria we cannot
use composite keys
I With composite keys we can support only one type of search

I Example: we want to search users by their gender, city, the
sites they visit etc.
I NoSQL solution: build inverted indexes explicitly
I Key=property; Value=reference to the main table
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Nested sets

I How do we represent a hierarchical structure in NoSQL?
I Bad solution #1: store the entire tree in one data item
I Bad solution #2: store each node separately, maintain a list of

children in all non-leaf nodes

I Solution: nested sets
I Map each leaf to one data item in the NoSQL store
I Make each non-leaf node maintain the beginning/end index

I Very efficient for read/search
I Not so efficient for updates
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Using MapReduce for complex queries
I Some queries can be unfrequent but very complex

I E.g., data mining queries

I You cannot redesign your entire data schema for just one
ad-hoc query

I Implementing the entire query in the application can be
inefficient
I In the worst case: fetch the entire data store on the client, let

the client process the query locally

I Solution: MapReduce
I Example: MongoDB is fully integrated with MapReduce
I You can request a MapReduce job over the content of the

datastore in just one command
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MapReduce queries in MongoDB
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Example [1/2]

Quentin Dufour - TLC Complex queries thank to MapReduce 47



Example [2/2]
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Conclusion

I NoSQL datastores are designed for scalability
I Even at the cost of reducing the set of offered functionalities

I Different NoSQL data stores can have very different properties

I It is important to understand these specific functionalities to
make the best use of each system

I Also useful for choosing one datastore (when possible)

I Very little theoretical background on how to organize data
I But there exists useful guidelines
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