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Big data

"Big data refers to data sets whose size is beyond the ability of
typical database software tools to capture, store, manage and
analyze” — The McKinsey Global Institute, 2011.

“Big data is the term for a collection of data sets so large and
complex that it becomes difficult to process using on-hand
database management tools or traditional data processing
applications.” — Wikipedia.
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How big is big data?

Earlier Berkeley studies estimated that by the end of 1999, the sum
of human-produced information (including all audio, video
recordings and text/books) was about 12 Exabytes of data (1
exabyte = 1 million TB).

Eric Schmidt: Every 2 Days We Create As Much Information As
We Did Up To 2003.

http://techcrunch.com/2010/08/04/schmidt-data/
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In 2010 the Digital Universe
The data del“ge contained 1.2 zettabytes

ANDHOW'I' HANDLEITAIAPAG SPECIALREP KT (1 zettabyte — 1 bi//ion TB)

In 2020 the Digital Universe
will contain 35 zettabytes.
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Why do we want to analyze this

DRIVING MARKETING EFFECTIVENESS BY MANAGING

PPV SPUNEOP NG By L2

BIG DATA = BIG OPPORTUNITY
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Big data challenges: the “three V's”

Big Data:
Expanding on 3 fronts
at an increasing rate.

»  Data
“Velocity

Data




Data at Rest

Terabytes to
exabytes of existing
data to process

Data in Motion

Streaming data,
milliseconds to
seconds to respond

Data in Many
Forms
Structured,

unstructured, text,
multimedia

The “three V's" are becoming the “four V's”

Data in Doubt

Uncertainty due to
data inconsistency
& incompleteness,
ambiguities, latency,
deception, model
approximations
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Big data == big privacy concerns. ..

DOGBERT CONSULTS IN PHASE

ETHICALBECAUGE  [2[ SUNDS oNe LETL
CUSTOMER DATA OUR CUSTOMERS FATR. DEHUMANIZE
16 AN ASSET THAT THE ENEMY BY

WOULD DO THE SAME
THING TO Us IF
THEY COULD.

YOU CAN SELL. CALLING THEM

“DATA.”

Dilbert.com  DilbertCartoonist@gmail.com

10-13-10 ©2010 Scott Adams, Inc./Dist. by UFS, Inc.
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Big Data Landscape 2016 (Version 3.0)
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MapReduce

MapReduce was introduced by Google in 2004:

> Big data at that time: 20+ billion web pages x 20 kB =
400+ TB
» One computer can read 30-35 MB/sec from disk

= 4 months to read the Web
= ~1000 hard drives just to store the web
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MapReduce

MapReduce was introduced by Google in 2004:

> Big data at that time: 20+ billion web pages x 20 kB =
400+ TB
» One computer can read 30-35 MB/sec from disk
= 4 months to read the Web
= ~1000 hard drives just to store the web
» But they wanted to process the data! This requires much
more computation, data, etc.

"Google Infrastructure for Massive Parallel Processing”,

Walfredo Cirne, Presentation in the industrial track in CCGrid'2007.
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The Bulk Synchronous Parallel model

» Maximize 1/0

» Minimize coordination

Computations

Communication

Synchronization Barrier
J

Superstep

Time

-
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Parallelization is not so easy

(%) “Easy” parallelization
» Reading the Web on 1000 machines = less than 3 hours

@ This requires lots of programming work
» Communication & coordination

Debugging

Fault-tolerance

Management and monitoring

Optimization

vV vy vVvYy

() () Repeat the same painful process for every problem you want
to solve
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Let's make sandwiches
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Back to MapReduce

Map Shuffle Reduce

[[[[[

| ] g —{iill
[[[[{
[1][]

] | g — {11 —
[1[1]
[1[]]

http://www.slideshare.net/lynnlangit/hadoop-mapreduce-fundamentals-21427224/
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Programmer must write two simple functions

» map(key,value) — jkey',value'; *
The map function reads input data and produces intermediate
tuples which are ready for the second phase
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Programmer must write two simple functions

» map(key,value) — jkey',value'; *
The map function reads input data and produces intermediate
tuples which are ready for the second phase

» reduce(key',jvalue’i*) — jkey',value"; *

The reduce function takes all intermediate tuples with the
same key, and produces output tuples
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Example: word count
Let’s take a (long) piece of text. Can we compute the
number of occurrences of each word?

» Map function: take a subset of the input, generate one
intermediate tuple for every word in the text
def map(String input_key, String doc):
for each word w in doc:
EmitIntermediate(w, 1)

» Shuffle operation: all tuples with the same key are
automatically sent to the same reducer

» Reduce function: count the occurences we received for each
word
def reduce(String output_key, Iterator output_vals):
int res = 0
for each v in output_vals:
res = res + v

Emit (res)
. &’/uta-—— Davide Frey - Cours CLD MapReduce 18



What makes MapReduce so great

() map() functions run in parallel, creating different intermediate
values from different input data sets

reduce() functions also run in parallel, each working on a
different output key

() All values are processed independently

l h‘z/a—— Davide Frey - Cours CLD MapReduce 19



What makes MapReduce so great

map() functions run in parallel, creating different intermediate
values from different input data sets

reduce() functions also run in parallel, each working on a
different output key

All values are processed independently

e O O

Limitation: the reduce phase cannot start until the map phase
is totally finished
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MapReduce architecture

Critical

MapReduce
Execution Fork
Overview [DG08]

Fork

Assign

Key/Value

Split 2

Split 3
Split 4
Split 5
Intermediate Reduce _
Input Files Map Phase Operations Phase Files™ «
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http://www.slideshare.net/diliprk/mapreduce-paradigm

MapReduce architecture

» One master server, many worker servers

» Input data is split in chunks (~64 MB)
» Tasks are assigned to workers dynamically

» The master assigns each map task to a free worker

» Considers locality of data to worker when assigning task

» Worker reads task input (often from local disk!)

» Worker produces R local files containing intermediate
key/value pairs

» The master assigns each reduce task to a free worker

» Worker reads intermediate key/value pairs from map workers
» Worker sorts & applies the userdAZs Reduce function to
produce the output
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Fault tolerance

» If a worker fails:

» The master will detect failure thanks to periodic heartbeats

» The master re-executes the completed and in-progress map()
tasks

» The re-executes the in-progress reduce() tasks

> If the same input always makes the map() function crash:
» The master will detect it and skip these values on re-execution
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Fault tolerance

» If a worker fails:

» The master will detect failure thanks to periodic heartbeats

» The master re-executes the completed and in-progress map()
tasks

» The re-executes the in-progress reduce() tasks

> If the same input always makes the map() function crash:
» The master will detect it and skip these values on re-execution

» If the master fails:
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Fault tolerance

» If a worker fails:

» The master will detect failure thanks to periodic heartbeats

» The master re-executes the completed and in-progress map()
tasks

» The re-executes the in-progress reduce() tasks

> If the same input always makes the map() function crash:
» The master will detect it and skip these values on re-execution

» If the master fails:

®
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MapReduce in the real world

_ _uous
“sifamazon

H¥ webservices
) Google Cloud Platform

== Microsoft Azure
The reference open-source All the good clouds provide
implementation: Apache Hadoop (or similar)
Hadoop under a PaaS model
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Hadoop's stack

Apache Hadoop Ecosystem

Management & Monitoring
(Ambari)

Scripting Machine Learning
(Pig) (Mahout)

Distributed Processing

(MapReduce)

NoSQL Database

Coordination
(ZooKeeper)
Workflow & Scheduling
Data Integration
(Sqoop/REST/ODBC)

Distributed Storage
(HDFS)

http://bit.do/c8i9J
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Limitations of MapReduce

» Rigid programming model
» Programs must be developed as a pair of map/reduce functions
» Complex programs may be designed as a succession of iterative
map/reduce steps

» By default, all intermediate result are stored in the HDFS file
system
» Replicated, fault-tolerant, etc.
» But there are lots of intermediate results in a
map/reduce/map/reduce/map/reduce program!
= Not-so-great performance
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Spark

> Let's simplify application development: write “normal” code,
let the system figure out how to execute it efficiently

» Let's use main memory for all intermediate data

= Major performance improvements

Logistic Regression Performance

4500
4000

Spoﬁ(\z ok

§ 1500 [ ] Spark
& 1000
500
. I ﬁrst iteration 174 5

o further iterations 6 s
1

Numhernflt:rarnon;
A%
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Survey within the big data developer community (2015)

APACHE SPARK SURVEY 2015 - QUICK SNAPSHOT

are planning to use

are evaluating  sparkin2015
Spark now

T4 Dovelopers
Bs= Data Scientists
T C-level execs

of users
need faster
processing
of larger

data sets TOP 3 INDUSTRIES
Telecoms, Banks, Retail

of users chose
Spark to replace
MapReduce

arerunning Spark of users need i

. : Spark for event A
2 ofusers load datainto
in production stream processing Sparkwith Hadoop DFS
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Spark’s architecture

—
Worker

Ao = il

» One driver node -~
~ master Partition 1

» orchestrates
computation,
assigns work

A
Worker

» Many worker nodes
» execute tasks, -
report to driver parttion 2
node -

Data shuffling across machines
(wide dependencies)

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html
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Spark RDDs

» RDD = Resilient Distributed Dataset

» Conceptually an array (or a map) of entries
» Entries might be strings, numbers, maps, pairs, ...
» Transparently partitioned / distributed by Spark
» Transparently resilient (either by recomputation or storage)

» Creation:

» Read from a local or distributed file system
» Or produced by another Spark computation
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Spark applications

A Spark application is composed of
transformations and actions:

External World

=

[cond

» Transformations specify how to
produce an RDD from another
RDD

» But the system does not execute
them immediately
» Actions trigger an actual
computation
» The system explores the graph of
dependencies, and produces a

directed acyclic graph of "“i°“
necessary transformations Qs »v****"—»,k
.. . S External World —
» Optimizes computations to be LA T
done

» Distributes and organizes work
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Spark transformations

Transformations

The following table lists some of the common transformations supported by Spark. Refer to the RDD API doc (Scala, Java, Python, R) and pair
RDD functions doc (Scala, Java) for details.

Transformation Meaning

map(func) Return a new distributed dataset formed by passing each element of the source through a
function func.

filter(func) Return a new dataset formed by selecting those elements of the source on which func
returns true.

flatMap(func) Similar to map, but each input item can be mapped to 0 or more output items (so func
should return a Seq rather than a single item).

mapPartitions(func) Similar to map, but runs separately on each partition (block) of the RDD, so func must be
of type lterator<T> => Iterator<U> when running on an RDD of type T.

mapPartitionsWithIndex(func) Similar to mapPartitions, but also provides func with an integer value representing the
index of the partition, so func must be of type (Int, Iterator<T>) => Iterator<U> when
running on an RDD of type T.

etc...

https://spark.apache.org/docs/latest/programming-guide.html
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Spark actions

Actions

The following table lists some of the common actions supported by Spark. Refer to the RDD API doc (Scala, Java, Python, R)

and pair RDD functions doc (Scala, Java) for details.

Action Meaning

reduce(func) Aggregate the elements of the dataset using a function func (which takes two arguments and returns
one). The function should be commutative and associative so that it can be computed correctly in
parallel.

collect() Return all the elements of the dataset as an array at the driver program. This is usually useful after a

filter or other operation that returns a sufficiently small subset of the data.

count() Return the number of elements in the dataset.

first() Return the first element of the dataset (similar to take(1)).

take(n) Return an array with the first n elements of the dataset.
etc...

https://spark.apache.org/docs/latest/programming-guide.html
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Wide and Narrow Transformations

Narrow transformation Wide transformation

» Wide transformations require shuffling

» e.g., reduceByKey(...)
» Network costs, higher latency
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The word count example in Spark
Transformations

val textFile = sc.texfHifle("hdfs://...")

val counts = textFilg.flatMap(line => line.split(" "))
.map (word => (word, 1))
.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

Action

» The developer writes simple, sequential code using the Spark
transformations and actions

» Spark automatically parallelizes the code, distributes it across
many nodes, and coordinates the distributed execution

http://spark.apache.org/examples.html
. &Lﬂ’a—-— Davide Frey - Cours CLD
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Spark’s stack

MLlib

(machine

learning)

Apache Spark

http://spark.apache.org/
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Limitations of MapReduce/Spark

o Every 60 seconds

3 98,000+ tweets

n 695,000 status updates

’ 11million instant messages
:i;'g‘:(as:(vi:le' Cloud p 698,445 Google searches
ﬁ 168 million+ emails sent
i 1,820TB of data created

% 217 new mobile web users

How can we keep up with the velocity of big data?
» Store incoming data (e.g., tweets)
» One in a while: process the new data, produce new results
= The results are always late!

1= We need to be able to process incoming data in real time, not

as a e OnR.0 DJ 0 oD
z Davide Frey - Cours CLD Stream processing



Spark Streaming

» Spark Streaming relies on micro-batches
> Ingest incoming real-time data from various sources
» Generate a new “micro-batch” at fixed time intervals (e.g.,
1second)
» Process each micro-batch as a separate Spark job
P .
Spark” Streaming

discretized stream processing

batches
records (RDDs)
cooop | E E
batches
processed
with tasks

records processed in batches with short tasks
each batchis a RDD (partitioned dataset)

-  https:/fdatabricksaco g/2015
-

Tl Davide Frey - Cours CLD Stream processing 37



https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-execution-model.html

Limitations of micro-batches

» Data arriving out of order is hard to handle

» How do you detect missing data, data gaps, correct out of
time order data etc?

> Batch length restricts Window-based analytics

» Large batches = poor responsiveness
» Small batches = the system is obliged to work on very small
window sizes

» Code is hard to write

» As soon as you try to update existing results with each
micro-batch

http://bit.do/cSi4L
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Many applications are fundamentally based on streaming

(D)
OO0 0000|

>
>

Event stream

Apache Flink is a big-data framework based
on a distributed streaming dataflow engine

Flink

l &de'a_-- Davide Frey - Cours CLD Stream processing 39



Flink's architecture

Task | | Task || Task Task || Task || Task
Slot Slot Slot Slot Slot Slot

Data Streams

Flink Program
Task Status /
A /
- N Heartbeat / / Deploy/Stop/
Program \ Statistics | Cancel Tasks
Dataflow;” N\ i )
o Status NN - Trigger
Optimizer / Client updates Statistics & N\ / Checkpoints
Graph Builde: results RN /
; s R
Dataflow graph

Submit j
(send dataflow) Cancel /
update job

(Master / YARN Application Master)

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html
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Streaming operators

Flink uses similar directed acyclic graphs (DAGs) of operators to
Spark. But:

» In streaming mode, the DAG remains in place, and data flows
along the DAG

Dataflow /

Flow Control

» Each operator works over a window of data items

http://flink.apache.org/features.html
-
l h‘z&a—— Davide Frey - Cours CLD Stream processing 41



http://flink.apache.org/features.html

Example: classify and count tweets

YYYYIYYIYIYIYYIYY

Input stream

#itweets #tweets
I L

gy YYVYIIYIIY

yyy

Input

Group #tweets #tweets

> ’¥¥¥¥¥¥¥=

http://www.slideshare.net/tillrohrmann/apache-flink-streaming-done-right-fosdem-2016
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Flink programs are compiled into an operator DAG

DataStream<String> lines = env.addSource( } Source

new FlinkKafkaConsumer<>(..));
DataStream<tvent> events = lines.map((line) -> parse(line)); } Transformation

DataStream<Statistics> stats = events

.keyBy("id") Transformati
. timeWindow(Time.seconds(10)) ransformation
.apply(new MywindowAggregationFunction());

stats.addSink(new RollingSink(path)); } Sink
Source Transformation Sink
Operator Operators Operator
keyBy()/
Source map() window()/ Sink
apply()
Stream
l )
Y

Streaming Dataflow

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html

Davide Frey - Cours CLD Stream processing 43


https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html

And each operator can be parallelized

Streaming Dataflow

keyBy()/ .
Sink (condensed view)

window()/

Source map()
apply()

Operator Stream @

keyBy()/
Source map() window()/
£3) 1] apply()
\ nj
Operator Stream Sink
Subtask Partition j L Streaming Dataflow
I ] (parallelized view)
keyBy()/
Source map() window()/
2] 2] apply()
2]
v _
parallelism = 2 \\

parallelism = 1

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html

Stream processing

Davide Frey - Cours CLD
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Flink's stack

g ® » g
2z @a g £ 2
K 5| Iz
s g5 = ° [
£ <t g £ 2%
8 2 o 2 = c > 5 @ 3
£ &% =3 £E3 ©& £=
£ o | ré& Es o0& Rr&
2
P DataStream API DataSet API
% Stream Processing Batch Processing
g Runtime
[s] Distributed Streaming Dataflow
>
° Local Cluster Cloud
8 Single JVM Standalone, YARN GCE, EC2

https://ci.apache.org/projects/flink/flink-docs-release-1.1/
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Conclusion

» Processing big data is very difficult

» Volume, Variety, Velocity
» Parallel programming is hard!

» Cloud frameworks are being proposed to facilitate the
developers’ task
1. MapReduce automatically parallelizes programs expressed as
pairs of map/reduce functions
2. Spark simplifies the development model by automatically
compiling sequential code based on specific operators
3. Flink extends Spark with data stream processing

» Many new frameworks are being proposed. Stay tuned for
very fast progress in this exciting domain!
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