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Big data

“Big data refers to data sets whose size is beyond the ability of
typical database software tools to capture, store, manage and
analyze.” — The McKinsey Global Institute, 2011.

“Big data is the term for a collection of data sets so large and
complex that it becomes difficult to process using on-hand
database management tools or traditional data processing
applications.” — Wikipedia.
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How big is big data?

Earlier Berkeley studies estimated that by the end of 1999, the sum
of human-produced information (including all audio, video
recordings and text/books) was about 12 Exabytes of data (1
exabyte = 1 million TB).

Eric Schmidt: Every 2 Days We Create As Much Information As
We Did Up To 2003.

http://techcrunch.com/2010/08/04/schmidt-data/
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In 2010 the Digital Universe
contained 1.2 zettabytes
(1 zettabyte = 1 billion TB)

In 2020 the Digital Universe
will contain 35 zettabytes.
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Why do we want to analyze this data?
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Big data challenges: the “three V’s”
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The “three V’s” are becoming the “four V’s”
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Big data == big privacy concerns. . .
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MapReduce

MapReduce was introduced by Google in 2004:

I Big data at that time: 20+ billion web pages x 20 kB =
400+ TB

I One computer can read 30-35 MB/sec from disk
⇒ 4 months to read the Web
⇒ ∼1000 hard drives just to store the web

I But they wanted to process the data! This requires much
more computation, data, etc.

”Google Infrastructure for Massive Parallel Processing”,

Walfredo Cirne, Presentation in the industrial track in CCGrid’2007.
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The Bulk Synchronous Parallel model

I Maximize I/O
I Minimize coordination
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Parallelization is not so easy

“Easy” parallelization
I Reading the Web on 1000 machines ⇒ less than 3 hours

This requires lots of programming work
I Communication & coordination
I Debugging
I Fault-tolerance
I Management and monitoring
I Optimization

Repeat the same painful process for every problem you want
to solve
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Let’s make sandwiches

https://twitter.com/tgrall
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Back to MapReduce

http://www.slideshare.net/lynnlangit/hadoop-mapreduce-fundamentals-21427224/
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Programmer must write two simple functions

I map(key,value) → ¡key’,value’¿*
The map function reads input data and produces intermediate
tuples which are ready for the second phase

I reduce(key’,¡value’¿*) → ¡key’,value”¿*
The reduce function takes all intermediate tuples with the
same key, and produces output tuples
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Example: word count
Let’s take a (long) piece of text. Can we compute the
number of occurrences of each word?

I Map function: take a subset of the input, generate one
intermediate tuple for every word in the text
def map(String input_key, String doc):

for each word w in doc:

EmitIntermediate(w, 1)

I Shuffle operation: all tuples with the same key are
automatically sent to the same reducer

I Reduce function: count the occurences we received for each
word
def reduce(String output_key, Iterator output_vals):

int res = 0

for each v in output_vals:

res = res + v

Emit(res)
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What makes MapReduce so great

map() functions run in parallel, creating different intermediate
values from different input data sets

reduce() functions also run in parallel, each working on a
different output key

All values are processed independently

Limitation: the reduce phase cannot start until the map phase
is totally finished
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MapReduce architecture

http://www.slideshare.net/diliprk/mapreduce-paradigm
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MapReduce architecture

I One master server, many worker servers
I Input data is split in chunks (∼64 MB)
I Tasks are assigned to workers dynamically

I The master assigns each map task to a free worker
I Considers locality of data to worker when assigning task
I Worker reads task input (often from local disk!)
I Worker produces R local files containing intermediate

key/value pairs

I The master assigns each reduce task to a free worker
I Worker reads intermediate key/value pairs from map workers
I Worker sorts & applies the userâĂŹs Reduce function to

produce the output
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Fault tolerance

I If a worker fails:
I The master will detect failure thanks to periodic heartbeats
I The master re-executes the completed and in-progress map()

tasks
I The re-executes the in-progress reduce() tasks

I If the same input always makes the map() function crash:
I The master will detect it and skip these values on re-execution

I If the master fails:
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MapReduce in the real world

The reference open-source
implementation: Apache

Hadoop

All the good clouds provide
Hadoop (or similar)
under a PaaS model
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Hadoop’s stack

http://bit.do/cSi9J
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Limitations of MapReduce

I Rigid programming model
I Programs must be developed as a pair of map/reduce functions
I Complex programs may be designed as a succession of iterative

map/reduce steps

I By default, all intermediate result are stored in the HDFS file
system

I Replicated, fault-tolerant, etc.
I But there are lots of intermediate results in a

map/reduce/map/reduce/map/reduce program!
⇒ Not-so-great performance
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Spark

I Let’s simplify application development: write “normal” code,
let the system figure out how to execute it efficiently

I Let’s use main memory for all intermediate data
⇒ Major performance improvements
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Survey within the big data developer community (2015)

Davide Frey - Cours CLD Spark 27



Spark’s architecture

I One driver node
∼ master

I orchestrates
computation,
assigns work

I Many worker nodes
I execute tasks,

report to driver
node

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html
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Spark RDDs

I RDD = Resilient Distributed Dataset

I Conceptually an array (or a map) of entries
I Entries might be strings, numbers, maps, pairs, ...
I Transparently partitioned / distributed by Spark
I Transparently resilient (either by recomputation or storage)

I Creation:
I Read from a local or distributed file system
I Or produced by another Spark computation
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Spark applications
A Spark application is composed of
transformations and actions:

I Transformations specify how to
produce an RDD from another
RDD

I But the system does not execute
them immediately

I Actions trigger an actual
computation

I The system explores the graph of
dependencies, and produces a
directed acyclic graph of
necessary transformations

I Optimizes computations to be
done

I Distributes and organizes work

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html
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Spark transformations

https://spark.apache.org/docs/latest/programming-guide.html
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Spark actions

https://spark.apache.org/docs/latest/programming-guide.html
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Wide and Narrow Transformations

I Wide transformations require shuffling
I e.g., reduceByKey(. . . )
I Network costs, higher latency

http://horicky.blogspot.fr/2013/12/spark-low-latency-massively-parallel.html
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The word count example in Spark

I The developer writes simple, sequential code using the Spark
transformations and actions

I Spark automatically parallelizes the code, distributes it across
many nodes, and coordinates the distributed execution

http://spark.apache.org/examples.html
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Spark’s stack

http://spark.apache.org/
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Limitations of MapReduce/Spark

How can we keep up with the velocity of big data?
I Store incoming data (e.g., tweets)
I One in a while: process the new data, produce new results
⇒ The results are always late!

+ We need to be able to process incoming data in real time, not
as a succession of batch jobs
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Spark Streaming
I Spark Streaming relies on micro-batches

I Ingest incoming real-time data from various sources
I Generate a new “micro-batch” at fixed time intervals (e.g.,

1 second)
I Process each micro-batch as a separate Spark job

https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-execution-model.html
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Limitations of micro-batches

I Data arriving out of order is hard to handle
I How do you detect missing data, data gaps, correct out of

time order data etc?

I Batch length restricts Window-based analytics
I Large batches ⇒ poor responsiveness
I Small batches ⇒ the system is obliged to work on very small

window sizes

I Code is hard to write
I As soon as you try to update existing results with each

micro-batch

http://bit.do/cSi4L
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Many applications are fundamentally based on streaming

Apache Flink is a big-data framework based
on a distributed streaming dataflow engine
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Flink’s architecture

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html
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Streaming operators
Flink uses similar directed acyclic graphs (DAGs) of operators to
Spark. But:

I In streaming mode, the DAG remains in place, and data flows
along the DAG

I Each operator works over a window of data items

http://flink.apache.org/features.html
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Example: classify and count tweets

http://www.slideshare.net/tillrohrmann/apache-flink-streaming-done-right-fosdem-2016
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Flink programs are compiled into an operator DAG
Source

DataStream<String> lines = env.addSource(
new FlinkKafkaConsumer<>(…));

DataStream<Event> events = lines.map((line) -> parse(line));

DataStream<Statistics> stats = events
.keyBy("id")
.timeWindow(Time.seconds(10))
.apply(new MyWindowAggregationFunction());

stats.addSink(new RollingSink(path));

Source map()

Transformation

Transformation

Source
Operator

keyBy()/
window()/
apply()

Sink

Transformation
Operators

Sink
Operator

Stream

Sink

Streaming Dataflow

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html
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And each operator can be parallelized

https://ci.apache.org/projects/flink/flink-docs-release-1.1/concepts/concepts.html
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Flink’s stack

https://ci.apache.org/projects/flink/flink-docs-release-1.1/
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Conclusion

I Processing big data is very difficult
I Volume, Variety, Velocity
I Parallel programming is hard!

I Cloud frameworks are being proposed to facilitate the
developers’ task

1. MapReduce automatically parallelizes programs expressed as
pairs of map/reduce functions

2. Spark simplifies the development model by automatically
compiling sequential code based on specific operators

3. Flink extends Spark with data stream processing

I Many new frameworks are being proposed. Stay tuned for
very fast progress in this exciting domain!
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