From a319c3d9be2d301ee8bd507751a3176c4c3bfa57 Mon Sep 17 00:00:00 2001 From: Quentin Dufour Date: Wed, 27 Nov 2019 16:08:44 +0100 Subject: [PATCH] Update Tor conf --- r/config_light.R | 201 +++++++++++++++++++++++++++++++++++++++++- r/thunder_configure.R | 36 ++++---- src/meas_lat.c | 2 +- torrc_simple | 5 ++ 4 files changed, 223 insertions(+), 21 deletions(-) diff --git a/r/config_light.R b/r/config_light.R index efae1d5..03c8a4d 100644 --- a/r/config_light.R +++ b/r/config_light.R @@ -46,7 +46,7 @@ f$strat <- revalue(f$strat, c("1"="T", "0"="D")) f$fast_count <- as.factor(f$fast_count) f$percentile <-factor(f$percentile,levels=c("MAX", "P99.9", "P99", "P75", "P50", "P25", "P1", "P0.1", "MIN")) f <- f %>% mutate (lat = latency / 1000) -gf <- ggplot(sqldf("select * from f where percentile != 'MAX' and percentile != 'D1' and percentile != 'D0.1'") %>% arrange(percentile), aes(x=strat:fast_count,y=lat,group=percentile,fill=percentile)) + +gf <- ggplot(sqldf("select * from f where percentile != 'MAX' and percentile != 'P1' and percentile != 'P0.1'") %>% arrange(percentile), aes(x=strat:fast_count,y=lat,group=percentile,fill=percentile)) + geom_bar(stat='identity', position='identity') + scale_fill_grey() + geom_hline(yintercept = 200) + @@ -57,7 +57,7 @@ gf <- ggplot(sqldf("select * from f where percentile != 'MAX' and percentile != labs(fill="Percentile") + theme_classic() -plot_grid(gd, ge, gf, ncol=1) + ggsave("light_config.png", dpi=300, dev='png', height=17, width=15, units="cm") +plot_grid(gd, ge, gf, ncol=1) + ggsave("light_config.pdf", dpi=300, dev='pdf', height=17, width=15, units="cm") g <- read.csv("../../donar-res/tmp_light/guards.csv") g$strat <- as.factor(g$strat) @@ -75,7 +75,204 @@ gg <- ggplot(sqldf("select * from g where percentile != 'MAX' and percentile != coord_cartesian(ylim=c(0,600)) + ylab("Latency (ms)") + xlab("Strategy:Guards") + + labs(fill="Percentile") + theme_classic() gg + ggsave("light_guards.png", dpi=300, dev='png', height=7, width=15, units="cm") +h <- read.csv("../../donar-res/tmp_light/complem.csv") +h$strat <- revalue(h$strat, c("ticktock"="T", "duplicate"="D")) +h$percentile <-factor(h$percentile,levels=c("MAX", "P99.9", "P99", "P75", "P50", "P25", "P1", "P0.1", "MIN")) +h$mode <- factor(h$mode, levels=c("no_redundancy", "no_scheduler", "donar")) +h$mode <- revalue(h$mode, c("no_redundancy" = "scheduler", "no_scheduler" = "padding", "donar"="both")) +h <- h %>% mutate (lat = latency / 1000) +gh <- ggplot(sqldf("select * from h where percentile != 'MAX' and percentile != 'P1' and percentile != 'P0.1' ") %>% arrange(percentile), aes(x=strat:mode,y=lat,group=percentile,fill=percentile)) + + geom_bar(stat='identity', position='identity') + + scale_fill_grey() + + geom_hline(yintercept = 200) + + geom_hline(yintercept = 400) + + coord_cartesian(ylim=c(0,500)) + + ylab("Latency (ms)") + + xlab("Strategy:Feature") + + labs(fill="Percentile") + + theme_classic() +gh + ggsave("light_complementary.png", dpi=300, dev='png', height=7, width=15, units="cm") + +i <- read.csv("../../donar-res/tmp_light/battle.csv") +i$percentile <- revalue(i$percentile, c("MAX" = "100%", "P99.9"="99.9%", "P99"="99%", "P75" = "75%", "P50"="50%","P25"="25%","P1"="1%","P0.1"="0.1%","MIN"="0%")) +i$percentile <-factor(i$percentile,levels=c("100%", "99.9%", "99%", "75%", "50%", "25%", "1%", "0.1%", "0%")) +i <- i %>% mutate (lat = latency / 1000) +i$secmode <- factor(i$secmode, levels=c("hardened", "default", "light")) +i$algo <- factor(i$algo, levels=c("simple", "dup2", "lightning-ticktock", "lightning-dup")) +i$algo <- revalue(i$algo, c("dup2"="torfone", "simple"="simple", "lightning-ticktock"="donar-ticktock", "lightning-dup"="donar-dup")) +gi <- ggplot(sqldf("select * from i where percentile != '100%' and percentile != '1%' and percentile != '0.1%' and secmode = 'default' ") %>% arrange(percentile), aes(x=algo,y=lat,group=percentile,fill=percentile)) + + geom_bar(stat='identity', position='identity',width=1) + + #scale_fill_grey() + + scale_y_continuous(expand = c(0, 0)) + + scale_x_discrete(expand = c(0, 0)) + + scale_fill_viridis_d() + + geom_hline(yintercept = 200) + + geom_hline(yintercept = 400) + + coord_cartesian(ylim=c(0,600)) + + ylab("Latency (ms)") + + xlab("Algorithm") + + labs(fill="Distribution") +#, title="linear scale, zoomed") + + theme_classic() + + theme(axis.text.x = element_text(angle = 10, hjust=1), plot.margin = unit(c(0.3,0.2,0.2,1), "cm")) +gibis <- ggplot(sqldf("select * from i where percentile != 'MAX' and percentile != 'P1' and percentile != 'P0.1' ") %>% arrange(percentile), aes(x=algo:secmode,y=lat,group=percentile,fill=percentile)) + + geom_bar(stat='identity', position='identity') + + scale_fill_grey() + + scale_y_log10() + + #geom_hline(yintercept = 200) + + #geom_hline(yintercept = 400) + + coord_cartesian(ylim=c(100,250000)) + + ylab("Latency (ms)") + + xlab("Algorithm:Security Profile") + + labs(fill="Percentile", title="log scale, full") + + theme_classic() + + theme(axis.text.x = element_text(angle = 20, hjust=1), plot.margin = unit(c(0.2,0.2,0.2,1), "cm")) + +plot_grid(gibis, gi, ncol=1) + ggsave("light_battle.png", dpi=300, dev='png', height=12, width=15, units="cm") + +gi + ggsave("battle_color.pdf", dpi=300, dev='pdf', height=7, width=12, units='cm') + +fastprobe = read.csv(text= +" +group,pad,count,strat +fast,orig,0.47348781884198304,ticktock +fast,pad,0.2629428441715532,ticktock +probe,orig,0.23705662669600178,ticktock +probe,pad,0.026512710290461965,ticktock +probe,orig,0.1154165656941915,duplicate +probe,pad,0.015345347029610245,duplicate +fast,orig,0.7349205324574037,duplicate +fast,pad,0.13431755481879454,duplicate +") +gj <- ggplot(fastprobe, aes(x=group:pad, y=count, fill=strat)) + + geom_bar(stat='identity', position='dodge') + + scale_fill_grey() + + ylab("Count") + + xlab("Group:Padding") + + labs(fill="Strategy") + + scale_y_continuous(labels = scales::percent) + + theme_classic() + + theme(axis.text.x = element_text(angle = 20, hjust=1)) +gj + ggsave("light_fastprobe.png", dpi=300, dev='png', height=7, width=15, units="cm") + +fastlinks = read.csv(text= +" +link_count,occ_count,strat +5,0,ticktock +9,0.20634920634920634,ticktock +8,0.25396825396825395,ticktock +7,0.1111111111111111,ticktock +6,0.1746031746031746,ticktock +10,0.1746031746031746,ticktock +11,0.07936507936507936,ticktock +12,0,ticktock +9,0.19047619047619047,duplicate +8,0.14285714285714285,duplicate +10,0.20634920634920634,duplicate +7,0.09523809523809523,duplicate +6,0.09523809523809523,duplicate +11,0.14285714285714285,duplicate +5,0.015873015873015872,duplicate +12,0.1111111111111111,duplicate +") +gk <- ggplot(fastlinks, aes(x=link_count, y=occ_count, fill=strat)) + + geom_bar(stat='identity', position='dodge') + + scale_fill_grey() + + ylab("Runs") + + xlab("Links fast at least once") + + labs(fill="Strategy") + + scale_y_continuous(labels = scales::percent) + + theme_classic() + #theme(axis.text.x = element_text(angle = 20, hjust=1)) +gk + ggsave("light_fastlinks.png", dpi=300, dev='png', height=7, width=15, units="cm") + + + +l <- read.csv("../../donar-res/tmp_light/basic.csv") +l <- l %>% mutate (lat = latency / 1000) +gl <- ggplot(sqldf("select * from l where way='client'"), aes(x=packet_id,y=lat)) + + coord_cartesian(ylim=c(0,500)) + + geom_hline(yintercept = 200) + + geom_hline(yintercept = 400) + + xlab("Packet Identifier") + + ylab("Latency (ms)") + + labs(linetype="Way") + + geom_point() + + theme_classic() +gl + ggsave("light_single.png", dpi=300, dev='png', height=7, width=15, units="cm") + +m <- read.csv("../../donar-res/tmp_light/fp.csv") +m <- m %>% mutate (lat = latency / 1000) +gm <- ggplot(sqldf("select * from m where `way`='client'"), aes(x=packet_id,y=lat,color=group)) + + scale_color_grey() + + coord_cartesian(ylim=c(0,500)) + + geom_hline(yintercept = 200) + + geom_hline(yintercept = 400) + + xlab("Packet Identifier") + + ylab("Latency (ms)") + + labs(color="Group") + + labs(linetype="Way") + + geom_point() + + theme_classic() + +n <- read.csv("../../donar-res/tmp_light/linkgroup.csv") +n$group <- revalue(n$group, c("fast" = "fast link", "probe" = "other link")) +gn <- ggplot(n, aes(x=packet_id, y=link_id, color=group)) + + scale_color_grey() + + #scale_color_viridis_d() + + xlab("Packet Identifier") + + ylab("Link Identifier") + + labs(color="Group") + + geom_point() + + theme_classic() + +plot_grid(gl, gm, gn, ncol=1) + ggsave("light_single.png", dpi=300, dev='png', height=17, width=15, units="cm") + +gn+ggsave("links_group.pdf", dpi=300, dev='pdf', height=7, width=15, units="cm") + +o <- read.csv("../../donar-res/tmp_light/torrate.csv") +o <- o %>% mutate (latency = latency / 1000) +o <- o %>% mutate (rate = round(rate, 0)) + +q1coefs <- coef(lm(latency ~ rate, data = sqldf("select rate, latency from o where percentile= 'P25'"))) +mcoefs <- coef(lm(latency ~ rate, data = sqldf("select rate, latency from o where percentile= 'P50'"))) +q3coefs <- coef(lm(latency ~ rate, data = sqldf("select rate, latency from o where percentile= 'P75'"))) + +o$percentile <- revalue(o$percentile, c("MAX"="100%", "MIN" = "0%", "P99.9" = "99.9%", "P99" = "99%", "P75" = "75%", "P50" = "50%", "P25" = "25%")) +o$percentile <-factor(o$percentile,levels=c("100%", "99.9%", "99%", "75%", "50%", "25%", "1%", "0.1%", "0%")) +o$rate <- factor(o$rate) + +go <- ggplot(sqldf("select * from o where percentile != 'MAX' and percentile != 'P1' and percentile != 'P0.1'") %>% arrange(percentile), aes(x=rate,y=latency,group=percentile,fill=percentile)) + + geom_bar(stat='identity', position='identity', width=1) + + #scale_fill_grey() + + scale_fill_viridis_d(expand = c(0, 0)) + + scale_y_continuous(expand = c(0, 0)) + + scale_x_discrete(expand = c(0, 0)) + + ylab("Latency (ms)") + + xlab("Packets / second") + + labs(fill="Distribution") +#, title="low values") + + coord_cartesian(ylim=c(0,500)) + + geom_hline(yintercept = 200) + + geom_hline(yintercept = 400) + + #geom_abline(intercept = q1coefs[1], slope = q1coefs[2], linetype='dashed') + + #geom_abline(intercept = mcoefs[1], slope = mcoefs[2], linetype='dashed') + + #geom_abline(intercept = q3coefs[1], slope = q3coefs[2], linetype='dashed') + + theme_classic() +gp <- ggplot(sqldf("select * from o where percentile != 'MAX' and percentile != 'P1' and percentile != 'P0.1'") %>% arrange(percentile), aes(x=rate,y=latency,group=percentile,fill=percentile)) + + geom_bar(stat='identity', position='identity') + + scale_fill_grey() + + scale_y_log10() + + ylab("Latency (ms)") + + xlab("Packets / second") + + labs(fill="Percentile", title="high values (log scale)") + + coord_cartesian(ylim=c(100,100000)) + + geom_hline(yintercept = 200) + + geom_hline(yintercept = 400) + + theme_classic() +plot_grid(gp, go, align = "v", axis = "l", ncol=1) + ggsave("torrate.pdf", dpi=300, dev='pdf', height=12, width=15, units="cm") + +go + ggsave("torrate_scale.pdf", dpi=300, dev='pdf', height=6, width=12, units='cm') diff --git a/r/thunder_configure.R b/r/thunder_configure.R index 2daf8a5..744b07a 100644 --- a/r/thunder_configure.R +++ b/r/thunder_configure.R @@ -281,25 +281,25 @@ tor_lat_stack <- tor_multi_lat %>% dplyr::group_by(run,conf) %>% dplyr::summarise( id = paste(first(run),first(conf)), - min = min(latency), - q25 = quantile(latency,0.25) - min(latency), - median = median(latency) - quantile(latency,0.25), - q75 = quantile(latency,0.75) - median(latency), - q95 = quantile(latency,0.95) - quantile(latency,0.75), - q99 = quantile(latency,0.99) - quantile(latency,0.95), - max = max(latency) - quantile(latency,0.99), + P0 = min(latency), + P25 = quantile(latency,0.25) - min(latency), + P50 = median(latency) - quantile(latency,0.25), + P75 = quantile(latency,0.75) - median(latency), + P95 = quantile(latency,0.95) - quantile(latency,0.75), + P99 = quantile(latency,0.99) - quantile(latency,0.95), + P100 = max(latency) - quantile(latency,0.99), max_sort = max(latency), median_sort = median(latency) ) -tor_lat_stack <- gather(tor_lat_stack, 'min', 'max', 'q25', 'median', 'q75', 'q95', 'q99', key="quantile_name", value="quantile_value") +tor_lat_stack <- gather(tor_lat_stack, 'P0', 'P100', 'P25', 'P50', 'P75', 'P95', 'P99', key="quantile_name", value="quantile_value") v13 <- ggplot(tor_lat_stack, aes( x=reorder(id,median_sort), y=quantile_value, - fill=factor(quantile_name, levels=c('max','q99','q95','q75', 'median', 'q25', 'min'))) + fill=factor(quantile_name, levels=c('P100','P99','P95','P75', 'P50', 'P25', 'P0'))) ) + coord_cartesian(ylim = c(0,1500)) + - labs(fill="quantile")+ + labs(fill="Percentile")+ xlab("Tor circuits") + ylab("RTT (ms)") + geom_bar(stat="identity", position="stack",width=1) + @@ -310,10 +310,10 @@ v13 <- ggplot(tor_lat_stack, aes( v14 <- ggplot(tor_lat_stack, aes( x=reorder(id,median_sort), y=quantile_value, - fill=factor(quantile_name, levels=c('max','q99','q95','q75', 'median', 'q25', 'min'))) + fill=factor(quantile_name, levels=c('P100','P99','P95','P75', 'P50', 'P25', 'P0'))) ) + #coord_cartesian(ylim = c(0,1500)) + - labs(fill="quantile")+ + labs(fill="Percentile")+ xlab("Tor circuits") + ylab("RTT (ms)") + geom_bar(stat="identity", position="stack",width=1) + @@ -324,10 +324,10 @@ v14 <- ggplot(tor_lat_stack, aes( v15 <- ggplot(tor_lat_stack, aes( x=reorder(id,max_sort), y=quantile_value, - fill=factor(quantile_name, levels=c('max','q99','q95','q75', 'median', 'q25', 'min'))) + fill=factor(quantile_name, levels=c('P100','P99','P95','P75', 'P50', 'P25', 'P0'))) ) + coord_cartesian(ylim = c(0,1500)) + - labs(fill="quantile")+ + labs(fill="Percentile")+ xlab("Tor circuits") + ylab("RTT (ms)") + geom_bar(stat="identity", position="stack",width=1) + @@ -338,10 +338,10 @@ v15 <- ggplot(tor_lat_stack, aes( v16 <- ggplot(tor_lat_stack, aes( x=reorder(id,max_sort), y=quantile_value, - fill=factor(quantile_name, levels=c('max','q99','q95','q75', 'median', 'q25', 'min'))) + fill=factor(quantile_name, levels=c('P100','P99','P95','P75', 'P50', 'P25', 'P0'))) ) + #coord_cartesian(ylim = c(0,1500)) + - labs(fill="quantile")+ + labs(fill="Percentile")+ xlab("Tor circuits") + ylab("RTT (ms)") + geom_bar(stat="identity", position="stack",width=1) + @@ -349,8 +349,8 @@ v16 <- ggplot(tor_lat_stack, aes( theme_classic() + theme(axis.text.x=element_blank(), axis.ticks.x = element_blank(), legend.key.size = unit(0.2, "cm"),plot.tag.position='bottom') -t4 <- plot_grid(v16, v15, v14, v13, labels = c('A', 'B', 'C', 'D'), ncol=1) -t4 + ggsave("tor_30ms.png", dpi=300, dev='png', height=20, width=15, units="cm") +t4 <- plot_grid(v16, v15, v14, v13, align = "v", axis = "l", labels = c('A', 'B', 'C', 'D'), ncol=1) +t4 + ggsave("tor_30ms.pdf", dpi=150, dev='pdf', height=15, width=12, units="cm") tor_lat_stack_100 <- tor_multi_lat_100 %>% diff --git a/src/meas_lat.c b/src/meas_lat.c index 50a1809..a5140ae 100644 --- a/src/meas_lat.c +++ b/src/meas_lat.c @@ -1,4 +1,4 @@ -#include + #include #include #include #include diff --git a/torrc_simple b/torrc_simple index 0467d56..1065f39 100644 --- a/torrc_simple +++ b/torrc_simple @@ -1,4 +1,9 @@ ControlPort 9051 + UseEntryGuards 0 + SafeLogging 0 + +IsolateDestPort 1 + #Log INFO stdout