Merge branch 'feature/refactor'

This commit is contained in:
Quentin 2019-09-02 10:00:13 +02:00
commit 3d7a35091a
15 changed files with 691 additions and 621 deletions

View file

@ -25,8 +25,8 @@ list(APPEND CSOURCES
src/url.c src/url.c
src/donar_init.h src/donar_init.h
src/donar_init.c src/donar_init.c
src/algo_rr.c
src/algo_dup2.c src/algo_dup2.c
src/algo_thunder.c
src/algo_utils.h src/algo_utils.h
src/algo_utils.c src/algo_utils.c
src/proxy.h src/proxy.h

View file

@ -1,88 +0,0 @@
#!/bin/bash
WAITFOR=2280 # 38min
echo "Create output folder..."
docker run \
--rm \
--user root \
-v `pwd`/out:/home/donar \
registry.gitlab.inria.fr/qdufour/donar \
chown -R 1000:1000 /home/donar
for i in {1..10}; do
echo "Spawning container $i..."
docker run \
--rm \
-d \
--name "donarxp_server_${i}" \
-e HOME='/tmp' \
-v `pwd`/out:/home/donar \
registry.gitlab.inria.fr/qdufour/donar \
tor -f /etc/torrc
docker run \
--rm \
-d \
--name "donarxp_client_${i}" \
-e HOME='/tmp' \
-v `pwd`/out:/home/donar \
registry.gitlab.inria.fr/qdufour/donar \
tor -f /etc/torrc
done
sleep 10
for j in {1..100}; do
echo "Run xp $j..."
run_fold=`mktemp -up . XXXXXXXXXXXXXXXX`
echo "Reset containers..."
for i in {1..10}; do
docker exec donarxp_client_${i} sh -c 'killall -9 bash; killall -9 donar; killall -9 measlat; killall -9 udpecho'
docker exec donarxp_server_${i} sh -c 'killall -9 bash; killall -9 donar; killall -9 measlat; killall -9 udpecho'
done
echo "Launch servers..."
docker exec donarxp_server_2 rrhr-server ${run_fold}-rrhr-2 &
docker exec donarxp_server_3 dup2-server ${run_fold}-dup2-3 &
docker exec donarxp_server_4 rrhr-server ${run_fold}-rrhr-4 &
docker exec donarxp_server_5 dup2-server ${run_fold}-dup2-5 &
docker exec donarxp_server_6 rrhr-server ${run_fold}-rrhr-6 &
docker exec donarxp_server_7 dup2-server ${run_fold}-dup2-7 &
docker exec donarxp_server_8 orig-server ${run_fold}-orig-8 &
docker exec donarxp_server_9 orig-server ${run_fold}-orig-9 &
docker exec donarxp_server_10 orig-server ${run_fold}-orig-10 &
sleep 10
echo "Launch measures..."
timeout $WAITFOR bash <<EOF
docker exec donarxp_client_1 witness2-client 6000 100 100 ${run_fold}-witness2-1 &
sleep 10
docker exec donarxp_client_2 rrhr-client 6000 100 100 ${run_fold}-rrhr-2 &
sleep 10
docker exec donarxp_client_3 dup2-client 6000 100 100 ${run_fold}-dup2-3 &
sleep 10
docker exec donarxp_client_4 rrhr-client 6000 100 100 ${run_fold}-rrhr-4 &
sleep 10
docker exec donarxp_client_5 dup2-client 6000 100 100 ${run_fold}-dup2-5 &
sleep 10
docker exec donarxp_client_6 rrhr-client 6000 100 100 ${run_fold}-rrhr-6 &
sleep 10
docker exec donarxp_client_7 dup2-client 6000 100 100 ${run_fold}-dup2-7 &
sleep 10
docker exec donarxp_client_8 orig-client 6000 100 100 ${run_fold}-orig-8 &
sleep 10
docker exec donarxp_client_9 orig-client 6000 100 100 ${run_fold}-orig-9 &
sleep 10
docker exec donarxp_client_10 orig-client 6000 100 100 ${run_fold}-orig-10 &
sleep 10
wait;
EOF
done
echo "Unspawn containers..."
for i in {1..10}; do
docker kill "donarxp_server_${i}"
docker kill "donarxp_client_${i}"
done

View file

@ -1,5 +1,6 @@
#include "proxy.h" #include "proxy.h"
#include "algo_utils.h" #include "algo_utils.h"
#include "packet.h"
struct dup2_ctx { struct dup2_ctx {
uint16_t recv_id; uint16_t recv_id;
@ -19,28 +20,57 @@ int algo_dup2_on_stream(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo
char url[256]; char url[256];
struct evt_core_fdinfo *to_fdinfo = NULL; struct evt_core_fdinfo *to_fdinfo = NULL;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
union abstract_packet *ap = (union abstract_packet*) &bp->ip;
// Check that we didn't already received the packet
struct dup2_ctx* dup2c = app_ctx->misc; struct dup2_ctx* dup2c = app_ctx->misc;
if (ring_ge(dup2c->recv_id, bp->ip.ap.fmt.content.clear.id)) { int32_t id = -1, port = -1;
if (ctx->verbose > 1) {
fprintf(stderr, " [algo_dup2] Received a buffer\n");
dump_buffer_packet(bp);
}
do {
switch (ap->fmt.headers.cmd) {
case CMD_UDP_METADATA_THUNDER:
id = ap->fmt.content.udp_metadata_thunder.id;
break;
case CMD_UDP_ENCAPSULATED:
port = ap->fmt.content.udp_encapsulated.port;
break;
default:
break;
}
} while ((ap = ap_next(ap)) != NULL);
if (ctx->verbose > 1) fprintf(stderr, " [algo_dup2] Extracted port=%d and id=%d\n", port, id);
if (port == -1 || id == -1) {
fprintf(stderr, "Missing data port=%d and id=%d...\n", port, id);
exit(EXIT_FAILURE);
}
// Check that received identifier has not been delivered
if (ring_ge(dup2c->recv_id, id)) {
if (ctx->verbose > 1) fprintf(stderr, " [algo_dup2] Packet already delivered, dropping\n");
mv_buffer_rtof(&app_ctx->br, fdinfo); mv_buffer_rtof(&app_ctx->br, fdinfo);
return 0; return 0;
} }
dup2c->recv_id = bp->ip.ap.fmt.content.clear.id; // Update delivered identifier
dup2c->recv_id = id;
// 1. Find destination // 1. Find destination
sprintf(url, "udp:write:127.0.0.1:%d", bp->ip.ap.fmt.content.clear.port); sprintf(url, "udp:write:127.0.0.1:%d", port);
to_fdinfo = evt_core_get_from_url (ctx, url); to_fdinfo = evt_core_get_from_url (ctx, url);
if (to_fdinfo == NULL) { if (to_fdinfo == NULL) {
fprintf(stderr, "No fd for URL %s in tcp-read. Dropping packet :( \n", url); fprintf(stderr, "No fd for URL %s in tcp-read. Dropping packet :( \n", url);
mv_buffer_wtof (&app_ctx->br, fdinfo); mv_buffer_rtof (&app_ctx->br, fdinfo);
return 1; return 1;
} }
// 2. Move buffer // 2. Move buffer
if (ctx->verbose > 1) fprintf(stderr, " [algo_dup2] Scheduling packet for write\n");
mv_buffer_rtow (&app_ctx->br, fdinfo, to_fdinfo); mv_buffer_rtow (&app_ctx->br, fdinfo, to_fdinfo);
main_on_udp_write(ctx, to_fdinfo); main_on_udp_write(ctx, to_fdinfo);
return 0; return 0;
} }
@ -49,11 +79,20 @@ int algo_dup2_on_datagram(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdin
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct dup2_ctx* dup2c = app_ctx->misc; struct dup2_ctx* dup2c = app_ctx->misc;
bp->ip.ap.fmt.content.clear.id = dup2c->emit_id;
dup2c->emit_id = dup2c->emit_id + 1; dup2c->emit_id = dup2c->emit_id + 1;
union abstract_packet metadata = {
.fmt.headers.cmd = CMD_UDP_METADATA_THUNDER,
.fmt.headers.size = sizeof(metadata.fmt.headers) + sizeof(metadata.fmt.content.udp_metadata_thunder),
.fmt.headers.flags = 0,
.fmt.content.udp_metadata_thunder.id = dup2c->emit_id
};
buffer_append_ap (bp, &metadata);
if (ctx->verbose > 1) {
dump_buffer_packet(bp);
fprintf(stderr, " [algo_dup2] Added metadata\n");
}
struct evt_core_cat* cat = evt_core_get_from_cat (ctx, "tcp-write"); struct evt_core_cat* cat = evt_core_get_from_cat (ctx, "tcp-write");
for (int i = 0; i < app_ctx->ap.links; i++) { for (int i = 0; i < app_ctx->ap.links; i++) {
// 1. A whole packet has been read, we will find someone to write it // 1. A whole packet has been read, we will find someone to write it
to_fdinfo = cat->socklist->len > i ? g_array_index(cat->socklist, struct evt_core_fdinfo*, i) : NULL; to_fdinfo = cat->socklist->len > i ? g_array_index(cat->socklist, struct evt_core_fdinfo*, i) : NULL;
@ -66,6 +105,7 @@ int algo_dup2_on_datagram(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdin
dup_buffer_tow (&app_ctx->br, bp, to_fdinfo); dup_buffer_tow (&app_ctx->br, bp, to_fdinfo);
main_on_tcp_write(ctx, to_fdinfo); main_on_tcp_write(ctx, to_fdinfo);
} }
if (ctx->verbose > 1) fprintf(stderr, " [algo_dup2] Packets sent\n");
// 3. Release the buffer // 3. Release the buffer
mv_buffer_rtof (&app_ctx->br, fdinfo); mv_buffer_rtof (&app_ctx->br, fdinfo);

View file

@ -9,9 +9,10 @@ int algo_naive_on_stream(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinf
char url[256]; char url[256];
struct evt_core_fdinfo *to_fdinfo = NULL; struct evt_core_fdinfo *to_fdinfo = NULL;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
union abstract_packet* ap = (union abstract_packet*) &bp->ip;
// 1. Find destination if (ctx->verbose > 1) fprintf(stderr, " [algo_naive] 1/2 Find destination\n");
sprintf(url, "udp:write:127.0.0.1:%d", bp->ip.ap.fmt.content.clear.port); sprintf(url, "udp:write:127.0.0.1:%d", ap->fmt.content.udp_encapsulated.port);
to_fdinfo = evt_core_get_from_url (ctx, url); to_fdinfo = evt_core_get_from_url (ctx, url);
if (to_fdinfo == NULL) { if (to_fdinfo == NULL) {
fprintf(stderr, "No fd for URL %s in tcp-read. Dropping packet :( \n", url); fprintf(stderr, "No fd for URL %s in tcp-read. Dropping packet :( \n", url);
@ -19,7 +20,7 @@ int algo_naive_on_stream(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinf
return 1; return 1;
} }
// 2. Move buffer if (ctx->verbose > 1) fprintf(stderr, " [algo_naive] 2/2 Move buffer\n");
mv_buffer_rtow (&app_ctx->br, fdinfo, to_fdinfo); mv_buffer_rtow (&app_ctx->br, fdinfo, to_fdinfo);
main_on_udp_write(ctx, to_fdinfo); main_on_udp_write(ctx, to_fdinfo);

View file

@ -1,379 +0,0 @@
#include <sys/timerfd.h>
#include "algo_utils.h"
#include "utils.h"
#include "url.h"
#include "proxy.h"
#include "timer.h"
struct timer_info {
uint16_t health_id;
uint8_t prevlink;
uint16_t min_blocked_pkt;
struct algo_ctx* algo;
};
struct queued_pkt {
uint8_t on;
int link_fd;
int idx;
uint16_t id;
struct algo_ctx* algo;
};
struct rr_ctx {
uint8_t my_links;
uint8_t remote_links;
uint8_t current_link;
int64_t mjit;
uint16_t health_id;
uint16_t health_id_late;
uint16_t content_id;
uint16_t sent_health_id;
uint16_t sent_content_id;
struct internet_packet prev_packet;
struct timespec emit_time;
struct queued_pkt real[PACKET_BUFFER_SIZE];
struct timer_info wait[PACKET_BUFFER_SIZE];
};
void show_link_availability(struct rr_ctx* rr) {
printf("Links availability: my_links[");
for (int i = 0; i < 8; i++) {
if (rr->my_links & 1 << i) printf("U");
else printf("-");
}
printf("], rem_links[");
for (int i = 0; i < 8; i++) {
if (rr->remote_links & 1 << i) printf("U");
else printf("-");
}
printf("]\n");
}
void blacklist_link(struct rr_ctx* rr, int sel_link) {
printf("Blacklist link=%d | ", sel_link);
rr->remote_links &= 0xff ^ 1 << sel_link;
show_link_availability (rr);
}
void on_timeout_health (struct evt_core_ctx* ctx, void* user);
void rr_pkt_register(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
uint16_t real_idx = bp->ip.ap.fmt.content.clear.id % PACKET_BUFFER_SIZE;
assert(bp->ip.ap.fmt.headers.cmd == CMD_CLEAR);
// 1. We queue the packet to keep it
if (rr->real[real_idx].on && ring_lt(rr->real[real_idx].id, bp->ip.ap.fmt.content.clear.id)) {
fprintf(stderr, "Real array is full for packet_id=%d, idx=%d, last_delivered_content_id=%d BUG: [\n",
bp->ip.ap.fmt.content.clear.id,
real_idx,
rr->content_id);
for (int i = 0; i < PACKET_BUFFER_SIZE; i++) {
fprintf(stderr, "\t%d => %d\n", rr->real[i].id, rr->real[i].on);
}
fprintf(stderr, "] - could be replaced by drop\n");
exit(EXIT_FAILURE);
} else if (!rr->real[real_idx].on && ring_gt(bp->ip.ap.fmt.content.clear.id, rr->content_id)) {
rr->real[real_idx].on = 1;
rr->real[real_idx].id = bp->ip.ap.fmt.content.clear.id;
rr->real[real_idx].idx = real_idx;
rr->real[real_idx].link_fd = fdinfo->fd;
rr->real[real_idx].algo = app_ctx;
mv_buffer_rtoa(&app_ctx->br, fdinfo, &rr->real[real_idx].idx);
} else {
if (ctx->verbose) fprintf(stdout, "Packet %d already received (current: %d)\n", bp->ip.ap.fmt.content.clear.id, rr->content_id);
mv_buffer_rtof (&app_ctx->br, fdinfo);
}
}
void rr_deliver(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx, struct queued_pkt* dp) {
struct evt_core_fdinfo *to_fdinfo = NULL;
struct rr_ctx* rr = app_ctx->misc;
char url[255];
// 1. Marked the packet as handled
dp->on = 0;
// 2. Get the buffer
struct buffer_packet* bp = get_app_buffer (&app_ctx->br, &dp->idx);
assert(bp->ip.ap.fmt.headers.cmd == CMD_CLEAR);
// 3. We update our cursor
rr->content_id = bp->ip.ap.fmt.content.clear.id;
// 4. Find its target
sprintf(url, "udp:write:127.0.0.1:%d", bp->ip.ap.fmt.content.clear.port);
to_fdinfo = evt_core_get_from_url (ctx, url);
if (to_fdinfo == NULL) {
fprintf(stderr, "No fd for URL %s in udp:write for tcp-read. Dropping packet %d :( \n", url, dp->idx);
//mv_buffer_wtor (app_ctx, fdinfo, bp);
mv_buffer_atof (&app_ctx->br, &dp->idx);
}
// 5. We move the buffer and notify the target
//mv_buffer_rtow (app_ctx, fdinfo, to_fdinfo, bp);
mv_buffer_atow (&app_ctx->br, &dp->idx, to_fdinfo);
main_on_udp_write(ctx, to_fdinfo);
}
void rr_pkt_manage_links(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
assert(bp->ip.ap.fmt.headers.cmd == CMD_HEALTH);
// 1. Health packet was received too late, dropping it
if (ring_le(bp->ip.ap.fmt.content.health.id, rr->health_id_late)) goto release;
// 2. Reactivate link if deactivated
char buffer[16];
url_get_port (buffer, fdinfo->url);
int link_num = atoi(buffer) - 7500; // @FIXME Hardcoded
if (!(rr->remote_links & (1 << link_num))) {
printf("Activate link=%d | ", link_num);
rr->remote_links |= 1 << link_num; // Make sure that the link is marked as working
show_link_availability (rr);
}
// 3. Update RR structure if its the greatest health_id we received
if (ring_gt(bp->ip.ap.fmt.content.health.id, rr->health_id)) {
// 3.1. Update current health id
rr->health_id = bp->ip.ap.fmt.content.health.id;
// 3.2. Update my links I can use thanks to target feedback
if (bp->ip.ap.fmt.content.health.bitfield != rr->my_links) {
rr->my_links = bp->ip.ap.fmt.content.health.bitfield;
printf("Update my links | ");
show_link_availability (rr);
}
}
// 4. Set callback to close this health packet window
int64_t timeout = rr->mjit - (int64_t) bp->ip.ap.fmt.content.health.deltat;
if (timeout <= 0) timeout = 0;
uint64_t idx = bp->ip.ap.fmt.content.health.id % PACKET_BUFFER_SIZE;
rr->wait[idx].health_id = bp->ip.ap.fmt.content.health.id;
rr->wait[idx].prevlink = bp->ip.ap.fmt.content.health.prevlink;
rr->wait[idx].min_blocked_pkt = bp->ip.ap.fmt.content.health.min_blocked_pkt;
rr->wait[idx].algo = app_ctx;
set_timeout (ctx, timeout, &rr->wait[idx], on_timeout_health);
release:
mv_buffer_rtof(&app_ctx->br, fdinfo);
}
uint64_t rr_pkt_unroll(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx) {
struct rr_ctx* rr = app_ctx->misc;
struct evt_core_fdinfo* fdinfo = NULL;
struct buffer_packet* bp = NULL;
uint64_t delivered = 0;
while(1) {
//printf("Trying to deliver %d\n", rr->recv_id+1);
struct queued_pkt* def = &rr->real[(rr->content_id+1) % PACKET_BUFFER_SIZE];
if (!def->on) break;
rr_deliver(ctx, app_ctx, def);
delivered++;
//printf("Delivered %d\n", rr->recv_id);
}
return delivered;
}
//------
int algo_rr_on_stream(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
if (bp->ip.ap.fmt.headers.cmd == CMD_CLEAR) {
if (ctx->verbose > 1) fprintf(stderr, " [algo/rr] Received a CLEAR packet of size %d on URL %s\n", bp->ip.ap.fmt.headers.size, fdinfo->url);
// 1. Register packet in our queue
rr_pkt_register(ctx, fdinfo, bp);
// 2. Process queue
rr_pkt_unroll (ctx, app_ctx);
} else if (bp->ip.ap.fmt.headers.cmd == CMD_HEALTH) {
if (ctx->verbose > 1) fprintf(stderr, " [algo/rr] Received a HEALTH packet of size %d on URL %s\n", bp->ip.ap.fmt.headers.size, fdinfo->url);
rr_pkt_manage_links(ctx, fdinfo, bp);
} else {
fprintf(stderr, " [algo/rr] Packet CMD unrecognized (%d)\n", bp->ip.ap.fmt.headers.cmd);
mv_buffer_rtof(&app_ctx->br, fdinfo);
}
return 0;
}
int algo_rr_on_datagram(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
struct evt_core_fdinfo *to_fdinfo = NULL;
uint16_t min_pkt;
guint len;
char url[255];
size_t health_packet_size = sizeof(bp->ip.ap.fmt.headers) + sizeof(bp->ip.ap.fmt.content.health);
size_t max_size = sizeof(struct internet_packet) - health_packet_size;
if (ctx->verbose > 1) fprintf(stderr, " [algo/rr] Read a UDP packet on URL %s\n", fdinfo->url);
// 1. Prepare RR state and packet values
struct timespec curr;
int secs, nsecs;
uint64_t mili_sec;
if (clock_gettime(CLOCK_MONOTONIC, &curr) == -1){
perror("clock_gettime error");
exit(EXIT_FAILURE);
}
// 2. Compute delta t
secs = curr.tv_sec - rr->emit_time.tv_sec;
nsecs = curr.tv_nsec - rr->emit_time.tv_nsec;
rr->emit_time = curr;
mili_sec = secs * 1000 + nsecs / 1000000;
if (mili_sec > rr->mjit) mili_sec = rr->mjit;
// 3. Prepare fresh packet
assert(bp->ip.ap.fmt.headers.cmd == CMD_CLEAR);
bp->ip.ap.fmt.content.clear.id = rr->sent_content_id;
min_pkt = rr->sent_content_id;
rr->sent_content_id++;
if (bp->ip.ap.fmt.headers.size > max_size) {
fprintf(stderr, "Packet is too big to be relayed. Oops...\n");
exit(EXIT_FAILURE);
}
// 4. Append redundancy if needed
if (app_ctx->ap.redundant_data == 1) {
size_t current_size = get_full_size (bp);
size_t final_size = current_size + rr->prev_packet.ap.fmt.headers.size;
if (final_size <= max_size) {
min_pkt = rr->prev_packet.ap.fmt.content.clear.id;
append_buffer(&bp->ip.ap, bp->ap_count, &rr->prev_packet.ap); // We append previous packet
bp->ap_count++;
} else if (ctx->verbose) {
fprintf(stderr, " [algo/rr] Can't append redundancy (current=%ld, after=%ld, max=%ld)\n", current_size, final_size, max_size);
}
append_buffer(&rr->prev_packet.ap, 0, &bp->ip.ap); // We store current packet for next time
}
// 5. Append health packet
struct buffer_packet hp;
hp.ip.ap.fmt.headers.cmd = CMD_HEALTH;
hp.ip.ap.fmt.headers.size = sizeof(bp->ip.ap.fmt.headers) + sizeof(bp->ip.ap.fmt.content.health);
hp.ip.ap.fmt.content.health.id = rr->sent_health_id;
hp.ip.ap.fmt.content.health.deltat = mili_sec;
hp.ip.ap.fmt.content.health.prevlink = rr->current_link;
hp.ip.ap.fmt.content.health.bitfield = rr->remote_links;
hp.ip.ap.fmt.content.health.min_blocked_pkt = min_pkt;
rr->sent_health_id++;
append_buffer(&bp->ip.ap, bp->ap_count, &hp.ip.ap);
bp->ap_count++;
// 6. Try to find someone to send it
int max = 16;
uint8_t sel_link = rr->current_link;
while(max-- >= 0) {
if (app_ctx->ap.is_waiting_bootstrap && !app_ctx->is_rdy) goto not_ready; // Still bootstrapping
sel_link = (sel_link + 1) % app_ctx->ap.links;
sprintf(url, "tcp:write:127.0.0.1:%d", 7500 + sel_link); //@FIXME Hardcoded
to_fdinfo = evt_core_get_from_url (ctx, url);
if (to_fdinfo == NULL) {
if (ctx->verbose) fprintf(stderr, " [algo/rr] write fd %s has not been found, skipping\n", url);
continue;
}
if ((len = write_queue_len (&app_ctx->br, to_fdinfo)) > 0) {
if (ctx->verbose) fprintf(stderr, " [algo/rr] write queue of %s is not empty (%d), skipping and deactivating\n", to_fdinfo->url, len);
blacklist_link (rr, sel_link);
continue;
}
if (!app_ctx->ap.is_healing /* if healing deactivated */|| rr->my_links & (1 << sel_link) /* if link not down */ ) {
rr->current_link = sel_link;
mv_buffer_rtow (&app_ctx->br, fdinfo, to_fdinfo);
main_on_tcp_write(ctx, to_fdinfo);
return 0;
} else {
struct buffer_packet* dup_bp = dup_buffer_tow(&app_ctx->br, bp, to_fdinfo);
/*
* for later
dup_bp->ip.ap.fmt.content.health.min_blocked_pkt = 0;
dup_bp->ap_count = 1; // We want to send only health packet to help link recover... Bwarf same traffic on Tor...
*/
main_on_tcp_write(ctx, to_fdinfo);
}
}
not_ready:
// 3. We find no up target
fprintf(stderr, "Still bootstrapping or no link to forward data from %s in udp-read. Dropping packet :( \n", fdinfo->url);
mv_buffer_wtof (&app_ctx->br, fdinfo);
return 0;
}
void on_timeout_health (struct evt_core_ctx* ctx, void* raw) {
struct timer_info* t = raw;
struct algo_ctx* app_ctx = t->algo;
struct rr_ctx* rr = app_ctx->misc;
// 1. Update link recovery window if needed
if (ring_gt(t->health_id, rr->health_id_late)) rr->health_id_late = t->health_id;
// 2. Blacklist previous link if needed
uint16_t prev_health_id = (t->health_id - 1);
uint16_t prev_health_idx = prev_health_id % PACKET_BUFFER_SIZE;
struct timer_info* t_old = &rr->wait[prev_health_idx];
if (t_old->health_id != prev_health_id) blacklist_link (rr, t->prevlink);
// 3. Deliver blocked packets
// @FIXME CRAPPY CODE / CRAPPY LOGIC
//printf("t->min_blocked_pkt=%d, rr->content_id=%d\n", t->min_blocked_pkt, rr->content_id);
if (ring_gt(t->min_blocked_pkt, rr->content_id) && !rr->real[t->min_blocked_pkt % PACKET_BUFFER_SIZE].on) {
fprintf(stderr, "min_blocked_packet has not been received, t->min_blocked_pkt=%d, rr->content_id=%d\n", t->min_blocked_pkt, rr->content_id);
exit(EXIT_FAILURE);
}
while (ring_gt(t->min_blocked_pkt, rr->content_id - 1)) {
rr->content_id++;
rr_pkt_unroll (ctx, app_ctx);
}
rr_pkt_unroll (ctx, app_ctx);
}
int algo_rr_on_err(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
if (strstr(fdinfo->cat->name, "udp") != NULL) return 1;
return 0;
}
void algo_rr_free(void* v) {
struct rr_ctx* rr = v;
free(rr);
}
void algo_rr_init(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx, struct algo_params* ap) {
struct rr_ctx* rr = malloc(sizeof(struct rr_ctx));
if (rr == NULL) {
perror("malloc failed for rr_init.");
exit(EXIT_FAILURE);
}
memset(rr, 0, sizeof(struct rr_ctx));
rr->mjit = 200;
rr->my_links = 0xff;
rr->remote_links = 0xff;
rr->sent_health_id = 1;
rr->sent_content_id = 1;
rr->health_id = 0;
rr->health_id_late = 0;
rr->content_id = 0;
rr->current_link = 0;
app_ctx->misc = rr;
app_ctx->free_misc = algo_rr_free;
init_timer(ctx);
}

387
src/algo_thunder.c Normal file
View file

@ -0,0 +1,387 @@
#include <sys/timerfd.h>
#include "algo_utils.h"
#include "utils.h"
#include "url.h"
#include "proxy.h"
#include "timer.h"
// A Tor cell size is 512 bytes but handle only 498 bytes of data
#define TOR_CELL_SIZE 498
#define ALLOWED_JITTER_MS 100
#define MAX_LINKS 64
struct thunder_ctx {
uint16_t recv_id;
uint16_t emit_id;
uint8_t selected_link;
uint8_t total_links;
uint64_t delta_t_per_link[MAX_LINKS];
uint64_t rcv_delta_t_per_link[MAX_LINKS];
uint64_t received_pkts_on_link[MAX_LINKS];
uint64_t blacklisted[MAX_LINKS];
size_t monit_pkt_size;
struct timespec prev_link_time, prev_rcv_link_time;
};
uint64_t compute_delta(struct timespec* prev_time, uint64_t max) {
struct timespec curr;
int secs, nsecs;
uint64_t mili_sec;
// 1. We compute the time difference
if (clock_gettime(CLOCK_MONOTONIC, &curr) == -1){
perror("clock_gettime error");
exit(EXIT_FAILURE);
}
secs = curr.tv_sec - prev_time->tv_sec;
nsecs = curr.tv_nsec - prev_time->tv_nsec;
*prev_time = curr;
mili_sec = secs * 1000 + nsecs / 1000000;
if (mili_sec > max) mili_sec = max;
return mili_sec;
}
int is_blacklisted(struct thunder_ctx* thunderc, int link_id) {
return thunderc->blacklisted[link_id] >= thunderc->received_pkts_on_link[link_id];
}
void prepare(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct thunder_ctx* thunderc = app_ctx->misc;
thunderc->emit_id++;
union abstract_packet metadata = {
.fmt.headers.cmd = CMD_UDP_METADATA_THUNDER,
.fmt.headers.size = sizeof(metadata.fmt.headers) + sizeof(metadata.fmt.content.udp_metadata_thunder),
.fmt.headers.flags = 0,
.fmt.content.udp_metadata_thunder.id = thunderc->emit_id,
};
buffer_append_ap (bp, &metadata);
if (ctx->verbose > 1) fprintf(stderr, " [algo_thunder] UDP metadata added\n");
}
void pad(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct thunder_ctx* thunderc = app_ctx->misc;
uint64_t ref = 0l + thunderc->emit_id;
dup_buffer_toa (&app_ctx->br, bp, (void *)ref);
// 1. Clean old buffers (we keep only thunderc->total_links buffer, keeping more would be useless)
if (ref > thunderc->total_links && get_app_buffer (&app_ctx->br, (void *)(ref - thunderc->total_links))) {
mv_buffer_atof (&app_ctx->br, (void *)(ref - thunderc->total_links));
}
// 2. Append abstract packets stored in our buffers
uint64_t add_ref = ref;
while(1) {
if (add_ref < 1) break;
add_ref--;
struct buffer_packet *bp_iter = get_app_buffer (&app_ctx->br, (void *)add_ref);
if (bp_iter == NULL) break;
union abstract_packet *ap = buffer_first_ap (bp_iter);
if (ap->fmt.headers.cmd != CMD_UDP_ENCAPSULATED) {
fprintf(stderr, "Invalid buffer payload!\n");
exit(EXIT_FAILURE);
}
union abstract_packet *ap_meta = ap_next (ap);
if (ap_meta->fmt.headers.cmd != CMD_UDP_METADATA_THUNDER) {
fprintf(stderr, "Invalid buffer metadata!\n");
exit(EXIT_FAILURE);
}
if (buffer_full_size (bp) + ap->fmt.headers.size + ap_meta->fmt.headers.size > TOR_CELL_SIZE - thunderc->monit_pkt_size) break;
buffer_append_ap (bp, ap);
buffer_append_ap (bp, ap_meta);
if (ctx->verbose > 1) fprintf(stderr, " [algo_thunder] Pad packet (now %ld bytes)\n", buffer_full_size (bp));
}
}
int schedule(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
char url[256];
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct thunder_ctx* thunderc = app_ctx->misc;
struct evt_core_fdinfo *to_fdinfo = NULL;
struct evt_core_cat* cat = evt_core_get_from_cat (ctx, "tcp-write");
do {
// 1. We choose the link
if (cat->socklist->len == 0) {
if (ctx->verbose > 1) fprintf(stderr, " [algo_thunder] No link available, packet will be dropped\n");
break;
}
to_fdinfo = NULL;
do {
thunderc->selected_link = (thunderc->selected_link + 1) % thunderc->total_links;
sprintf(url, "tcp:write:127.0.0.1:%d", 7500 + thunderc->selected_link);
to_fdinfo = evt_core_get_from_url (ctx, url);
} while (to_fdinfo == NULL);
//printf("URL %s has been retained\n", url);
// 2. We create the packet template
union abstract_packet links = {
.fmt.headers.cmd = CMD_LINK_MONITORING_THUNDER,
.fmt.headers.size = thunderc->monit_pkt_size,
.fmt.headers.flags = 0,
.fmt.content.link_monitoring_thunder.links_status = {}
};
// 3. We append the template to the buffer
struct buffer_packet* bp_dup = dup_buffer_tow (&app_ctx->br, bp, to_fdinfo);
union abstract_packet *new_ap = buffer_append_ap (bp_dup, &links);
// 4. We compute the time difference
uint64_t mili_sec = compute_delta (&thunderc->prev_link_time, UINT16_MAX);
// 5. We create the array
struct link_info *li = &new_ap->fmt.content.link_monitoring_thunder.links_status;
for (int i = 0; i < thunderc->total_links; i++) {
thunderc->delta_t_per_link[i] += mili_sec;
li[i].delta_t = thunderc->delta_t_per_link[i] > UINT16_MAX ? UINT16_MAX : thunderc->delta_t_per_link[i];
}
thunderc->delta_t_per_link[thunderc->selected_link] = 0;
li[thunderc->selected_link].delta_t = 0;
if (ctx->verbose > 1) {
dump_buffer_packet(bp_dup);
fprintf(stderr, " [algo_thunder] Will send this info\n");
}
main_on_tcp_write(ctx, to_fdinfo);
} while (is_blacklisted (thunderc, thunderc->selected_link));
if (ctx->verbose > 1) fprintf(stderr, " [algo_thunder] Packets sent\n");
// Release the buffer
mv_buffer_rtof (&app_ctx->br, fdinfo);
return 0;
}
struct block_info { uint8_t i; struct algo_ctx* app_ctx; uint64_t missing;};
void on_block (struct evt_core_ctx* ctx, void* raw) {
struct block_info* bi = raw;
struct thunder_ctx* thunderc = bi->app_ctx->misc;
if (thunderc->received_pkts_on_link[bi->i] >= bi->missing) goto release;
if (thunderc->blacklisted[bi->i] >= bi->missing) goto release;
//printf("[algo_thunder] Blacklisting link %d\n", bi->i);
thunderc->blacklisted[bi->i] = bi->missing;
release:
free(bi);
}
int is_in_order(struct thunder_ctx* thunderc, uint8_t link_id) {
uint64_t ref = thunderc->received_pkts_on_link[link_id];
for (int i = 0; i < thunderc->total_links; i++) {
uint64_t expected = link_id >= i ? ref : ref - 1;
if (thunderc->received_pkts_on_link[i] > expected) {
//printf("link_id=%d, i=%d, pkt_i=%ld, pkt_i_expected=%ld, pkt_link_id=%ld\n", link_id, i, thunderc->received_pkts_on_link[i], expected, ref);
return 0;
}
}
return 1;
}
void classify(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct thunder_ctx* thunderc = app_ctx->misc;
union abstract_packet* ap = buffer_first_ap (bp);
while (ap != NULL && ap->fmt.headers.cmd != CMD_LINK_MONITORING_THUNDER) ap = ap_next(ap);
if (ap == NULL) {
fprintf(stderr, "Unable to find our packet\n");
exit(EXIT_FAILURE);
}
/*
if (ap->fmt.headers.flags & FLAG_RESET) {
for (int i = 0; i < MAX_LINKS; i++) thunderc->received_pkts_on_link[i] = 1;
}
*/
// 1. Update link info
int link_id = url_get_port_int(fdinfo->url) - 7500;
thunderc->received_pkts_on_link[link_id]++;
//printf("Received %ld packets on link %d\n", thunderc->received_pkts_on_link[link_id], link_id);
struct link_info *li = &ap->fmt.content.link_monitoring_thunder.links_status;
uint64_t mili_sec = compute_delta (&thunderc->prev_rcv_link_time, UINT16_MAX);
for (int i = 0; i < thunderc->total_links; i++) {
thunderc->rcv_delta_t_per_link[i] += mili_sec;
}
thunderc->rcv_delta_t_per_link[link_id] = 0;
// 2. Disable links that have received packets too late
if (is_in_order (thunderc, link_id)) {
/*printf("Local: ");
for (int i = 0; i < thunderc->total_links; i++) {
printf("%ld ", thunderc->rcv_delta_t_per_link[i]);
}
printf("\n");
printf("Packet: ");
for (int i = 0; i < thunderc->total_links; i++) {
printf("%d ", li[i].delta_t);
}
printf("\n");*/
for (int i = 0; i < thunderc->total_links; i++) {
if (ALLOWED_JITTER_MS >= li[i].delta_t) continue;
if (li[i].delta_t - ALLOWED_JITTER_MS <= thunderc->rcv_delta_t_per_link[i]) continue;
struct block_info *bi = malloc(sizeof(struct block_info));
bi->i = i; bi->app_ctx = app_ctx; bi->missing = thunderc->received_pkts_on_link[i]+1;
//printf(" Packet Too Late - Blocked link %d (expected: at least %dms ago, received: %ldms ago)\n", i, li[i].delta_t - ALLOWED_JITTER_MS, thunderc->rcv_delta_t_per_link[i]);
on_block(ctx, bi);
}
}
// 3. Disable links that miss packets
for (uint8_t i = 0; i < thunderc->total_links; i++) {
uint64_t expected = i <= link_id ? thunderc->received_pkts_on_link[link_id] : thunderc->received_pkts_on_link[link_id] - 1;
if (thunderc->received_pkts_on_link[i] >= expected) continue; // Nothing to do, all packets have been received
int64_t timeout = ALLOWED_JITTER_MS - li[i].delta_t;
struct block_info *bi = malloc(sizeof(struct block_info));
bi->i = i; bi->app_ctx = app_ctx; bi->missing = expected;
if (timeout <= 0) {
on_block(ctx, bi);
//printf(" Missing Packet - Blocked link %d (expected: %ld, seen: %ld)\n", i, expected, thunderc->received_pkts_on_link[i]);
continue;
}
set_timeout (ctx, timeout, bi, on_block);
//printf(" Missing Packet - Triggered timeout for link %d in %ldms (expected: %ld, seen: %ld)\n", i, timeout, expected, thunderc->received_pkts_on_link[i]);
if (ctx->verbose > 1) {
fprintf(stderr, " [algo_thunder] Set timeout on link %d of %ld ms (packets expected: %ld, seen: %ld)\n",
i, timeout, expected, thunderc->received_pkts_on_link[i]);
}
}
if (ctx->verbose > 1) fprintf(stderr, " [algo_thunder] Classify done\n");
printf("Blacklisted links: ");
for (int i = 0; i < thunderc->total_links; i++) {
if (is_blacklisted (thunderc, i)) printf("_");
else printf("U");
}
printf("\n");
}
struct unpad_info {
union abstract_packet *ap_arr_pl[MAX_LINKS], *ap_arr_meta[MAX_LINKS];
uint8_t ap_arr_vals;
};
void unpad(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp, struct unpad_info *ui) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct thunder_ctx* thunderc = app_ctx->misc;
for (union abstract_packet* ap = buffer_first_ap (bp); ap != NULL; ap = ap_next(ap)) {
if (ap->fmt.headers.cmd != CMD_UDP_ENCAPSULATED) continue;
union abstract_packet* ap_meta = ap_next(ap);
if (ap_meta == NULL || ap_meta->fmt.headers.cmd != CMD_UDP_METADATA_THUNDER) {
fprintf(stderr, "Unexpected packet, expecting udp metadata\n");
}
if (ap_meta->fmt.content.udp_metadata_thunder.id > thunderc->recv_id) {
ui->ap_arr_pl[ui->ap_arr_vals] = ap;
ui->ap_arr_meta[ui->ap_arr_vals] = ap_meta;
ui->ap_arr_vals++;
}
}
if (ctx->verbose > 1) fprintf(stderr, " [algo_thunder] Unpad done\n");
}
void adapt(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp, struct unpad_info *ui) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct thunder_ctx* thunderc = app_ctx->misc;
char url[256];
struct evt_core_fdinfo *to_fdinfo = NULL;
uint64_t delivered = 0;
for (int i = ui->ap_arr_vals-1; i >= 0; i--) {
//fprintf(stderr, "i=%d, ui->ap_arr_vals=%d\n", i, ui->ap_arr_vals);
if (ui->ap_arr_meta[i]->fmt.content.udp_metadata_thunder.id <= thunderc->recv_id) continue;
thunderc->recv_id = ui->ap_arr_meta[i]->fmt.content.udp_metadata_thunder.id;
// Find destination
sprintf(url, "udp:write:127.0.0.1:%d", ui->ap_arr_pl[i]->fmt.content.udp_encapsulated.port);
to_fdinfo = evt_core_get_from_url (ctx, url);
if (to_fdinfo == NULL) {
fprintf(stderr, "No fd for URL %s in tcp-read. Dropping packet :( \n", url);
}
struct buffer_packet *bp_dest = inject_buffer_tow (&app_ctx->br, to_fdinfo);
bp_dest->mode = BP_WRITING;
//dump_buffer_packet (bp_dest);
buffer_append_ap (bp_dest, ui->ap_arr_pl[i]);
main_on_udp_write(ctx, to_fdinfo);
delivered++;
}
if (delivered != 1) {
//printf("[algo_thunder] Delivered %ld packets (now id=%d)\n", delivered, thunderc->recv_id);
}
mv_buffer_rtof (&app_ctx->br, fdinfo);
if (ctx->verbose > 1) fprintf(stderr, " [algo_thunder] Adapt done\n");
}
int algo_thunder_on_stream(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct unpad_info ui = {0};
classify(ctx, fdinfo, bp);
unpad(ctx, fdinfo, bp, &ui);
adapt(ctx, fdinfo, bp, &ui);
return 0;
}
int algo_thunder_on_datagram(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
prepare(ctx, fdinfo, bp);
pad(ctx, fdinfo, bp);
schedule(ctx, fdinfo, bp);
return 0;
}
void algo_thunder_free(void* v) {
struct rr_ctx* rr = v;
free(rr);
}
void algo_thunder_init(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx, struct algo_params* ap) {
app_ctx->misc = malloc(sizeof(struct thunder_ctx));
app_ctx->free_misc = algo_thunder_free;
if (app_ctx->misc == NULL) {
perror("malloc failed in algo thunder init");
exit(EXIT_FAILURE);
}
memset(app_ctx->misc, 0, sizeof(struct thunder_ctx));
struct thunder_ctx* thunderc = app_ctx->misc;
thunderc->recv_id = 1;
thunderc->emit_id = 1;
thunderc->total_links = app_ctx->ap.links;
thunderc->selected_link = thunderc->total_links - 1;
for (int i = 0; i < MAX_LINKS; i++) thunderc->received_pkts_on_link[i] = 1;
union abstract_packet links = {};
//fprintf(stderr, "Total links %d\n", thunderc->total_links);
thunderc->monit_pkt_size = sizeof(links.fmt.headers) + sizeof(links.fmt.content.link_monitoring_thunder) + sizeof(struct link_info) * (thunderc->total_links - 1);
init_timer(ctx);
}
int algo_thunder_on_err(struct evt_core_ctx *ctx, struct evt_core_fdinfo *fdinfo) {
if (strstr(fdinfo->cat->name, "udp") != NULL) return 1;
return 0;
}

View file

@ -14,6 +14,11 @@ void naive_free_simple(void* v) {
g_queue_free (g); g_queue_free (g);
} }
void __push_to_free(struct buffer_resources *app_ctx, struct buffer_packet* bp) {
memset(bp, 0, sizeof(struct buffer_packet));
g_queue_push_tail (app_ctx->free_buffer, bp);
}
void debug_buffer(struct buffer_resources *app_ctx, struct evt_core_fdinfo *fdinfo) { void debug_buffer(struct buffer_resources *app_ctx, struct evt_core_fdinfo *fdinfo) {
fprintf(stderr, "No more free buffer for fd=%d.\n", fdinfo->fd); fprintf(stderr, "No more free buffer for fd=%d.\n", fdinfo->fd);
int waiting_count = 0; int waiting_count = 0;
@ -34,8 +39,7 @@ void init_buffer_management(struct buffer_resources* ctx) {
ctx->used_buffer = g_hash_table_new(g_int_hash, g_int_equal); ctx->used_buffer = g_hash_table_new(g_int_hash, g_int_equal);
ctx->write_waiting = g_hash_table_new_full (g_int_hash, g_int_equal, NULL, naive_free_simple); ctx->write_waiting = g_hash_table_new_full (g_int_hash, g_int_equal, NULL, naive_free_simple);
for (int i = 0; i < sizeof(ctx->bps) / sizeof(ctx->bps[0]); i++) { for (int i = 0; i < sizeof(ctx->bps) / sizeof(ctx->bps[0]); i++) {
memset(&(ctx->bps[i]), 0, sizeof(struct buffer_packet)); __push_to_free (ctx, &(ctx->bps[i]));
g_queue_push_tail(ctx->free_buffer, &(ctx->bps[i]));
} }
} }
@ -73,11 +77,6 @@ struct buffer_packet* get_read_buffer(struct buffer_resources *app_ctx, struct e
return bp; return bp;
} }
void __push_to_free(struct buffer_resources *app_ctx, struct buffer_packet* bp) {
memset(bp, 0, sizeof(struct buffer_packet));
g_queue_push_tail (app_ctx->free_buffer, bp);
}
guint write_queue_len(struct buffer_resources *app_ctx, struct evt_core_fdinfo *fdinfo) { guint write_queue_len(struct buffer_resources *app_ctx, struct evt_core_fdinfo *fdinfo) {
GQueue* q; GQueue* q;
@ -104,8 +103,6 @@ struct buffer_packet* get_write_buffer(struct buffer_resources *app_ctx, struct
// 3. Update state // 3. Update state
g_hash_table_insert(app_ctx->used_buffer, &(fdinfo->fd), bp); g_hash_table_insert(app_ctx->used_buffer, &(fdinfo->fd), bp);
bp->mode = BP_WRITING;
bp->awrite = 0;
return bp; return bp;
} }
@ -210,7 +207,39 @@ void mv_buffer_atof(struct buffer_resources *app_ctx, void* from) {
__push_to_free (app_ctx, bp); __push_to_free (app_ctx, bp);
} }
struct buffer_packet* inject_buffer_tow(struct buffer_resources *app_ctx, struct evt_core_fdinfo* to) {
GQueue* q;
// 1. We get a free buffer
struct buffer_packet* bp_dest = g_queue_pop_head(app_ctx->free_buffer);
if (bp_dest == NULL) {
debug_buffer(app_ctx, to);
return NULL;
}
// 2. We get the target writing queue
q = g_hash_table_lookup(app_ctx->write_waiting, &(to->fd));
if (q == NULL) {
q = g_queue_new ();
g_hash_table_insert(app_ctx->write_waiting, &(to->fd), q);
}
// 3. We push the content to the appropriate destination
g_queue_push_tail(q, bp_dest);
return bp_dest;
}
struct buffer_packet* dup_buffer_tow(struct buffer_resources *app_ctx, struct buffer_packet* bp, struct evt_core_fdinfo* to) { struct buffer_packet* dup_buffer_tow(struct buffer_resources *app_ctx, struct buffer_packet* bp, struct evt_core_fdinfo* to) {
// 1. Inject a new buffer
struct buffer_packet* bp_dest = inject_buffer_tow (app_ctx, to);
// 2. We duplicate the data
memcpy(bp_dest, bp, sizeof(struct buffer_packet));
return bp_dest;
}
struct buffer_packet* dup_buffer_toa(struct buffer_resources *app_ctx, struct buffer_packet* bp, void* to) {
GQueue* q; GQueue* q;
// 1. We get a free buffer // 1. We get a free buffer
@ -223,15 +252,12 @@ struct buffer_packet* dup_buffer_tow(struct buffer_resources *app_ctx, struct bu
// 2. We duplicate the data // 2. We duplicate the data
memcpy(bp_dest, bp, sizeof(struct buffer_packet)); memcpy(bp_dest, bp, sizeof(struct buffer_packet));
// 3. We get the target writing queue // 3. We put the data
q = g_hash_table_lookup(app_ctx->write_waiting, &(to->fd)); if (g_hash_table_contains(app_ctx->application_waiting, to)) {
if (q == NULL) { fprintf(stderr, "Data already exists for this entry\n");
q = g_queue_new (); exit(EXIT_FAILURE);
g_hash_table_insert(app_ctx->write_waiting, &(to->fd), q);
} }
g_hash_table_insert(app_ctx->application_waiting, to, bp_dest);
// 4. We push the content to the appropriate destination
g_queue_push_tail(q, bp_dest);
return bp_dest; return bp_dest;
} }
@ -256,12 +282,3 @@ void notify_read(struct evt_core_ctx* ctx, struct buffer_resources* app_ctx) {
} }
} }
} }
int append_buffer(union abstract_packet* dest, int pos, union abstract_packet* src) {
char* target = &(dest->raw);
while (pos-- > 0) {
target += ((union abstract_packet*) target)->fmt.headers.size;
}
memcpy(target, src, src->fmt.headers.size);
return 0;
}

View file

@ -23,10 +23,11 @@ void mv_buffer_wtof(struct buffer_resources* app_ctx, struct evt_core_fdinfo* fr
void mv_buffer_rtoa(struct buffer_resources* app_ctx, struct evt_core_fdinfo* from, void* to); void mv_buffer_rtoa(struct buffer_resources* app_ctx, struct evt_core_fdinfo* from, void* to);
void mv_buffer_atow(struct buffer_resources* app_ctx, void* from, struct evt_core_fdinfo* to); void mv_buffer_atow(struct buffer_resources* app_ctx, void* from, struct evt_core_fdinfo* to);
void mv_buffer_atof(struct buffer_resources* app_ctx, void* from); void mv_buffer_atof(struct buffer_resources* app_ctx, void* from);
struct buffer_packet* dup_buffer_tow(struct buffer_resources* app_ctx, struct buffer_packet* bp, struct evt_core_fdinfo* to);
guint write_queue_len(struct buffer_resources *app_ctx, struct evt_core_fdinfo *fdinfo);
int append_buffer(union abstract_packet* dest, int pos, union abstract_packet* src); struct buffer_packet* inject_buffer_tow(struct buffer_resources *app_ctx, struct evt_core_fdinfo* to);
struct buffer_packet* dup_buffer_tow(struct buffer_resources* app_ctx, struct buffer_packet* bp, struct evt_core_fdinfo* to);
struct buffer_packet* dup_buffer_toa(struct buffer_resources* app_ctx, struct buffer_packet* bp, void* to);
guint write_queue_len(struct buffer_resources *app_ctx, struct evt_core_fdinfo *fdinfo);
struct buffer_packet* get_write_buffer(struct buffer_resources *app_ctx, struct evt_core_fdinfo *fdinfo); struct buffer_packet* get_write_buffer(struct buffer_resources *app_ctx, struct evt_core_fdinfo *fdinfo);
struct buffer_packet* get_read_buffer(struct buffer_resources *app_ctx, struct evt_core_fdinfo *fdinfo); struct buffer_packet* get_read_buffer(struct buffer_resources *app_ctx, struct evt_core_fdinfo *fdinfo);

View file

@ -9,11 +9,12 @@
#define MAX_PKTS_TO_CHECK_FOR_DROP 10 #define MAX_PKTS_TO_CHECK_FOR_DROP 10
uint8_t are_packets_equal(struct buffer_packet bpread[]) { uint8_t are_packets_equal(struct buffer_packet bpread[]) {
size_t s1 = bpread[0].ip.ap.fmt.headers.size, s2 = bpread[1].ip.ap.fmt.headers.size; union abstract_packet *ap1 = (union abstract_packet*)&bpread[0].ip, *ap2 = (union abstract_packet*) bpread[1].ip;
size_t s1 = ap1->fmt.headers.size, s2 = ap2->fmt.headers.size;
if (s1 != s2) return 0; if (s1 != s2) return 0;
for (size_t idx = sizeof(bpread[0].ip.ap.fmt.headers) + sizeof(bpread[0].ip.ap.fmt.content.clear) - sizeof(char); idx < s1; idx++) { for (size_t idx = &ap1->fmt.content.udp_encapsulated.payload - (char*)ap1; idx < s1; idx++) {
char e1 = (&bpread[0].ip.ap.raw)[idx], e2 = (&bpread[1].ip.ap.raw)[idx]; char e1 = (&ap1->raw)[idx], e2 = (&ap2->raw)[idx];
if (e1 != e2) return 0; if (e1 != e2) return 0;
} }
@ -41,7 +42,10 @@ void destroy_pkt_stats(gpointer data) {
} }
void update_stats(struct buffer_packet *bp, GHashTable* stat_elem) { void update_stats(struct buffer_packet *bp, GHashTable* stat_elem) {
gint port = bp->ip.ap.fmt.content.clear.port; union abstract_packet *ap = (union abstract_packet*)&bp->ip;
if (ap->fmt.headers.cmd != CMD_UDP_ENCAPSULATED) return;
gint port = ap->fmt.content.udp_encapsulated.port;
struct pkt_stats *ps = g_hash_table_lookup(stat_elem, &port); struct pkt_stats *ps = g_hash_table_lookup(stat_elem, &port);
if (ps == NULL) { if (ps == NULL) {
ps = malloc(sizeof(struct pkt_stats)); ps = malloc(sizeof(struct pkt_stats));
@ -57,7 +61,7 @@ void update_stats(struct buffer_packet *bp, GHashTable* stat_elem) {
} }
ps->last = bp->seen; ps->last = bp->seen;
ps->count++; ps->count++;
ps->cumulated_size += bp->ip.ap.fmt.headers.size; ps->cumulated_size += ap->fmt.headers.size;
} }
void unroll_packets(struct cap_file cf[], struct buffer_packet bpread[], GHashTable* stats[], struct pkt_reconstruct *pr, int m, int i) { void unroll_packets(struct cap_file cf[], struct buffer_packet bpread[], GHashTable* stats[], struct pkt_reconstruct *pr, int m, int i) {

View file

@ -11,7 +11,9 @@ void get_ports(struct cap_file *cf) {
size_t entry_count = cap_count_bp (cf); size_t entry_count = cap_count_bp (cf);
for (int c = 0; c < entry_count; c++) { for (int c = 0; c < entry_count; c++) {
cap_next_bp (cf, &bp); cap_next_bp (cf, &bp);
int a = bp.ip.ap.fmt.content.clear.port; union abstract_packet* ap = (union abstract_packet*) &bp.ip;
if (ap->fmt.headers.cmd != CMD_UDP_ENCAPSULATED) continue;
int a = ap->fmt.content.udp_encapsulated.port;
} }
cap_begin(cf); cap_begin(cf);
} }

View file

@ -28,7 +28,7 @@ int on_signal(struct evt_core_ctx* evts, struct evt_core_fdinfo* fdinfo) {
} }
void signal_init(struct evt_core_ctx* evts) { void signal_init(struct evt_core_ctx* evts) {
sigset_t mask; sigset_t mask = {0};
struct evt_core_cat signal_read = { struct evt_core_cat signal_read = {
.name = "signal-read", .name = "signal-read",

View file

@ -1,48 +1,117 @@
#include "packet.h" #include "packet.h"
size_t get_full_size(struct buffer_packet* bp) { int ap_exists(union abstract_packet* ap) {
union abstract_packet* ap = &bp->ip.ap; return ap->fmt.headers.cmd != 0;
for (int i = 0; i < bp->ap_count; i++) {
ap = (union abstract_packet*)(&ap->raw + ap->fmt.headers.size);
}
return &ap->raw - &bp->ip.ap.raw;
} }
enum FD_STATE read_packet_from_tcp(int fd, struct buffer_packet* bp) { int buffer_has_ap(struct buffer_packet* bp) {
ssize_t nread; return ap_exists(buffer_first_ap (bp));
size_t pkt_size_size = sizeof(bp->ip.ap.fmt.headers.size); }
union abstract_packet* ap_next(union abstract_packet* ap) {
if (ap_exists (ap) && ap->fmt.headers.flags & FLAG_READ_NEXT)
return (union abstract_packet*)(&ap->raw + ap->fmt.headers.size);
return NULL;
}
union abstract_packet* buffer_first_ap(struct buffer_packet* bp) {
return (union abstract_packet*) &bp->ip;
}
union abstract_packet* buffer_last_ap(struct buffer_packet* bp) {
union abstract_packet* ap = buffer_first_ap (bp), *apn = NULL;
while ((apn = ap_next(ap)) != NULL) ap = apn;
return ap;
}
union abstract_packet* buffer_free_ap(struct buffer_packet* bp) {
union abstract_packet* ap = buffer_last_ap (bp);
ap = (union abstract_packet*)(&ap->raw + ap->fmt.headers.size);
return ap;
}
size_t buffer_count_ap(struct buffer_packet* bp) {
size_t s = 1;
union abstract_packet* ap = (union abstract_packet*) &bp->ip;
while ((ap = ap_next(ap)) != NULL) s++;
return s;
}
size_t buffer_full_size(struct buffer_packet* bp) {
return &(buffer_free_ap (bp))->raw - &bp->ip[0];
}
union abstract_packet* buffer_append_ap(struct buffer_packet* bp, union abstract_packet* ap) {
if (buffer_has_ap (bp))
buffer_last_ap(bp)->fmt.headers.flags |= FLAG_READ_NEXT;
union abstract_packet *new_ap = buffer_last_ap(bp);
memcpy(new_ap, ap, ap->fmt.headers.size);
bp->ap_count++;
new_ap->fmt.headers.flags &= ~FLAG_READ_NEXT;
return new_ap;
}
enum FD_STATE read_packet_from_tcp(struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
ssize_t nread = 0, ap_aread = 0, cur_ap_aread = 0;
union abstract_packet* ap = buffer_first_ap (bp);
size_t pkt_size_size = sizeof(ap->fmt.headers.size);
if (bp->mode != BP_READING) return FDS_ERR; if (bp->mode != BP_READING) return FDS_ERR;
while (bp->aread < pkt_size_size) { //fprintf(stderr, "Entering read_packet_from_tcp\n");
nread = read(fd, &(bp->ip.ap.raw) + bp->aread, pkt_size_size - bp->aread); do {
//fprintf(stderr, "bp->ap_count=%d\n", bp->ap_count);
ap = buffer_first_ap (bp);
ap_aread = 0;
for (int i = 0; i < bp->ap_count; i++) {
ap_aread += ap->fmt.headers.size;
ap = ap_next (ap);
}
cur_ap_aread = bp->aread - ap_aread;
//fprintf(stderr, "[size] bp_aread=%d, prev_ap_aread=%ld, cur_ap_aread=%ld\n", bp->aread, ap_aread, cur_ap_aread);
while (cur_ap_aread < pkt_size_size) {
nread = read(fdinfo->fd, &(ap->raw) + cur_ap_aread, pkt_size_size - cur_ap_aread);
if (nread == 0) return FDS_AGAIN; if (nread == 0) return FDS_AGAIN;
if (nread == -1 && errno == EAGAIN) return FDS_AGAIN; if (nread == -1 && errno == EAGAIN) return FDS_AGAIN;
if (nread == -1) return FDS_ERR; if (nread == -1) return FDS_ERR;
bp->aread += nread; bp->aread += nread;
cur_ap_aread += nread;
} }
while (bp->aread < bp->ip.ap.fmt.headers.size) { //fprintf(stderr, "[content] bp_aread=%d, prev_ap_aread=%ld, cur_ap_aread=%ld\n", bp->aread, ap_aread, cur_ap_aread);
nread = read(fd, &(bp->ip.ap.raw) + bp->aread, bp->ip.ap.fmt.headers.size - bp->aread); while (cur_ap_aread < ap->fmt.headers.size) {
nread = read(fdinfo->fd, &(ap->raw) + cur_ap_aread, ap->fmt.headers.size - cur_ap_aread);
if (nread == 0) return FDS_AGAIN; if (nread == 0) return FDS_AGAIN;
if (nread == -1 && errno == EAGAIN) return FDS_AGAIN; if (nread == -1 && errno == EAGAIN) return FDS_AGAIN;
if (nread == -1) return FDS_ERR; if (nread == -1) return FDS_ERR;
bp->aread += nread; bp->aread += nread;
cur_ap_aread += nread;
} }
bp->ap_count++;
//fprintf(stderr, "bp->ap_count=%d, buffer_count_ap(bp)=%ld\n", bp->ap_count, buffer_count_ap (bp));
//dump_buffer_packet (bp);
} while (bp->ap_count != buffer_count_ap (bp));
bp->mode = BP_WRITING; bp->mode = BP_WRITING;
bp->awrite = 0; bp->awrite = 0;
bp->ap_count = 1;
return FDS_READY; return FDS_READY;
} }
enum FD_STATE write_packet_to_tcp(int fd, struct buffer_packet* bp) { enum FD_STATE write_packet_to_tcp(struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
ssize_t nwrite; ssize_t nwrite;
union abstract_packet* ap = (union abstract_packet*) &bp->ip;
//dump_buffer_packet (bp); //dump_buffer_packet (bp);
if (bp->mode != BP_WRITING) return FDS_ERR; if (bp->mode != BP_WRITING) return FDS_ERR;
while (bp->awrite < get_full_size(bp)) { while (bp->awrite < buffer_full_size(bp)) {
nwrite = send(fd, &(bp->ip.ap.raw) + bp->awrite, get_full_size(bp) - bp->awrite, 0); nwrite = send(fdinfo->fd, &(ap->raw) + bp->awrite, buffer_full_size(bp) - bp->awrite, 0);
if (nwrite == -1 && errno == EAGAIN) return FDS_AGAIN; if (nwrite == -1 && errno == EAGAIN) return FDS_AGAIN;
if (nwrite == -1) return FDS_ERR; if (nwrite == -1) return FDS_ERR;
bp->awrite += nwrite; bp->awrite += nwrite;
@ -54,11 +123,16 @@ enum FD_STATE write_packet_to_tcp(int fd, struct buffer_packet* bp) {
return FDS_READY; return FDS_READY;
} }
enum FD_STATE write_packet_to_udp(int fd, struct buffer_packet* bp, struct udp_target* udp_t) { enum FD_STATE write_packet_to_udp(struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp, struct udp_target* udp_t) {
ssize_t nwrite; ssize_t nwrite;
union abstract_packet* ap = (union abstract_packet*) (&bp->ip + bp->awrite);
if (bp->mode != BP_WRITING) return FDS_ERR;
do {
if (ap->fmt.headers.cmd != CMD_UDP_ENCAPSULATED) continue;
size_t bytes_to_send; size_t bytes_to_send;
assert(bp->ip.ap.fmt.headers.cmd == CMD_CLEAR); size_t pkt_header_size = sizeof(ap->fmt.headers) + sizeof(ap->fmt.content.udp_encapsulated) - sizeof(ap->fmt.content.udp_encapsulated.payload);
size_t pkt_header_size = sizeof(bp->ip.ap.fmt.headers) + sizeof(bp->ip.ap.fmt.content.clear) - sizeof(char);
struct sockaddr* addr = NULL; struct sockaddr* addr = NULL;
socklen_t addrlen = 0; socklen_t addrlen = 0;
if (udp_t->set) { if (udp_t->set) {
@ -66,11 +140,9 @@ enum FD_STATE write_packet_to_udp(int fd, struct buffer_packet* bp, struct udp_t
addrlen = sizeof(struct sockaddr_in); addrlen = sizeof(struct sockaddr_in);
} }
if (bp->mode != BP_WRITING) return FDS_ERR; bytes_to_send = ap->fmt.headers.size - pkt_header_size;
nwrite = sendto(fdinfo->fd,
bytes_to_send = bp->ip.ap.fmt.headers.size - pkt_header_size; &(ap->fmt.content.udp_encapsulated.payload),
nwrite = sendto(fd,
&(bp->ip.ap.fmt.content.clear.payload),
bytes_to_send, bytes_to_send,
0, 0,
addr, addr,
@ -78,6 +150,9 @@ enum FD_STATE write_packet_to_udp(int fd, struct buffer_packet* bp, struct udp_t
if (nwrite == -1 && errno == EAGAIN) return FDS_AGAIN; if (nwrite == -1 && errno == EAGAIN) return FDS_AGAIN;
if (nwrite != bytes_to_send) return FDS_ERR; if (nwrite != bytes_to_send) return FDS_ERR;
bp->awrite += nwrite;
} while((ap = ap_next(ap)) != NULL);
bp->mode = BP_READING; bp->mode = BP_READING;
bp->aread = 0; bp->aread = 0;
@ -86,19 +161,21 @@ enum FD_STATE write_packet_to_udp(int fd, struct buffer_packet* bp, struct udp_t
return FDS_READY; return FDS_READY;
} }
enum FD_STATE read_packet_from_udp (int fd, struct buffer_packet* bp, struct udp_target* udp_t) { enum FD_STATE read_packet_from_udp (struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp, struct udp_target* udp_t) {
ssize_t nread; ssize_t nread;
union abstract_packet* ap = (union abstract_packet*) &bp->ip;
if (bp->mode != BP_READING) { if (bp->mode != BP_READING) {
fprintf(stderr, "Buffer packet is not in reading mode (mode: %d)\n", bp->mode); fprintf(stderr, "Buffer packet is not in reading mode (mode: %d)\n", bp->mode);
return FDS_ERR; return FDS_ERR;
} }
size_t pkt_header_size = sizeof(bp->ip.ap.fmt.headers) + sizeof(bp->ip.ap.fmt.content.clear) - sizeof(char); // We remove the payload size_t pkt_header_size = sizeof(ap->fmt.headers) + sizeof(ap->fmt.content.udp_encapsulated) - sizeof(ap->fmt.content.udp_encapsulated.payload);
size_t udp_packet_size = sizeof(struct internet_packet) - pkt_header_size; size_t udp_packet_size = sizeof(bp->ip) - pkt_header_size;
socklen_t addrlen = sizeof(struct sockaddr_in); socklen_t addrlen = sizeof(struct sockaddr_in);
nread = recvfrom(fd, nread = recvfrom(fdinfo->fd,
&(bp->ip.ap.fmt.content.clear.payload), &(ap->fmt.content.udp_encapsulated.payload),
udp_packet_size, udp_packet_size,
MSG_TRUNC, MSG_TRUNC,
(struct sockaddr*)&udp_t->addr, (struct sockaddr*)&udp_t->addr,
@ -117,8 +194,9 @@ enum FD_STATE read_packet_from_udp (int fd, struct buffer_packet* bp, struct udp
udp_t->set = 1; udp_t->set = 1;
udp_t->addrlen = addrlen; udp_t->addrlen = addrlen;
bp->ip.ap.fmt.headers.size = nread + pkt_header_size; ap->fmt.headers.size = nread + pkt_header_size;
bp->ip.ap.fmt.headers.cmd = CMD_CLEAR; ap->fmt.headers.cmd = CMD_UDP_ENCAPSULATED;
ap->fmt.content.udp_encapsulated.port = url_get_port_int (fdinfo->url);
bp->mode = BP_WRITING; bp->mode = BP_WRITING;
bp->awrite = 0; bp->awrite = 0;
@ -129,11 +207,9 @@ enum FD_STATE read_packet_from_udp (int fd, struct buffer_packet* bp, struct udp
void dump_buffer_packet(struct buffer_packet* bp) { void dump_buffer_packet(struct buffer_packet* bp) {
printf("<Buffer Packet>\n"); printf("<Buffer Packet>\n");
printf(" mode=%d, aread=%d, awrite=%d, ap_count=%d, usage=%ld/%ld\n", bp->mode, bp->aread, bp->awrite, bp->ap_count, get_full_size (bp), sizeof(struct internet_packet)); printf(" mode=%d, aread=%d, awrite=%d, ap_count=%d, usage=%ld/%ld\n", bp->mode, bp->aread, bp->awrite, bp->ap_count, buffer_full_size (bp), sizeof(bp->ip));
union abstract_packet* ap = &bp->ip.ap; for (union abstract_packet* ap = buffer_first_ap (bp); ap != NULL; ap = ap_next (ap)) {
for (int i = 0; i < bp->ap_count; i++) {
dump_abstract_packet(ap); dump_abstract_packet(ap);
ap = (union abstract_packet*)(&ap->raw + ap->fmt.headers.size);
} }
printf("</Buffer Packet>\n"); printf("</Buffer Packet>\n");
} }
@ -142,21 +218,15 @@ void dump_abstract_packet(union abstract_packet* ap) {
printf(" <Abstract Packet>\n"); printf(" <Abstract Packet>\n");
printf(" size=%d, cmd=%d\n", ap->fmt.headers.size, ap->fmt.headers.cmd); printf(" size=%d, cmd=%d\n", ap->fmt.headers.size, ap->fmt.headers.cmd);
switch (ap->fmt.headers.cmd) { switch (ap->fmt.headers.cmd) {
case CMD_HEALTH: case CMD_LINK_MONITORING_THUNDER:
printf(" <Health>id=%d, deltat=%d, prevlink=%d, min_blocked_pkt=%d, bitfield=%02x</Health>\n", printf(" <LinkMonitoringThunder></LinkMonitoringThunder>\n");
ap->fmt.content.health.id,
ap->fmt.content.health.deltat,
ap->fmt.content.health.prevlink,
ap->fmt.content.health.min_blocked_pkt,
ap->fmt.content.health.bitfield);
break; break;
case CMD_CLEAR: case CMD_UDP_METADATA_THUNDER:
printf(" <Clear>id=%d, port=%d</Clear>\n", printf(" <UdpMetadataThunder>id=%d</UdpMetadataThunder>\n",
ap->fmt.content.clear.id, ap->fmt.content.udp_metadata_thunder.id);
ap->fmt.content.clear.port);
break; break;
case CMD_XOR: case CMD_UDP_ENCAPSULATED:
printf(" <Xor>Unimplemented</Xor>\n"); printf(" <Payload>port=%d</Payload>\n", ap->fmt.content.udp_encapsulated.port);
break; break;
default: default:
printf(" <Unknown/>\n"); printf(" <Unknown/>\n");

View file

@ -9,6 +9,8 @@
#include <errno.h> #include <errno.h>
#include <netinet/in.h> #include <netinet/in.h>
#include <arpa/inet.h> #include <arpa/inet.h>
#include "evt_core.h"
#include "url.h"
/* /*
* man 7 udp about receive operation on UDP sockets: * man 7 udp about receive operation on UDP sockets:
@ -30,9 +32,18 @@ enum BP_MODE {
}; };
enum PKT_CMD { enum PKT_CMD {
CMD_HEALTH, CMD_UDP_ENCAPSULATED = 1,
CMD_CLEAR, CMD_LINK_MONITORING_THUNDER = 2,
CMD_XOR CMD_UDP_METADATA_THUNDER = 3,
};
enum PKT_FLAGS {
FLAG_READ_NEXT = 1 << 0,
FLAG_RESET = 1 << 1,
};
struct link_info {
uint16_t delta_t;
}; };
union abstract_packet { union abstract_packet {
@ -40,38 +51,32 @@ union abstract_packet {
struct { struct {
struct { struct {
uint16_t size; uint16_t size;
enum PKT_CMD cmd; uint8_t cmd;
uint8_t flags;
} headers; } headers;
union { union {
struct { struct {
uint16_t id; struct link_info links_status;
uint8_t bitfield; } link_monitoring_thunder;
uint8_t prevlink;
uint16_t deltat;
uint16_t min_blocked_pkt;
} health;
struct { struct {
uint16_t id; uint16_t id;
} udp_metadata_thunder;
struct {
uint16_t port; uint16_t port;
char payload; char payload;
} clear; } udp_encapsulated;
} content; } content;
} fmt; } fmt;
}; };
struct internet_packet {
union abstract_packet ap;
char rest[1499]; // MTU = 1500, 1 byte in the union as payload
};
struct buffer_packet { struct buffer_packet {
enum BP_MODE mode; enum BP_MODE mode;
uint8_t ap_count; uint8_t ap_count;
uint16_t aread; uint16_t aread;
uint16_t awrite; uint16_t awrite;
struct timespec seen; struct timespec seen;
struct internet_packet ip; char ip[1500];
}; };
struct udp_target { struct udp_target {
@ -83,10 +88,17 @@ struct udp_target {
size_t get_full_size(struct buffer_packet* bp); size_t get_full_size(struct buffer_packet* bp);
enum FD_STATE read_packet_from_tcp(int fd, struct buffer_packet* bp); union abstract_packet* buffer_append_ap(struct buffer_packet* bp, union abstract_packet* ap);
enum FD_STATE write_packet_to_tcp(int fd, struct buffer_packet* bp); union abstract_packet* buffer_free_ap(struct buffer_packet* bp);
enum FD_STATE write_packet_to_udp(int fd, struct buffer_packet* bp, struct udp_target* udp_t); union abstract_packet* buffer_first_ap(struct buffer_packet* bp);
enum FD_STATE read_packet_from_udp (int fd, struct buffer_packet* bp, struct udp_target* udp_t); union abstract_packet* buffer_last_ap(struct buffer_packet* bp);
size_t buffer_full_size(struct buffer_packet* bp);
union abstract_packet* ap_next(union abstract_packet* ap);
enum FD_STATE read_packet_from_tcp(struct evt_core_fdinfo* fd, struct buffer_packet* bp);
enum FD_STATE write_packet_to_tcp(struct evt_core_fdinfo* fd, struct buffer_packet* bp);
enum FD_STATE write_packet_to_udp(struct evt_core_fdinfo* fd, struct buffer_packet* bp, struct udp_target* udp_t);
enum FD_STATE read_packet_from_udp (struct evt_core_fdinfo* fd, struct buffer_packet* bp, struct udp_target* udp_t);
void dump_buffer_packet(struct buffer_packet* bp); void dump_buffer_packet(struct buffer_packet* bp);
void dump_abstract_packet(union abstract_packet* ap); void dump_abstract_packet(union abstract_packet* ap);

View file

@ -48,7 +48,7 @@ int main_on_tcp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
if (ctx->verbose > 1) fprintf(stderr, " [proxy] Try to read a whole packet in the buffer\n"); if (ctx->verbose > 1) fprintf(stderr, " [proxy] Try to read a whole packet in the buffer\n");
while (bp->mode == BP_READING) { while (bp->mode == BP_READING) {
read_res = read_packet_from_tcp (fdinfo->fd, bp); read_res = read_packet_from_tcp (fdinfo, bp);
if (read_res == FDS_ERR) goto co_error; if (read_res == FDS_ERR) goto co_error;
if (read_res == FDS_AGAIN) return 1; if (read_res == FDS_AGAIN) return 1;
} }
@ -72,8 +72,7 @@ int main_on_udp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
if ((bp = get_read_buffer(&app_ctx->br, fdinfo)) == NULL) return 1; if ((bp = get_read_buffer(&app_ctx->br, fdinfo)) == NULL) return 1;
// 2. Read packet from socket // 2. Read packet from socket
bp->ip.ap.fmt.content.clear.port = url_get_port_int (fdinfo->url); read_res = read_packet_from_udp (fdinfo, bp, fdinfo->other);
read_res = read_packet_from_udp (fdinfo->fd, bp, fdinfo->other);
if (read_res == FDS_ERR) goto co_error; if (read_res == FDS_ERR) goto co_error;
if (read_res == FDS_AGAIN) return 1; if (read_res == FDS_AGAIN) return 1;
@ -105,7 +104,7 @@ int main_on_tcp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo)
// 2. Write data from the buffer to the socket // 2. Write data from the buffer to the socket
while (bp->mode == BP_WRITING) { while (bp->mode == BP_WRITING) {
write_res = write_packet_to_tcp(fdinfo->fd, bp); write_res = write_packet_to_tcp(fdinfo, bp);
if (write_res == FDS_ERR) goto co_error; if (write_res == FDS_ERR) goto co_error;
if (write_res == FDS_AGAIN) return 1; if (write_res == FDS_AGAIN) return 1;
} }
@ -128,18 +127,22 @@ int main_on_udp_write (struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo)
int write_res = FDS_READY; int write_res = FDS_READY;
// 1. Get current write buffer OR a buffer from the waiting queue OR leave // 1. Get current write buffer OR a buffer from the waiting queue OR leave
if (ctx->verbose > 1) fprintf(stderr, " [proxy] Find write buffer\n");
if ((bp = get_write_buffer(&app_ctx->br, fdinfo)) == NULL) return 1; if ((bp = get_write_buffer(&app_ctx->br, fdinfo)) == NULL) return 1;
// 2. Write buffer // 2. Write buffer
write_res = write_packet_to_udp(fdinfo->fd, bp, fdinfo->other); if (ctx->verbose > 1) fprintf(stderr, " [proxy] Write UDP packet\n");
write_res = write_packet_to_udp(fdinfo, bp, fdinfo->other);
if (write_res == FDS_ERR) goto co_error; if (write_res == FDS_ERR) goto co_error;
if (write_res == FDS_AGAIN) return 1; if (write_res == FDS_AGAIN) return 1;
// 3. Notify helpers // 3. Notify helpers
if (ctx->verbose > 1) fprintf(stderr, " [proxy] Notify traffic capture\n");
traffic_capture_notify (&app_ctx->cap, bp, "out"); traffic_capture_notify (&app_ctx->cap, bp, "out");
// 4. A whole packet has been written // 4. A whole packet has been written
// Release the buffer and notify // Release the buffer and notify
if (ctx->verbose > 1) fprintf(stderr, " [proxy] Release buffer and notify\n");
mv_buffer_wtof(&app_ctx->br, fdinfo); mv_buffer_wtof(&app_ctx->br, fdinfo);
notify_read(ctx, &app_ctx->br); notify_read(ctx, &app_ctx->br);

View file

@ -50,16 +50,16 @@ int algo_naive_on_stream(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdin
int algo_naive_on_datagram(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp); int algo_naive_on_datagram(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp);
int algo_naive_on_err(struct evt_core_ctx *ctx, struct evt_core_fdinfo *fdinfo); int algo_naive_on_err(struct evt_core_ctx *ctx, struct evt_core_fdinfo *fdinfo);
void algo_rr_init(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx, struct algo_params* ap);
int algo_rr_on_stream(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp);
int algo_rr_on_datagram(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp);
int algo_rr_on_err(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
void algo_dup2_init(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx, struct algo_params* ap); void algo_dup2_init(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx, struct algo_params* ap);
int algo_dup2_on_stream(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp); int algo_dup2_on_stream(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp);
int algo_dup2_on_datagram(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp); int algo_dup2_on_datagram(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp);
int algo_dup2_on_err(struct evt_core_ctx *ctx, struct evt_core_fdinfo *fdinfo); int algo_dup2_on_err(struct evt_core_ctx *ctx, struct evt_core_fdinfo *fdinfo);
void algo_thunder_init(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx, struct algo_params* ap);
int algo_thunder_on_stream(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp);
int algo_thunder_on_datagram(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp);
int algo_thunder_on_err(struct evt_core_ctx *ctx, struct evt_core_fdinfo *fdinfo);
static struct algo_desc available_algo[] = { static struct algo_desc available_algo[] = {
{ {
.name = "naive", .name = "naive",
@ -68,19 +68,19 @@ static struct algo_desc available_algo[] = {
.on_datagram = algo_naive_on_datagram, .on_datagram = algo_naive_on_datagram,
.on_err = algo_naive_on_err .on_err = algo_naive_on_err
}, },
{
.name = "rr",
.init = algo_rr_init,
.on_stream = algo_rr_on_stream,
.on_datagram = algo_rr_on_datagram,
.on_err = algo_rr_on_err
},
{ {
.name = "dup2", .name = "dup2",
.init = algo_dup2_init, .init = algo_dup2_init,
.on_stream = algo_dup2_on_stream, .on_stream = algo_dup2_on_stream,
.on_datagram = algo_dup2_on_datagram, .on_datagram = algo_dup2_on_datagram,
.on_err = algo_dup2_on_err .on_err = algo_dup2_on_err
},
{
.name = "thunder",
.init = algo_thunder_init,
.on_stream = algo_thunder_on_stream,
.on_datagram = algo_thunder_on_datagram,
.on_err = algo_thunder_on_err
} }
}; };