

Développement logiciel pour le Cloud (TLC)

Quentin Dufour

The Cloud is great for hosting Web applications

Okeap berlapsed texpe Dana

Quentin Dufour - TLC

The Cloud is great for hosting Web applications

"Infinite" number of computing resources

Pay-as-you-go

Resource provisioning

Quentin Dufour - TLC

Web applications

Web applications

Web applications

Ínría

Scaling relational databases

Relational databases have many benefits:

- A very powerful query language (SQL)
- Strong consistency
- Mature implementations
- Well-understood by developers
- Etc.

nnin

Scaling relational databases

Relational databases have many benefits:

- A very powerful query language (SQL)
- Strong consistency
- Mature implementations
- Well-understood by developers
- Etc.
- But also a few drawbacks:
 - Poor elasticity (ability to change the processing capacity easily)
 - Poor scalability (ability to process arbitrary levels of load)
 - Behavior in the presence of network partitions

Elasticity of relational databases

- Relational databases were designed in the 1970s
 - Designed for mainframes (a single super-expensive machine)
 - Not for clouds (many weak machines being created/stopped at any time)
- Master-slave replication:
 - 1 master database processes and serializes all updates
 - N slaves receive updates from the master and process all reads
 - Designed mostly for fault-tolerance, not performance

How can we add a replica at runtime?

- Take a snapshot of the database (very well supported by relational databases)
- Copy the snapshot into the new replica
- Apply all updates received since the snapshot
- Add the new replica in the load balancing group

Elasticity of relational databases

- Relational databases were designed in the 1970s
 - Designed for mainframes (a single super-expensive machine)
 - Not for clouds (many weak machines being created/stopped at any time)
- Master-slave replication:
 - 1 master database processes and serializes all updates
 - ► N slaves receive updates from the master and process all reads
 - Designed mostly for fault-tolerance, not performance

How can we add a replica at runtime?

- Take a snapshot of the database (very well supported by relational databases)
- Copy the snapshot into the new replica
- Apply all updates received since the snapshot
- Add the new replica in the load balancing group
- This may take hours depending on the size of the database

Scalability of relational databases

Assuming an unlimited number of machines, can we process arbitrary levels of load?

nnía

Scalability of relational databases

Assuming an unlimited number of machines, can we process arbitrary levels of load?

- Problem: full replication
 - Each replica must process every update
- Solution: partial replication
 - Each server contains a fraction of the total data
 - Updates can be confined to a small number of machines

Sharding

- Sharding = shared nothing architecture
- The programmer splits the database into independent partitions
 - Customers A-M \rightarrow Database server 1
 - Customers N-Z \rightarrow Database server 2
- Advantage: scalability
 - Each partition can work independently without processing the updates of other partitions
- Drawback: all the work is left for the developer
 - Defining the partition criterion
 - Routing requests to the correct servers
 - Implementing queries which span multiple partitions
 - Implementing elasticity
 - Etc.

Implementing sharding correctly is very difficult!

Hash Tables

A Distributed Hash Table is a special kind of Hash Table

- A hash table stores a large number of (key,value) pairs
- Two very efficient operations:
 - PUT(key, value)
 - value = GET(key)
- All other operations are unsupported (or extremely inefficient)
 - E.g., find all keys whose value contains "hello"
- A hash table is normally stored in a single computer
 - The storage is divided into N buckets
 - A (key,value) pair is stored in bucket b = hash(key) % N
- A Distributed Hash Table uses multiple computers to store its content
 - Each computer stores only 1 bucket

Distributed Hash Tables

Inría

Quentin Dufour - TLC

The Chord DHT

- The Chord DHT is organized as a logical ring
 - Each node is assigned a random *m*-bit identifier
 - Eack data item is assigned a unique *m*-bit key
 - Entity with key k falls under jurisdiction of node with smallest id ≥ k (called its successor).

Why is this ring structure interesting?

- Automatic data partitioning
- Automatic load balancing
- Adding a new node does not disrupt the whole system
 - We just need to split one zone

naín

Finding which node is in charge of which key

- Bad solution #1: let each node know the full list of other nodes
 - Each time a node joins or leaves we must replicate this information
 - Nasty consistency problem...

nnin

Finding which node is in charge of which key

- Bad solution #1: let each node know the full list of other nodes
 - Each time a node joins or leaves we must replicate this information
 - Nasty consistency problem...
- ▶ Bad solution #2: Let each node know only its own successor
 -) Local update when adding/removing nodes

) But finding data is very expensive

Routing queries in Chord

- Chord nodes maintain more links than just their successor
 - 1/2 ring away, 1/4 ring away, 1/8 ring away, etc.
- Good properties:
 - Each node maintains log₂(N) links (i.e., easy maintenance)
 - Each query is routed in log₂(N) hops (i.e., efficient routing)

The two meanings of "Consistency"

- 1. For database experts: Consistency == Referential integrity in a single database
 - To make things simple: unique keys are really unique, foreign keys map on something etc.
 - This is the "C" from ACID
- 2. For distributed systems experts: Consistency = a property of replicated data
 - To make things simple: all copies of the same data seem to have the same value at any time

The CAP Theorem

In a distributed system we want three important properties:

- 1. Consistency: readers always see the result of previous updates
- 2. Availability: the system always answers client requests
- 3. Partition tolerance: the system doesn't break down if the network gets partitioned

The CAP Theorem

In a distributed system we want three important properties:

- 1. Consistency: readers always see the result of previous updates
- 2. Availability: the system always answers client requests
- Partition tolerance: the system doesn't break down if the network gets partitioned
- Brewer's theorem: you cannot get all three at the same time
 - You must pick at most two out of three

Relational databases usually implement AC

NoSQL takes the problem upside down

- NoSQL is designed with scalability in mind:
 - The database must be elastic
 - The database must be fully scalable
 - The database must tolerate machine failures
 - The database must tolerate network partitions

nnin

NoSQL takes the problem upside down

- NoSQL is designed with scalability in mind:
 - The database must be elastic
 - The database must be fully scalable
 - The database must tolerate machine failures
 - The database must tolerate network partitions
- What's the catch?
 - NoSQL must choose between AP and CP
 - Most NoSQL systems choose AP: they do not guarantee strong consistency
 - NoSQL do not support complicated queries
 - They do not support the SQL language
 - Only very simple operations!

Different NoSQL systems apply these principles differently

NoSQL data stores rely on DHT techniques

NoSQL data stores split data across nodes...

- Excellent elasticity and scalability
- ... and replicate each data item on m nodes
 - For fault-tolerance
- If the network gets partitioned: serve requests within each partition
 - The system remains available
 - But clients will miss updates issued in the other partitions (bad consistency)
 - When the partition is resolved, updates from different partitions get merged

Flexible consistency models

Some NoSQL data stores allow users to define the level of consistency they want

- Replicate each data item over N servers
- Associate each data item with a timestamp
- Issue writes on all servers, consider a write to be successful when *m* servers have acknowledged
- Read data from at least *n* servers (and return the freshest version to the client)
- If m + n > N then we have strong consistency Quorum System
 - For example: m = N, n = 1
 - But other possibilities exist: m = 1, n = N
 - Or anything in between: $m = \frac{N}{2} + 1$, $n = \frac{N}{2} + 1$
- If $m + n \le N$ then we have weak consistency
 - Faster

What is the biggest data management problem driving your use of NoSQL in the coming year?

Quentin Dufour - TLC

Flexible data schemas

- In NoSQL data stores there is no need to impose a strict data schema
 - Anyway the data store treats each row as a (key,value) pair
 - No requirement for the value ⇒ no fixed data schema
 - Not the same as empty values!

```
{
    FirstName:"Bob",
    Address:"5 Oak St.",
    Hobby:"sailing"
}

{
    FirstName:"Jonathan",
    Address:"15 Wanamassa Point Road",
    Children:[
        {Name:"Jennifer", Age:10},
        {Name:"Samantha", Age:5},
        {Name:"Elena", Age:2}
    ]
}
```


Example: AppEngine's Datastore

AppEngine's Datastore relies on Google BigTable (the first NoSQL database: OSDI 2006)

You can only GET and PUT entities based on their key
 No complex query

Entities are organized into entity groups

- Operations within one entity group are strongly consistent
- Operations spanning multiple entity groups are weakly consistent
- The datastore supports at most 1 update per second per entity group
 - Entity groups are replicated using Paxos across multiple machines in different data centers
 - : Guaranteed strong consistency even if nodes misbehave in strange ways
 - Paxos is known to be very slow

Inría

Data modeling for NoSQL datastores

Data normalization techniques will not work for NoSQL

- Forget UML and other related methodologies
- There is very little formal work on data schema design for NoSQL :-(
 - NoSQL is too young for that
 - Each NoSQL datastore has specific features
- But there exists useful guidelines
 - Keeping in mind that each NoSQL datastore has specific functionality
 - Exploit them to the fullest extent!

Different types of NoSQL datastores

 Key-value stores do not attempt to interpret the content of values

- PUT(key,value)
- value=GET(key)
- DELETE(key)
- Examples: AppEngine's datastore, HBase, AWS Dynamo
- Ordered key-value stores let you iterate through keys

Examples: Scalarix

Document databases do interpret the content of values

- Impose a syntax for values (JSON, XML, etc.)
- Support value-based operations (e.g., secondary-key queries)
 - With various performance behaviors depending on the database

Example: CouchDB, Apache Cassandra

 More exotic types of data stores: graph databases, object databases, etc.

Stop following me, you fucking freaks!

Inría

Quentin Dufour - TLC

NoSQL data models 25

Common properties

Let's compare Amazon's SimpleDB, Google's BigTable and Yahoo's PNUTS

- Data are organized in tables
- A table contains a number of data items identified by a primary key
- Data items are organized as a collection of key-value pairs
 - Only data type: string
 - Data items from the same table do not necessarily have the same list of attributes (flexible data schema)
- Data items are accessed by PUT/GET using their primary key

NoSQL data models 26

Amazon's SimpleDB / Apache's Cassandra

 SimpleDB allows records to contain multiple values with the same key (e.g., a multiset)

- Data are organized into "domains"
 - Domains ~ tables
 - No schema
- SimpleDB supports range queries
- Consistency: eventual consistency
 - Also some form of strong consistency is supported (with lower levels of performance)

Google's BigTable / Apache's HBase

- Columns are organized in column families: "family:column_name"
 - Column families are the granularity for access control
- Tables have more dimensions than the standard model
 - Values are indexed by row, column and timestamp
 - (row:string, column:string, time:int64) \rightarrow string

Rows are sorted

- BigTable allows users to iterate through records
- ... or through successive versions of the same record

Yahoo's PNUTS

- PNUTS requires an explicit list of attributes per record (i.e., a schema)
 - But it is not necessary to use all attributes
 - And it is easy to change the list at runtime
- UPDATE, DELETE and INSERT queries must specify a primary key
- Tables can be hashed or ordered
 - Hashed: excellent load balancing, efficient primary-key queries
 - Ordered: less good load balancing, but support for range queries
 - In both cases: PNUTS supports "multiget" queries to retrieve several records in parallel (from one or more tables)

Comparison

	Amazon's SimpleDB	Google's Bigtable	Yahoo's PNUTS
Data Item	Multi-value	Multi-version	Multi-version
	attribute	with timestamp	with timestamp
			Explicitly
Schema	No schema	Column-families	claimed
			attributes
	Range queries	Single-table	Single-table
Operation	on arbitrary	scan with	scan with
	attributes	various filtering	predicates
	of a table	conditions	
Consistency	Eventual	Single-row	Single-row
	consistency	transaction	transaction

(nría_

Denormalization

Normalization defines data stuctures regardless of the queries

- Hidden assumption: if the data are well-organized we can always query them easily
- This is true for SQL databases but not for NoSQL datastores
- Denormalization does the opposite of normalization: structure data according to future queries
 - Group all data necessary for a query at the same place
 - We often end up copying the same data at multiple places in the datastore
 - Excellent performance if we do things well
 -) Database consistency issues: all updates must be applied everywhere, it is easy to introduce mistakes

Aggregates

- NoSQL datastores allow flexible data schemas
 - Stored values may have complex nested structures
 - No need to pre-define these structures, we can simply create them at runtime
 - Each record may have a different structure

Example 1: a User record links to the list of his Messages

- Normalized version: two tables (Users and Messages) with references between the two
- NoSQL version: insert the entire messages inside the User record
- Example 2: different types of products
 - Normalized verson: one table for each type of product (with its specific structure)

NoSQL version: store all products with their specificities next to each other

Atomic aggregates

Aggregates have one nice side-effect: atomic updates

- NoSQL datastores often support atomic updates per data item
- But they rarely support multi-item transactions
- If multiple updates are located in the same record they become atomic

Application-side joins

Very few NoSQL data stores support joins

Denormalization and aggregates often allow us to avoid joins

But sometimes we cannot avoid joins

- Many-to-many relationships between records
- Frequently updated data items
- Solution: application-side joins
 - Let the application fetch all necessary data items
 - Join them by hand

Quentin Dufour - TLC

Data modeling techniques 36

Index tables

▶ We can implement foreign keys by simply building index tables

Replace one join query with 2 simple queries

Beware: you lose atomicity

Enumerable keys

- DHTs normally hash keys before deciding where to store each data item
 - Excellent for load balancing
 - But contiguous keys end up being located in random nodes in the system
- Some NoSQL decided to drop hashing
 - Much less efficient for load balancing
 - But it allows applications to iterate through keys
- You can embed information in the keys
 - Example: key=userID_messageID
 - You can easily access all messages from a user: start at UserID_0 and iterate

Composite key index

- We can combine index tables with fancy key structures
 - This often allows for efficient secondary-key queries
- Example: select users by their location
 - SELECT * FROM users WHERE state="CA"
 - SELECT * FROM users WHERE city="San Francisco"
 - NoSQL solution: design keys as State:City:UserID

State:City:UserID

Aggregation with Composite Keys

- We can also use composite keys for data aggregation
- Example: search a log file for all unique sites visited by a user
 - SELECT count(distinct(user_id)) FROM clicks GROUP BY site
 - NoSQL solution: make sure to keep contiguous log records per user
 - And then eliminate redundancy in the application itself

This is much more efficient than keeping log entries from each user in a single record

Quentin Dufour - TLC

Inverted search

If we want to search items along multiple criteria we cannot use composite keys

With composite keys we can support only one type of search

Example: we want to search users by their gender, city, the sites they visit etc.

- NoSQL solution: build inverted indexes explicitly
- Key=property; Value=reference to the main table

nnin

Quentin Dufour - TLC

Nested sets

How do we represent a hierarchical structure in NoSQL?

- Bad solution #1: store the entire tree in one data item
- Bad solution #2: store each node separately, maintain a list of children in all non-leaf nodes
- Solution: nested sets
 - Map each leaf to one data item in the NoSQL store
 - Make each non-leaf node maintain the beginning/end index
 - Very efficient for read/search
 - Not so efficient for updates

(nría_

Quentin Dufour - TLC

Using MapReduce for complex queries

- Some queries can be unfrequent but very complex
 - E.g., data mining queries
- You cannot redesign your entire data schema for just one ad-hoc query
- Implementing the entire query in the application can be inefficient
 - In the worst case: fetch the entire data store on the client, let the client process the query locally

Solution: MapReduce

- Example: MongoDB is fully integrated with MapReduce
- You can request a MapReduce job over the content of the datastore in just one command

MapReduce queries in MongoDB

```
db.runCommand(
  { mapreduce : <collection>,
    map : <mapfunction>,
    reduce : <reducefunction>,
    out : <see output options below>
    [, query : <query filter object>]
    [, sort : <sorts the input objects using this key. Useful for optimization, like sorting by
    the emit key for fewer reduces>]
    [, limit : <number of objects to return from collection, not supported with sharding>]
    [, keeptemp: <true|false>]
    [, scope : <object where fields go into javascript global scope >]
    [, jsMode : true]
    ], verbose : true]
    }
};
```

Innia

Example [1/2]

```
$ ./mongo
> db.things.insert( { _id : 1, tags : ['dog', 'cat'] } );
> db.things.insert( { _id : 2, tags : ['cat'] } );
> db.things.insert( { _id : 3, tags : ['mouse', 'cat', 'dog'] } );
> db.things.insert( { _id : 4, tags : [] } );
> // map function
> m = function(){
       this.tags.forEach(
. . .
            function(z){
. . .
                emit( z , { count : 1 } );
. . .
            }
. . .
       );
. . .
...};
> // reduce function
   = function( key , values ){
> r
       var total = 0;
. . .
       for ( var i=0; i<values.length; i++ )</pre>
. . .
            total += values[i].count;
. . .
       return { count : total };
. . .
...};
```


Example [2/2]

```
> res = db.things.mapReduce(m, r, { out : "myoutput" } );
> res
{
        "result" : "myoutput",
        "timeMillis" : 12,
        "counts" : {
                "input" : 4,
                "emit" : 6,
                "output" : 3
       },
"ok" : 1,
}
> db.myoutput.find()
{"_id" : "cat" , "value" : {"count" : 3}}
{"_id" : "dog" , "value" : {"count" : 2}}
{"_id" : "mouse" , "value" : {"count" : 1}}
```

> db.myoutput.drop()

Conclusion

NoSQL datastores are designed for scalability

Even at the cost of reducing the set of offered functionalities

Different NoSQL data stores can have very different properties

- It is important to understand these specific functionalities to make the best use of each system
- Also useful for choosing one datastore (when possible)
- Very little theoretical background on how to organize data
 But there exists useful guidelines

