2019-09-14 14:26:57 +00:00
library ( ggplot2 )
library ( sqldf )
library ( plyr )
library ( cowplot )
2019-09-19 07:51:37 +00:00
thunder_ms <- read.csv ( " thunder_configure_100ms.csv" )
2019-09-16 23:40:32 +00:00
thunder_ms <- sqldf ( " select run,ident,jmax,links,latency, CAST(latency as real) / 1000. as lat_ms from thunder_ms" )
2019-09-14 17:15:22 +00:00
thunder_ms $ links <- as.factor ( thunder_ms $ links )
thunder_ms $ jmax <- as.factor ( thunder_ms $ jmax )
v1 <- ggplot ( data = thunder_ms , aes ( x = jmax , y = lat_ms , fill = links ) ) +
2019-09-17 06:33:55 +00:00
#geom_violin() +
geom_boxplot ( outlier.size = 0.1 ) +
2019-09-16 16:00:15 +00:00
geom_hline ( yintercept = 800 , color = " red" , linetype = " dashed" ) +
geom_hline ( yintercept = 400 , color = " DarkGreen" ) +
2019-09-18 06:53:01 +00:00
annotate ( " text" , x = 7.1 , y = 650 , label = " high" , color = " DarkGreen" ) +
annotate ( " text" , x = 7 , y = 1200 , label = " acceptable" , color = " red" ) +
2019-09-19 07:51:37 +00:00
coord_cartesian ( xlim = c ( 1 , 7 ) , ylim = c ( 0 , 1000 ) ) +
2019-09-17 13:12:37 +00:00
#ylim(0,1000) +
2019-09-14 17:15:22 +00:00
scale_fill_grey ( ) +
2019-09-19 07:51:37 +00:00
#scale_y_log10() +
2019-09-14 17:15:22 +00:00
ylab ( " latency (ms)" ) +
xlab ( " max allowed jitter" ) +
theme_classic ( )
2019-09-16 16:00:15 +00:00
#v1 + ggsave("thunder_configure_ms.png", dpi=300, dev='png', height=5, width=15, units="cm")
2019-09-14 17:15:22 +00:00
2019-09-19 07:51:37 +00:00
thunder_rcv <- sqldf ( " select run,jmax,links,(3000-COUNT(latency)*1.0)/3000 as dlv from thunder_ms group by jmax,links,run" )
2019-09-16 07:56:34 +00:00
thunder_rcv $ jmax <- as.factor ( thunder_rcv $ jmax )
thunder_rcv $ links <- as.factor ( thunder_rcv $ links )
v2 <- ggplot ( data = thunder_rcv , aes ( x = jmax , y = dlv , fill = links ) ) +
2019-09-19 07:51:37 +00:00
geom_boxplot ( outlier.size = 0.1 ) +
#geom_violin(scale='width') +
2019-09-16 07:56:34 +00:00
scale_y_continuous ( labels = scales :: percent ) +
scale_fill_grey ( ) +
2019-09-18 06:53:01 +00:00
#scale_y_log10(labels = scales::percent) +
2019-09-16 07:56:34 +00:00
ylab ( " dropped packets" ) +
xlab ( " max allowed jitter" ) +
theme_classic ( )
2019-09-19 07:51:37 +00:00
thunder_bw <- read.csv ( " thunder_configure_100ms_bw.csv" )
2019-09-16 07:56:34 +00:00
thunder_bw <- sqldf ( " select run,jmax,links,udp_sent,udp_rcv,cells_sent,cells_rcv,1.0*cells_sent/udp_sent as sent_ratio,1.0*cells_rcv/udp_rcv as rcv_ratio from thunder_bw where udp_sent > 4000" )
thunder_bw $ jmax <- as.factor ( thunder_bw $ jmax )
thunder_bw $ links <- as.factor ( thunder_bw $ links )
v3 <- ggplot ( data = thunder_bw , aes ( x = jmax , y = sent_ratio , fill = links ) ) +
2019-09-17 06:33:55 +00:00
geom_boxplot ( outlier.size = 0.1 ) +
2019-09-16 12:40:58 +00:00
#scale_y_log10() +
2019-09-18 06:53:01 +00:00
coord_cartesian ( ylim = c ( 1 , 2 ) ) +
2019-09-16 07:56:34 +00:00
scale_fill_grey ( ) +
ylab ( " bandwidth ratio" ) +
xlab ( " max allowed jitter" ) +
theme_classic ( )
t1 <- plot_grid ( v1 , v2 , v3 , labels = c ( ' A' , ' B' , ' C' ) , ncol = 1 )
t1 + ggsave ( " thunder_configure.png" , dpi = 300 , dev = ' png' , height = 15 , width = 15 , units = " cm" )
2019-09-16 17:20:38 +00:00
2019-09-19 07:51:37 +00:00
thunder_links <- read.csv ( " thunder_configure_20_links.csv" )
2019-09-16 17:20:38 +00:00
links_down_at_least_once <- sqldf ( " select run,xp_time,link_id, COUNT(status) as downcount, SUM(delta) as elapsed from thunder_links where status='down' group by run,link_id,xp_time" )
links_down_at_least_once2 <- sqldf ( " select row_number () OVER (PARTITION BY run ORDER BY elapsed DESC) sorting,run,link_id,downcount,elapsed,xp_time,1.0*elapsed/xp_time down_ratio from links_down_at_least_once" )
links_down_at_least_once2 $ sorting <- as.factor ( links_down_at_least_once2 $ sorting )
2019-09-16 20:53:34 +00:00
v4 <- ggplot ( data = links_down_at_least_once2 , aes ( x = sorting , y = down_ratio ) ) +
#geom_violin() +
#geom_boxplot(width=0.2) +
#scale_y_log10() +
#scale_y_log10(labels = scales::percent) +
geom_bar ( stat = " summary" ) +
2019-09-16 17:20:38 +00:00
#scale_y_log10() +
2019-09-16 20:53:34 +00:00
scale_y_continuous ( labels = scales :: percent ) +
2019-09-16 17:20:38 +00:00
scale_fill_grey ( ) +
2019-09-16 21:07:38 +00:00
ylab ( " Cumulated downtime" ) +
2019-09-16 21:10:35 +00:00
xlab ( " Sorted links" ) +
2019-09-16 17:20:38 +00:00
theme_classic ( )
2019-09-16 20:53:34 +00:00
downtime <- sqldf (
"
select sorting , 1.0 * duration / 1000 as dur
from thunder_links as tl
inner join links_down_at_least_once2 as l2 on
tl.run = l2.run
and tl.link_id = l2.link_id
where will_change = ' True'
and status = ' down' " )
v5 <- ggplot ( data = downtime , aes ( x = sorting , y = dur ) ) +
geom_violin ( ) +
2019-09-17 13:12:37 +00:00
geom_boxplot ( width = 0.1 , outlier.shape = NA ) +
2019-09-16 20:53:34 +00:00
scale_y_log10 ( ) +
2019-09-16 22:03:48 +00:00
ylab ( " Downtime (in sec)" ) +
2019-09-16 21:10:35 +00:00
xlab ( " Sorted links" ) +
2019-09-16 20:53:34 +00:00
theme_classic ( )
gobal_links <- sqldf (
"
2019-09-18 06:53:01 +00:00
select ts , run , durations_global , 12 - COUNT ( status ) as down_link_count , xp_time
2019-09-16 20:53:34 +00:00
from thunder_links
where will_change_global = ' True' and status = ' up' and durations_global > 0
group by ts , run , durations_global
" )
down_group_ratio <- sqldf (
"
select run , 1.0 * SUM ( durations_global ) / xp_time as down_ratio , down_link_count
from gobal_links
where down_link_count >= 0
group by run , down_link_count , xp_time
" )
down_group_ratio $ down_link_count <- as.factor ( down_group_ratio $ down_link_count )
v6 <- ggplot ( data = down_group_ratio , aes ( x = down_link_count , y = down_ratio ) ) +
geom_bar ( stat = " summary" ) +
#scale_y_log10() +
scale_y_continuous ( labels = scales :: percent ) +
2019-09-16 21:07:38 +00:00
ylab ( " Cumulated downtime" ) +
xlab ( " Number of links down at once" ) +
2019-09-16 20:53:34 +00:00
theme_classic ( )
2019-09-16 21:07:38 +00:00
downtime_group <- sqldf (
"
select down_link_count , 1.0 * durations_global / 1000 as dur from gobal_links where down_link_count >= 0
" )
downtime_group $ down_link_count <- as.factor ( downtime_group $ down_link_count )
v7 <- ggplot ( data = downtime_group , aes ( x = down_link_count , y = dur ) ) +
geom_violin ( ) +
2019-09-17 13:12:37 +00:00
geom_boxplot ( width = 0.1 , outlier.shape = NA ) +
2019-09-16 21:07:38 +00:00
scale_y_log10 ( ) +
2019-09-16 22:03:48 +00:00
ylab ( " Downtime (in sec)" ) +
2019-09-16 21:07:38 +00:00
xlab ( " Number of links down at once" ) +
theme_classic ( )
2019-09-16 20:53:34 +00:00
2019-09-16 21:07:38 +00:00
t2 <- plot_grid ( v4 , v5 , v6 , v7 , labels = c ( ' A' , ' B' , ' C' , ' D' ) , ncol = 2 )
2019-09-16 22:03:48 +00:00
t2 + ggsave ( " thunder_links.png" , dpi = 300 , dev = ' png' , height = 12 , width = 15 , units = " cm" )
2019-09-16 20:53:34 +00:00
2019-09-16 23:30:43 +00:00
latency_evol <- sqldf (
"
2019-09-16 23:40:32 +00:00
select sorting , lat_ms , ident , tm.jmax , tm.links
2019-09-16 23:30:43 +00:00
from
thunder_ms as tm ,
2019-09-16 23:40:32 +00:00
( select run , jmax , links , row_number ( ) OVER ( ORDER BY links DESC ) sorting from thunder_ms group by run , jmax , links ORDER BY links DESC limit 0 , 1 ) as sel_run
2019-09-16 23:30:43 +00:00
where
tm.run = sel_run.run and tm.jmax = sel_run.jmax and tm.links = sel_run.links
" )
2019-09-16 20:53:34 +00:00
2019-09-16 23:40:32 +00:00
latency_evol $ sorting <- as.factor ( latency_evol $ sorting )
2019-09-17 13:12:37 +00:00
v8 <- ggplot ( data = latency_evol , aes ( x = ident , y = lat_ms ) ) +
2019-09-16 23:40:32 +00:00
geom_line ( ) +
2019-09-17 14:44:49 +00:00
xlab ( " Packet identifier" ) +
ylab ( " Latency (ms)" ) +
2019-09-17 13:12:37 +00:00
theme_classic ( )
2019-09-18 06:53:01 +00:00
thunder_drop <- read.csv ( " thunder_configure_partial_drop.csv" )
thunder_drop_2 <- sqldf ( " select run, packet_range, 1.0*count / 990 as packet_ratio, row_number() OVER (partition by packet_range order by run) sorting from thunder_drop where run LIKE '%-23' " )
2019-09-17 13:12:37 +00:00
#cats <- c("0-989","990-1979","1980-2969","2970-3959","3960-4949","4950-5939","5940-6929","6930-7919","7920-8909","8910-9899")
thunder_drop_2 $ packet_range <- as.factor ( thunder_drop_2 $ packet_range )
thunder_drop_2 $ sorting <- as.factor ( thunder_drop_2 $ sorting )
2019-09-18 06:53:01 +00:00
#thunder_drop_2$packet_range <- factor(
# mapvalues(thunder_drop_2$packet_range, cats, cats),
# levels = cats,
# ordered = TRUE)
2019-09-17 13:12:37 +00:00
v9 <- ggplot ( data = thunder_drop_2 , aes ( x = packet_range , y = packet_ratio , fill = sorting ) ) +
geom_bar ( stat = " summary" , position = " dodge" ) +
#grom_bar() +
#scale_y_log10() +
scale_y_continuous ( labels = scales :: percent ) +
ylab ( " Packets dropped" ) +
2019-09-17 14:44:49 +00:00
xlab ( " Packet identifier" ) +
labs ( fill = " Run" ) +
2019-09-17 13:12:37 +00:00
scale_fill_grey ( ) +
2019-09-17 14:44:49 +00:00
theme_classic ( ) +
theme ( axis.text.x = element_text ( angle = 45 , hjust = 1 ) , legend.key.size = unit ( 0.2 , " cm" ) )
2019-09-17 13:12:37 +00:00
2019-09-18 06:53:01 +00:00
thunder_drop_burst <- read.csv ( " thunder_configure_partial_drop_burst.csv" )
tdb_ag <- sqldf ( " select run,count,COUNT(count) as oc from thunder_drop_burst where run LIKE '%-23' group by run,count" )
2019-09-17 13:59:38 +00:00
tdb_ag_2 <- sqldf (
"
select
td.run as r ,
count ,
oc ,
total ,
1.0 * oc / total as oc_ratio ,
row_number ( ) OVER ( partition by count order by td.run ) as sorting
from
tdb_ag as td ,
( select run , SUM ( oc ) as total from tdb_ag group by run ) as ag
where
td.run = ag.run
" )
2019-09-17 13:12:37 +00:00
tdb_ag_2 $ sorting <- as.factor ( tdb_ag_2 $ sorting )
tdb_ag_2 $ count <- as.factor ( tdb_ag_2 $ count )
2019-09-17 13:59:38 +00:00
v10 <- ggplot ( data = tdb_ag_2 , aes ( x = count , y = oc_ratio ) ) +
2019-09-17 13:36:07 +00:00
#geom_bar(stat="summary",position = "dodge") +
2019-09-17 13:12:37 +00:00
#scale_y_log10() +
2019-09-17 13:36:07 +00:00
geom_violin ( scale = ' width' ) +
geom_boxplot ( width = 0.1 , outlier.shape = NA ) +
2019-09-17 13:59:38 +00:00
scale_y_continuous ( labels = scales :: percent ) +
ylab ( " % observed drops" ) +
xlab ( " Packets lost during the drop" ) +
2019-09-17 13:12:37 +00:00
scale_fill_grey ( ) +
2019-09-16 23:40:32 +00:00
theme_classic ( )
2019-09-18 06:53:01 +00:00
thunder_red <- read.csv ( " thunder_configure_partial_red.csv" )
2019-09-17 13:59:38 +00:00
tred <- sqldf (
"
select
tr.run as r ,
delivered_at_once ,
1.0 * occur / total as occur_ratio ,
occur ,
total ,
row_number ( ) OVER ( partition by delivered_at_once order by tr.run ) as sorting
from
thunder_red tr ,
( select run , SUM ( occur ) as total from thunder_red group by run ) as ag
WHERE
2019-09-18 06:53:01 +00:00
tr.run LIKE ' %-23'
2019-09-17 13:59:38 +00:00
and tr.run = ag.run
" )
2019-09-17 13:36:07 +00:00
tred $ sorting <- as.factor ( tred $ sorting )
tred $ delivered_at_once <- as.factor ( tred $ delivered_at_once )
2019-09-17 13:59:38 +00:00
v11 <- ggplot ( data = tred , aes ( x = delivered_at_once , y = occur_ratio ) ) +
2019-09-17 13:36:07 +00:00
#geom_bar(stat="summary",position = "dodge") +
geom_violin ( scale = ' width' ) +
2019-09-17 13:59:38 +00:00
xlab ( ' Fresh packets per cell' ) +
ylab ( ' % of received cells' ) +
scale_y_continuous ( labels = scales :: percent ) +
2019-09-17 13:36:07 +00:00
geom_boxplot ( width = 0.1 , outlier.shape = NA ) +
theme_classic ( )
2019-09-16 20:53:34 +00:00
2019-09-17 13:36:07 +00:00
t3 <- plot_grid ( v8 , v9 , v10 , v11 , labels = c ( ' A' , ' B' , ' C' , ' D' ) , ncol = 2 )
2019-09-17 14:44:49 +00:00
t3 + ggsave ( " thunder_packets.png" , dpi = 300 , dev = ' png' , height = 12 , width = 15 , units = " cm" )
2019-09-17 17:52:02 +00:00
tor_multi_lat <- read.csv ( " tor_just_many_latencies.csv" )
2019-09-17 21:05:52 +00:00
tor_multi_lat_100 <- read.csv ( " tor_just_many_latencies_100.csv" )
tor_drop <- sqldf (
"
select run , conf , 1.0 * MAX ( ident ) / 33 as last_one , ' 33' as pkt_sec from tor_multi_lat group by run , conf
union
select run , conf , 1.0 * MAX ( ident ) / 10 as last_one , ' 10' as pkt_sec from tor_multi_lat_100 group by run , conf
" )
v12 <- ggplot ( data = tor_drop , aes ( x = last_one , linetype = factor ( pkt_sec , levels = c ( ' 33' , ' 10' ) ) ) ) +
2019-09-17 17:52:02 +00:00
stat_ecdf ( pad = FALSE ) +
ylab ( " % broken links" ) +
2019-09-17 21:05:52 +00:00
labs ( linetype = " Pkt/sec" ) +
2019-09-17 17:52:02 +00:00
coord_cartesian ( xlim = c ( 0 , 300 ) , ylim = c ( 0 , 0.5 ) ) +
scale_y_continuous ( labels = scales :: percent ) +
xlab ( " Elapsed time (sec)" ) +
theme_classic ( )
v12 + ggsave ( " broken.png" , dpi = 300 , dev = ' png' , height = 5 , width = 15 , units = " cm" )
library ( dplyr )
library ( purrr )
library ( tidyr )
tor_lat_stack <- tor_multi_lat %>%
2019-09-17 21:05:52 +00:00
dplyr :: mutate ( latency = latency / 1000 ) %>%
2019-09-17 17:52:02 +00:00
dplyr :: group_by ( run , conf ) %>%
dplyr :: summarise (
id = paste ( first ( run ) , first ( conf ) ) ,
min = min ( latency ) ,
2019-09-17 21:05:52 +00:00
q25 = quantile ( latency , 0.25 ) - min ( latency ) ,
median = median ( latency ) - quantile ( latency , 0.25 ) ,
q75 = quantile ( latency , 0.75 ) - median ( latency ) ,
q95 = quantile ( latency , 0.95 ) - quantile ( latency , 0.75 ) ,
q99 = quantile ( latency , 0.99 ) - quantile ( latency , 0.95 ) ,
max = max ( latency ) - quantile ( latency , 0.99 ) ,
2019-09-17 17:52:02 +00:00
max_sort = max ( latency ) ,
2019-09-17 21:05:52 +00:00
median_sort = median ( latency )
2019-09-17 17:52:02 +00:00
)
tor_lat_stack <- gather ( tor_lat_stack , ' min' , ' max' , ' q25' , ' median' , ' q75' , ' q95' , ' q99' , key = " quantile_name" , value = " quantile_value" )
2019-09-17 21:05:52 +00:00
v13 <- ggplot ( tor_lat_stack , aes (
x = reorder ( id , median_sort ) ,
y = quantile_value ,
fill = factor ( quantile_name , levels = c ( ' max' , ' q99' , ' q95' , ' q75' , ' median' , ' q25' , ' min' ) ) )
) +
coord_cartesian ( ylim = c ( 0 , 1500 ) ) +
labs ( fill = " quantile" ) +
xlab ( " Tor circuits" ) +
ylab ( " RTT (ms)" ) +
geom_bar ( stat = " identity" , position = " stack" , width = 1 ) +
scale_fill_grey ( ) +
theme_classic ( ) +
theme ( axis.text.x = element_blank ( ) , axis.ticks.x = element_blank ( ) , legend.key.size = unit ( 0.2 , " cm" ) )
v14 <- ggplot ( tor_lat_stack , aes (
x = reorder ( id , median_sort ) ,
y = quantile_value ,
fill = factor ( quantile_name , levels = c ( ' max' , ' q99' , ' q95' , ' q75' , ' median' , ' q25' , ' min' ) ) )
) +
#coord_cartesian(ylim = c(0,1500)) +
labs ( fill = " quantile" ) +
xlab ( " Tor circuits" ) +
ylab ( " RTT (ms)" ) +
geom_bar ( stat = " identity" , position = " stack" , width = 1 ) +
scale_fill_grey ( ) +
theme_classic ( ) +
theme ( axis.text.x = element_blank ( ) , axis.ticks.x = element_blank ( ) , legend.key.size = unit ( 0.2 , " cm" ) )
v15 <- ggplot ( tor_lat_stack , aes (
x = reorder ( id , max_sort ) ,
y = quantile_value ,
fill = factor ( quantile_name , levels = c ( ' max' , ' q99' , ' q95' , ' q75' , ' median' , ' q25' , ' min' ) ) )
) +
coord_cartesian ( ylim = c ( 0 , 1500 ) ) +
labs ( fill = " quantile" ) +
xlab ( " Tor circuits" ) +
ylab ( " RTT (ms)" ) +
geom_bar ( stat = " identity" , position = " stack" , width = 1 ) +
scale_fill_grey ( ) +
theme_classic ( ) +
theme ( axis.text.x = element_blank ( ) , axis.ticks.x = element_blank ( ) , legend.key.size = unit ( 0.2 , " cm" ) , plot.tag.position = ' top' )
v16 <- ggplot ( tor_lat_stack , aes (
x = reorder ( id , max_sort ) ,
y = quantile_value ,
fill = factor ( quantile_name , levels = c ( ' max' , ' q99' , ' q95' , ' q75' , ' median' , ' q25' , ' min' ) ) )
) +
#coord_cartesian(ylim = c(0,1500)) +
labs ( fill = " quantile" ) +
xlab ( " Tor circuits" ) +
ylab ( " RTT (ms)" ) +
geom_bar ( stat = " identity" , position = " stack" , width = 1 ) +
scale_fill_grey ( ) +
theme_classic ( ) +
theme ( axis.text.x = element_blank ( ) , axis.ticks.x = element_blank ( ) , legend.key.size = unit ( 0.2 , " cm" ) , plot.tag.position = ' bottom' )
t4 <- plot_grid ( v16 , v15 , v14 , v13 , labels = c ( ' A' , ' B' , ' C' , ' D' ) , ncol = 1 )
t4 + ggsave ( " tor_30ms.png" , dpi = 300 , dev = ' png' , height = 20 , width = 15 , units = " cm" )
tor_lat_stack_100 <- tor_multi_lat_100 %>%
dplyr :: mutate ( latency = latency / 1000 ) %>%
dplyr :: group_by ( run , conf ) %>%
dplyr :: summarise (
id = paste ( first ( run ) , first ( conf ) ) ,
min = min ( latency ) ,
q25 = quantile ( latency , 0.25 ) - min ( latency ) ,
median = median ( latency ) - quantile ( latency , 0.25 ) ,
q75 = quantile ( latency , 0.75 ) - median ( latency ) ,
q95 = quantile ( latency , 0.95 ) - quantile ( latency , 0.75 ) ,
q99 = quantile ( latency , 0.99 ) - quantile ( latency , 0.95 ) ,
max = max ( latency ) - quantile ( latency , 0.99 ) ,
max_sort = max ( latency ) ,
median_sort = median ( latency )
)
tor_lat_stack_100 <- gather ( tor_lat_stack_100 , ' min' , ' max' , ' q25' , ' median' , ' q75' , ' q95' , ' q99' , key = " quantile_name" , value = " quantile_value" )
v17 <- ggplot ( tor_lat_stack_100 , aes (
x = reorder ( id , median_sort ) ,
y = quantile_value ,
fill = factor ( quantile_name , levels = c ( ' max' , ' q99' , ' q95' , ' q75' , ' median' , ' q25' , ' min' ) ) )
) +
coord_cartesian ( ylim = c ( 0 , 1500 ) ) +
labs ( fill = " quantile" ) +
xlab ( " Tor circuits" ) +
ylab ( " RTT (ms)" ) +
geom_bar ( stat = " identity" , position = " stack" , width = 1 ) +
scale_fill_grey ( ) +
theme_classic ( ) +
theme ( axis.text.x = element_blank ( ) , axis.ticks.x = element_blank ( ) , legend.key.size = unit ( 0.2 , " cm" ) )
v18 <- ggplot ( tor_lat_stack_100 , aes (
x = reorder ( id , median_sort ) ,
y = quantile_value ,
fill = factor ( quantile_name , levels = c ( ' max' , ' q99' , ' q95' , ' q75' , ' median' , ' q25' , ' min' ) ) )
) +
#coord_cartesian(ylim = c(0,1500)) +
labs ( fill = " quantile" ) +
xlab ( " Tor circuits" ) +
ylab ( " RTT (ms)" ) +
geom_bar ( stat = " identity" , position = " stack" , width = 1 ) +
scale_fill_grey ( ) +
theme_classic ( ) +
theme ( axis.text.x = element_blank ( ) , axis.ticks.x = element_blank ( ) , legend.key.size = unit ( 0.2 , " cm" ) )
v19 <- ggplot ( tor_lat_stack_100 , aes (
x = reorder ( id , max_sort ) ,
y = quantile_value ,
fill = factor ( quantile_name , levels = c ( ' max' , ' q99' , ' q95' , ' q75' , ' median' , ' q25' , ' min' ) ) )
) +
coord_cartesian ( ylim = c ( 0 , 1500 ) ) +
labs ( fill = " quantile" ) +
xlab ( " Tor circuits" ) +
ylab ( " RTT (ms)" ) +
geom_bar ( stat = " identity" , position = " stack" , width = 1 ) +
scale_fill_grey ( ) +
theme_classic ( ) +
theme ( axis.text.x = element_blank ( ) , axis.ticks.x = element_blank ( ) , legend.key.size = unit ( 0.2 , " cm" ) , plot.tag.position = ' top' )
v20 <- ggplot ( tor_lat_stack_100 , aes (
x = reorder ( id , max_sort ) ,
y = quantile_value ,
fill = factor ( quantile_name , levels = c ( ' max' , ' q99' , ' q95' , ' q75' , ' median' , ' q25' , ' min' ) ) )
) +
#coord_cartesian(ylim = c(0,1500)) +
labs ( fill = " quantile" ) +
xlab ( " Tor circuits" ) +
ylab ( " RTT (ms)" ) +
geom_bar ( stat = " identity" , position = " stack" , width = 1 ) +
scale_fill_grey ( ) +
theme_classic ( ) +
theme ( axis.text.x = element_blank ( ) , axis.ticks.x = element_blank ( ) , legend.key.size = unit ( 0.2 , " cm" ) , plot.tag.position = ' bottom' )
t5 <- plot_grid ( v20 , v19 , v18 , v17 , labels = c ( ' A' , ' B' , ' C' , ' D' ) , ncol = 1 )
t5 + ggsave ( " tor_100ms.png" , dpi = 300 , dev = ' png' , height = 20 , width = 15 , units = " cm" )