Développement logiciel

pour le Cloud (TLC)

Introduction

Davide Frey

Source: CNRS magazine 2013

Davide Frey - Cours CLD Introduction 2

Big data

"Big data refers to data sets whose size is beyond the ability of
typical database software tools to capture, store, manage and
analyze” — The McKinsey Global Institute, 2011.

“Big data is the term for a collection of data sets so large and
complex that it becomes difficult to process using on-hand
database management tools or traditional data processing
applications.” — Wikipedia.

. &bﬂ’a—— Davide Frey - Cours CLD Introduction 3

How big is big data?

Earlier Berkeley studies estimated that by the end of 1999, the sum
of human-produced information (including all audio, video
recordings and text/books) was about 12 Exabytes of data (1
exabyte = 1 million TB).

Eric Schmidt: Every 2 Days We Create As Much Information As
We Did Up To 2003.

http://techcrunch.com/2010/08/04/schmidt-data/

l &L?J’a—-— Davide Frey - Cours CLD Introduction 4

http://techcrunch.com/2010/08/04/schmidt-data/

Obama the warrior
Th € Misgoverning Argentina

E conom i S t The econlomic shift from West to East

Genetically modified crops blossom

el Oy 270 uanch om0 Ecofomist.éon The right to eat cats and dogs

In 2010 the Digital Universe
The data del“ge contained 1.2 zettabytes

ANDHOW'I' HANDLEITAIAPAG SPECIALREP KT (1 zettabyte — 1 bi//ion TB)

In 2020 the Digital Universe
will contain 35 zettabytes.

Davide Frey - Cours CLD Introduction 5

QUESTIONS
ASKED ON THE
INTERNET...

25+ Hours
DURATION

1,600+ 13,000+-souss
READS ON

Seribd. JLib A
PANDORA

-0
o
[
oo-
O
Aa P
X
20,000+
POSTSON
tumblr.

13,000+
iPhone

APPLICATIONS
DOWNLOADED

Answers.com @

233> 600+

4

Yoo - NEW
Mg VIDEOS

168miLuoN

ROAlE

Google

Davide Frey - Cours CLD

12 000+

I’OSTﬁgtON

370,000+ mnutes
< wG CALLSON

G
flickr

50+
WORDPRESS
DOWNLOADS
695,000+
cebo

STATUS
UPDATES

W

irerox
DOWNLOADS DOWNLOADS

P >4

510,040
COMMENTS

®

Introduction

6

Why do we want to analyze this

DRIVING MARKETING EFFECTIVENESS BY MANAGING

PPV SPUNEOP NG By L2

BIG DATA = BIG OPPORTUNITY

Davide Frey - Cours CLD Introduction 7

Big data challenges: the “three V's”

Big Data:
Expanding on 3 fronts
at an increasing rate.

» Data
“Velocity

Data

Data at Rest

Terabytes to
exabytes of existing
data to process

Data in Motion

Streaming data,
milliseconds to
seconds to respond

Data in Many
Forms
Structured,

unstructured, text,
multimedia

The “three V's" are becoming the “four V's”

Data in Doubt

Uncertainty due to
data inconsistency
& incompleteness,
ambiguities, latency,
deception, model
approximations

Davide Frey - Cours

CLD

Introduction

)

Big data == big privacy concerns. ..

DOGBERT CONSULTS IN PHASE

ETHICALBECAUGE [2[SUNDS oNe LETL
CUSTOMER DATA OUR CUSTOMERS FATR. DEHUMANIZE
16 AN ASSET THAT THE ENEMY BY

WOULD DO THE SAME
THING TO Us IF
THEY COULD.

YOU CAN SELL. CALLING THEM

“DATA.”

Dilbert.com DilbertCartoonist@gmail.com

10-13-10 ©2010 Scott Adams, Inc./Dist. by UFS, Inc.

Davide Frey - Cours CLD Introduction 10

Big Data Landscape 2016 (Version 3.0)

Infrastructure Analytics Applications
Hadoop Hadoop in Datascience) (Visualization) [Sales & Marketing Legal
On-Premise the Cloud latform: it +ableoy | |RADIUS Gainsight
coudors || oo i | o Zotd) RAVEL
IR 1 ol APE Ll | Q@ obter| | “;;;';'";,, e Crien
S e - /ﬁevs:mﬂ:u Osreisenice 7 everia
2 uuo«wo sonse 56n88 ([NGEDATA g proac @6revia
poueaa jethro ot Assconmoea P e Acriorw i
= - sserichos_znoncio)\ @appurt wiseis
NoSQL Databs tatistical) (Log Analytics A=
| o pebases Clust Computing Ad Optimization Security Vertical Al
ignazsngg © Google ot oo || 3 ustrix - Pive splunk> " weviance Applications
MicosoftAzue »ORACLE @ paradigmd GSas || asumoose] Countertack cresin Y
OmongoD Q@ nomsd vong splice KbaRa 2 A Tcaimette x!
5Pk lvaiaon 3 @ integral O the by OO Clara
:] dsier 5
froonsins redtiabs @ iy ad i rey || rorrscate wsiftscience || KASIST:
Dota X0 Gppir 10 41)| @¥ehese foeczal wecnevo ata
Databases | P Publisher)(Govt / Regulation Finance
®reoy alteryx || informanca Tools Gsocrata Affirm siLendingClub
(] stalend | [GTETT outbrain | oSy OnDeck> .Kreditech
2 Qemscra |00 Tabgla inance Lendlp &7 Kabbage
<ronros tomeg | 2ot 280 quanteast || [F]Ficalvoce O @ INsIKT
5 = Tchartoeat 1274 || 2 vore. e Dataminr £
L splenty St e o ™ Lenddo
= @yieldbot Q markd3 || kensie ABviA ISENTIUM
Management Web/ Mobile R opentassot || G ouaniopian @ sentent
/ Mnm(ormg / Commerce. Yiakdono
BiiAmics 5 C’“‘?“"me‘ " | (Education/ Life Sciences Industries
,M_- actifio frymng Rext|| cessory op Learning. || A" . || OPOWER eHarmony:
Nmer b e metics @ svscone] |5 & Counsyl 2p Retail
Ew‘ g ety | RPN ot e | ESrN IROviagl | 2 ,@
o “‘0 mArn @eitoeal| B (| Sas i Qs Ceitse ruaion [stiron e
tocara it o, J| s A Agotia_sroun)\ potatinaJ_import@® |0 reenton custora) | @eclara | 0evezmersen Healior® m:%“;”"
- oo ZEPHYR \, See FarmLogs|
Cross-Infrastructure/Analytics PANORAMA

Gingero = st Glow || #cucens (BT O
knowm |\ @enite @ statmse BOXEVER

“aimazon Google

65aS J18 () oo VETCA Vvmware TIBC Teraoai ORACLE Ml Netapy

T,

Framework (Query / Data Flow Data Access Coordination Real-Time
S) o talend B | 55 sromn g 0l
Ny o cavtmara mongoD @
e = il [athal :
Spayfr TEZ S s Asii || Wy r@nsmnag ol @eiink [o] e
sooss @Fink @COAP ouenoe eriak e (@ oo o) | @ sapy J veLes o
Data Sources & APIs Incubators & schools
Health P 101 Financial & Economic Data A/ Space / Sea - Other @ ©
JAWBONE GARMIN Fringwens 51‘:3;“;’& o Sowiouss A spire acxiem [ersion] insigeview m o
reamactcetuson s fitbit vaoee = prewse "2 e o) e 3 ||GARMIN (RUEGEERD - STREETLING @esri - @oetacams
Withings V" vAt1orc [Slound xignite GECB: s Pece® || PANjiv || 24 oacice

23 i irnen P catrcon
e StocKbwits Gestimizs Enao = ¢

Qhinsa Qs = Airware @ vrivon; picemerer [8as1s e)| mmounaoor J{ @2 meosaneseer

Last Updated 3/23/2016 © Matt Turck (@mattturck), Jim Hao (@jimrhao), & FirstMark Capital (@firstmarkcap) FIRSTMARK

l &de'a—- Davide Frey - Cours CLD

Introduction 11

MapReduce

MapReduce was introduced by Google in 2004:

> Big data at that time: 20+ billion web pages x 20 kB =
400+ TB
» One computer can read 30-35 MB/sec from disk

= 4 months to read the Web
= ~1000 hard drives just to store the web

l h‘z/a—— Davide Frey - Cours CLD MapReduce 12

MapReduce

MapReduce was introduced by Google in 2004:

> Big data at that time: 20+ billion web pages x 20 kB =
400+ TB
» One computer can read 30-35 MB/sec from disk
= 4 months to read the Web
= ~1000 hard drives just to store the web
» But they wanted to process the data! This requires much
more computation, data, etc.

"Google Infrastructure for Massive Parallel Processing”,

Walfredo Cirne, Presentation in the industrial track in CCGrid'2007.

. &bﬂ’a—— Davide Frey - Cours CLD MapReduce 12

The Bulk Synchronous Parallel model

» Maximize 1/0

» Minimize coordination

Computations

Communication

Synchronization Barrier
J

Superstep

Time

-

l m—- Davide Frey - Cours CLD MapReduce 13

Parallelization is not so easy

(%) “Easy” parallelization
» Reading the Web on 1000 machines = less than 3 hours

@ This requires lots of programming work
» Communication & coordination

Debugging

Fault-tolerance

Management and monitoring

Optimization

vV vy vVvYy

() () Repeat the same painful process for every problem you want
to solve

. &Lﬂ’a—-— Davide Frey - Cours CLD MapReduce 14

Let's make sandwiches

T —

S

¢ _ 2
s — =

‘\A

https://twitter.com/tgrall
Lot
LA Davide Frey - Cours CLD MapReduce 15

https://twitter.com/tgrall

Let's make sandwiches

-

l&uéz_--

https://twitter.com/tgrall
Davide Frey - Cours CLD MapReduce 15

https://twitter.com/tgrall

Back to MapReduce

Map Shuffle Reduce

[[[[[

|] g —{iill
[[[[{
[1][]

] | g — {11 —
[1[1]
[1[]]

http://www.slideshare.net/lynnlangit/hadoop-mapreduce-fundamentals-21427224/

Davide Frey - Cours CLD MapReduce 16

http://www.slideshare.net/lynnlangit/hadoop-mapreduce-fundamentals-21427224/

Programmer must write two simple functions

» map(key,value) — jkey',value'; *
The map function reads input data and produces intermediate
tuples which are ready for the second phase

l &de'a.—- Davide Frey - Cours CLD MapReduce 17

Programmer must write two simple functions

» map(key,value) — jkey',value'; *
The map function reads input data and produces intermediate
tuples which are ready for the second phase

» reduce(key',jvalue’i*) — jkey',value"; *

The reduce function takes all intermediate tuples with the
same key, and produces output tuples

l h‘z/a—— Davide Frey - Cours CLD MapReduce 17

Example: word count
Let’s take a (long) piece of text. Can we compute the
number of occurrences of each word?

» Map function: take a subset of the input, generate one
intermediate tuple for every word in the text
def map(String input_key, String doc):
for each word w in doc:
EmitIntermediate(w, 1)

» Shuffle operation: all tuples with the same key are
automatically sent to the same reducer

» Reduce function: count the occurences we received for each
word
def reduce(String output_key, Iterator output_vals):
int res = 0
for each v in output_vals:
res = res + v

Emit (res)
. &’/uta-—— Davide Frey - Cours CLD MapReduce 18

What makes MapReduce so great

() map() functions run in parallel, creating different intermediate
values from different input data sets

reduce() functions also run in parallel, each working on a
different output key

() All values are processed independently

l h‘z/a—— Davide Frey - Cours CLD MapReduce 19

What makes MapReduce so great

map() functions run in parallel, creating different intermediate
values from different input data sets

reduce() functions also run in parallel, each working on a
different output key

All values are processed independently

e O O

Limitation: the reduce phase cannot start until the map phase
is totally finished

. &Lﬂ’a—-— Davide Frey - Cours CLD MapReduce 19

MapReduce architecture

Critical

MapReduce
Execution Fork
Overview [DG08]

Fork

Assign

Key/Value

Split 2

Split 3
Split 4
Split 5
Intermediate Reduce _
Input Files Map Phase Operations Phase Files™ «

Davide Frey - Cours CLD MapReduce 20

http://www.slideshare.net/diliprk/mapreduce-paradigm

MapReduce architecture

» One master server, many worker servers

» Input data is split in chunks (~64 MB)
» Tasks are assigned to workers dynamically

» The master assigns each map task to a free worker

» Considers locality of data to worker when assigning task

» Worker reads task input (often from local disk!)

» Worker produces R local files containing intermediate
key/value pairs

» The master assigns each reduce task to a free worker

» Worker reads intermediate key/value pairs from map workers
» Worker sorts & applies the userdAZs Reduce function to
produce the output

. &bﬂ’a—— Davide Frey - Cours CLD MapReduce 21

Fault tolerance

» If a worker fails:

» The master will detect failure thanks to periodic heartbeats

» The master re-executes the completed and in-progress map()
tasks

» The re-executes the in-progress reduce() tasks

> If the same input always makes the map() function crash:
» The master will detect it and skip these values on re-execution

. &Lﬂ’a—-— Davide Frey - Cours CLD MapReduce 22

Fault tolerance

» If a worker fails:

» The master will detect failure thanks to periodic heartbeats

» The master re-executes the completed and in-progress map()
tasks

» The re-executes the in-progress reduce() tasks

> If the same input always makes the map() function crash:
» The master will detect it and skip these values on re-execution

» If the master fails:

. &Lﬂ’a—-— Davide Frey - Cours CLD MapReduce 22

Fault tolerance

» If a worker fails:

» The master will detect failure thanks to periodic heartbeats

» The master re-executes the completed and in-progress map()
tasks

» The re-executes the in-progress reduce() tasks

> If the same input always makes the map() function crash:
» The master will detect it and skip these values on re-execution

» If the master fails:

®

. &Lﬂ’a—-— Davide Frey - Cours CLD MapReduce 22

MapReduce in the real world

_ _uous
“sifamazon

H¥ webservices
) Google Cloud Platform

== Microsoft Azure
The reference open-source All the good clouds provide
implementation: Apache Hadoop (or similar)
Hadoop under a PaaS model

l &de'a—- Davide Frey - Cours CLD MapReduce 23

Hadoop's stack

Apache Hadoop Ecosystem

Management & Monitoring
(Ambari)

Scripting Machine Learning
(Pig) (Mahout)

Distributed Processing

(MapReduce)

NoSQL Database

Coordination
(ZooKeeper)
Workflow & Scheduling
Data Integration
(Sqoop/REST/ODBC)

Distributed Storage
(HDFS)

http://bit.do/c8i9J

Davide Frey - Cours CLD MapReduce 24

http://bit.do/cSi9J

Limitations of MapReduce

» Rigid programming model
» Programs must be developed as a pair of map/reduce functions
» Complex programs may be designed as a succession of iterative
map/reduce steps

» By default, all intermediate result are stored in the HDFS file
system
» Replicated, fault-tolerant, etc.
» But there are lots of intermediate results in a
map/reduce/map/reduce/map/reduce program!
= Not-so-great performance

. &Lﬂ’a—-— Davide Frey - Cours CLD Spark 25

Spark

> Let's simplify application development: write “normal” code,
let the system figure out how to execute it efficiently

» Let's use main memory for all intermediate data

= Major performance improvements

Logistic Regression Performance

4500
4000

Spoﬁ(\z ok

§ 1500 [] Spark
& 1000
500
. I ﬁrst iteration 174 5

o further iterations 6 s
1

Numhernflt:rarnon;
A%
TlA— Davide Frey - Cours CLD Spark 26

127 s [iteration

= Hadoap

Survey within the big data developer community (2015)

APACHE SPARK SURVEY 2015 - QUICK SNAPSHOT

are planning to use

are evaluating sparkin2015
Spark now

T4 Dovelopers
Bs= Data Scientists
T C-level execs

of users
need faster
processing
of larger

data sets TOP 3 INDUSTRIES
Telecoms, Banks, Retail

of users chose
Spark to replace
MapReduce

arerunning Spark of users need i

. : Spark for event A
2 ofusers load datainto
in production stream processing Sparkwith Hadoop DFS

TR Davide Frey - Cours CLD Spark 27

Spark’s architecture

—
Worker

Ao = il

» One driver node -~
~ master Partition 1

» orchestrates
computation,
assigns work

A
Worker

» Many worker nodes
» execute tasks, -
report to driver parttion 2
node -

Data shuffling across machines
(wide dependencies)

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html

Davide Frey - Cours CLD

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html

Spark RDDs

» RDD = Resilient Distributed Dataset

» Conceptually an array (or a map) of entries
» Entries might be strings, numbers, maps, pairs, ...
» Transparently partitioned / distributed by Spark
» Transparently resilient (either by recomputation or storage)

» Creation:

» Read from a local or distributed file system
» Or produced by another Spark computation

. &Lﬂ’a—-— Davide Frey - Cours CLD Spark 29

Spark applications

A Spark application is composed of
transformations and actions:

External World

=

[cond

» Transformations specify how to
produce an RDD from another
RDD

» But the system does not execute
them immediately
» Actions trigger an actual
computation
» The system explores the graph of
dependencies, and produces a

directed acyclic graph of "“i°“
necessary transformations Qs »v****"—»,k
.. . S External World —
» Optimizes computations to be LA T
done

» Distributes and organizes work

Davide Frey - Cours CLD 30

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html

Spark transformations

Transformations

The following table lists some of the common transformations supported by Spark. Refer to the RDD API doc (Scala, Java, Python, R) and pair
RDD functions doc (Scala, Java) for details.

Transformation Meaning

map(func) Return a new distributed dataset formed by passing each element of the source through a
function func.

filter(func) Return a new dataset formed by selecting those elements of the source on which func
returns true.

flatMap(func) Similar to map, but each input item can be mapped to 0 or more output items (so func
should return a Seq rather than a single item).

mapPartitions(func) Similar to map, but runs separately on each partition (block) of the RDD, so func must be
of type lterator<T> => Iterator<U> when running on an RDD of type T.

mapPartitionsWithIndex(func) Similar to mapPartitions, but also provides func with an integer value representing the
index of the partition, so func must be of type (Int, Iterator<T>) => Iterator<U> when
running on an RDD of type T.

etc...

https://spark.apache.org/docs/latest/programming-guide.html

Davide Frey - Cours CLD

https://spark.apache.org/docs/latest/programming-guide.html

Spark actions

Actions

The following table lists some of the common actions supported by Spark. Refer to the RDD API doc (Scala, Java, Python, R)

and pair RDD functions doc (Scala, Java) for details.

Action Meaning

reduce(func) Aggregate the elements of the dataset using a function func (which takes two arguments and returns
one). The function should be commutative and associative so that it can be computed correctly in
parallel.

collect() Return all the elements of the dataset as an array at the driver program. This is usually useful after a

filter or other operation that returns a sufficiently small subset of the data.

count() Return the number of elements in the dataset.

first() Return the first element of the dataset (similar to take(1)).

take(n) Return an array with the first n elements of the dataset.
etc...

https://spark.apache.org/docs/latest/programming-guide.html

l &de'a.—- Davide Frey - Cours CLD

https://spark.apache.org/docs/latest/programming-guide.html

Wide and Narrow Transformations

Narrow transformation Wide transformation

» Wide transformations require shuffling

» e.g., reduceByKey(...)
» Network costs, higher latency

l &L?J’a—-— Davide Frey - Cours CLD Spark 33

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html

The word count example in Spark
Transformations

val textFile = sc.texfHifle("hdfs://...")

val counts = textFilg.flatMap(line => line.split(" "))
.map (word => (word, 1))
.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

Action

» The developer writes simple, sequential code using the Spark
transformations and actions

» Spark automatically parallelizes the code, distributes it across
many nodes, and coordinates the distributed execution

http://spark.apache.org/examples.html
. &Lﬂ’a—-— Davide Frey - Cours CLD

http://spark.apache.org/examples.html

Spark’s stack

MLlib

(machine

learning)

Apache Spark

http://spark.apache.org/

Davide Frey - Cours CLD

http://spark.apache.org/

Limitations of MapReduce/Spark

o Every 60 seconds

3 98,000+ tweets

n 695,000 status updates

’ 11million instant messages
:i;'g‘:(as:(vi:le' Cloud p 698,445 Google searches
ﬁ 168 million+ emails sent
i 1,820TB of data created

% 217 new mobile web users

How can we keep up with the velocity of big data?
» Store incoming data (e.g., tweets)
» One in a while: process the new data, produce new results
= The results are always late!

1= We need to be able to process incoming data in real time, not

as a e OnR.0 DJ 0 oD
z Davide Frey - Cours CLD Stream processing

Spark Streaming

» Spark Streaming relies on micro-batches
> Ingest incoming real-time data from various sources
» Generate a new “micro-batch” at fixed time intervals (e.g.,
1second)
» Process each micro-batch as a separate Spark job
P .
Spark” Streaming

discretized stream processing

batches
records (RDDs)
cooop | E E
batches
processed
with tasks

records processed in batches with short tasks
each batchis a RDD (partitioned dataset)

- https:/fdatabricksaco g/2015
-

Tl Davide Frey - Cours CLD Stream processing 37

https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-execution-model.html

Limitations of micro-batches

» Data arriving out of order is hard to handle

» How do you detect missing data, data gaps, correct out of
time order data etc?

> Batch length restricts Window-based analytics

» Large batches = poor responsiveness
» Small batches = the system is obliged to work on very small
window sizes

» Code is hard to write

» As soon as you try to update existing results with each
micro-batch

http://bit.do/cSi4L

. &bﬂ’a—— Davide Frey - Cours CLD Stream processing 38

http://bit.do/cSi4L

Many applications are fundamentally based on streaming

(D)
OO0 0000|

>
>

Event stream

Apache Flink is a big-data framework based
on a distributed streaming dataflow engine

Flink

l &de'a_-- Davide Frey - Cours CLD Stream processing 39

Flink's architecture

Task | | Task || Task Task || Task || Task
Slot Slot Slot Slot Slot Slot

Data Streams

Flink Program
Task Status /
A /
- N Heartbeat / / Deploy/Stop/
Program \ Statistics | Cancel Tasks
Dataflow;” N\ i)
o Status NN - Trigger
Optimizer / Client updates Statistics & N\ / Checkpoints
Graph Builde: results RN /
; s R
Dataflow graph

Submit j
(send dataflow) Cancel /
update job

(Master / YARN Application Master)

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html

Davide Frey - Cours CLD Stream processing

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html

Streaming operators

Flink uses similar directed acyclic graphs (DAGs) of operators to
Spark. But:

» In streaming mode, the DAG remains in place, and data flows
along the DAG

Dataflow /

Flow Control

» Each operator works over a window of data items

http://flink.apache.org/features.html
-
l h‘z&a—— Davide Frey - Cours CLD Stream processing 41

http://flink.apache.org/features.html

Example: classify and count tweets

YYYYIYYIYIYIYYIYY

Input stream

#itweets #tweets
I L

gy YYVYIIYIIY

yyy

Input

Group #tweets #tweets

> ’¥¥¥¥¥¥¥=

http://www.slideshare.net/tillrohrmann/apache-flink-streaming-done-right-fosdem-2016

Davide Frey - Cours CLD Stream processing 42

-

l&uéz_--

http://www.slideshare.net/tillrohrmann/apache-flink-streaming-done-right-fosdem-2016

Flink programs are compiled into an operator DAG

DataStream<String> lines = env.addSource(} Source

new FlinkKafkaConsumer<>(..));
DataStream<tvent> events = lines.map((line) -> parse(line)); } Transformation

DataStream<Statistics> stats = events

.keyBy("id") Transformati
. timeWindow(Time.seconds(10)) ransformation
.apply(new MywindowAggregationFunction());

stats.addSink(new RollingSink(path)); } Sink
Source Transformation Sink
Operator Operators Operator
keyBy()/
Source map() window()/ Sink
apply()
Stream
l)
Y

Streaming Dataflow

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html

Davide Frey - Cours CLD Stream processing 43

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html

And each operator can be parallelized

Streaming Dataflow

keyBy()/ .
Sink (condensed view)

window()/

Source map()
apply()

Operator Stream @

keyBy()/
Source map() window()/
£3) 1] apply()
\ nj
Operator Stream Sink
Subtask Partition j L Streaming Dataflow
I] (parallelized view)
keyBy()/
Source map() window()/
2] 2] apply()
2]
v _
parallelism = 2 \\

parallelism = 1

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html

Stream processing

Davide Frey - Cours CLD

44

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html

Flink's stack

g ® » g
2z @a g £ 2
K 5| Iz
s g5 = ° [
£ <t g £ 2%
8 2 o 2 = c > 5 @ 3
£ &% =3 £E3 ©& £=
£ o | ré& Es o0& Rr&
2
P DataStream API DataSet API
% Stream Processing Batch Processing
g Runtime
[s] Distributed Streaming Dataflow
>
° Local Cluster Cloud
8 Single JVM Standalone, YARN GCE, EC2

https://ci.apache.org/projects/flink/flink-docs-release-1.1/

Davide Frey - Cours CLD Stream processing 45

https://ci.apache.org/projects/flink/flink-docs-release-1.1/

Conclusion

» Processing big data is very difficult

» Volume, Variety, Velocity
» Parallel programming is hard!

» Cloud frameworks are being proposed to facilitate the
developers’ task
1. MapReduce automatically parallelizes programs expressed as
pairs of map/reduce functions
2. Spark simplifies the development model by automatically
compiling sequential code based on specific operators
3. Flink extends Spark with data stream processing

» Many new frameworks are being proposed. Stay tuned for
very fast progress in this exciting domain!

. &sz’a—— Davide Frey - Cours CLD Conclusion 46

	Introduction
	MapReduce
	Spark
	Stream processing
	Conclusion

