Extract some logic from algo naive

This commit is contained in:
Quentin 2019-03-07 16:57:02 +01:00
parent 3878049f50
commit e807c5f176
5 changed files with 199 additions and 118 deletions

View file

@ -27,6 +27,9 @@ list(APPEND CSOURCES
src/url.c
src/donar_init.h
src/donar_init.c
src/algo_rr.c
src/algo_utils.h
src/algo_utils.c
)
add_executable(donar ${CSOURCES} src/donar.c)

View file

@ -1,30 +1,11 @@
#include "algo_utils.h"
#include "algo_skel.h"
struct naive_ctx {
int ref_count;
struct buffer_packet bps[10];
GQueue* free_buffer; // Available buffers
GHashTable* used_buffer; // Buffers used for reading or writing
GQueue* read_waiting; // Who wait to be notified for a read
GHashTable* write_waiting; // Structure to track packets waiting to be written
};
int on_tcp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
int on_tcp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
int on_udp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
int on_udp_write (struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
void free_nothing(void* app_ctx) {}
void free_naive(void* app_ctx) {
struct naive_ctx* ctx = (struct naive_ctx*) app_ctx;
ctx->ref_count--;
if (ctx->ref_count > 0) return;
g_queue_free(ctx->free_buffer);
g_queue_free(ctx->read_waiting);
g_hash_table_destroy (ctx->used_buffer);
free(ctx);
}
int on_tcp_co(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
int conn_sock1, conn_sock2;
struct sockaddr_in addr;
@ -62,96 +43,10 @@ co_error:
exit(EXIT_FAILURE);
}
/**
* Returns a buffer if available, NULL otherwise
*/
struct buffer_packet* get_read_buffer(struct naive_ctx *app_ctx, struct evt_core_fdinfo *fdinfo) {
struct buffer_packet* bp;
// 1. Check if we don't have a buffer
bp = g_hash_table_lookup (app_ctx->used_buffer, &fdinfo->fd);
if (bp != NULL) return bp;
// 2. Get a new buffer otherwise
bp = g_queue_pop_head(app_ctx->free_buffer);
if (bp == NULL) {
// 2.1 If no buffer is available, we subscribe to be notified later
g_queue_push_tail (app_ctx->read_waiting, &(fdinfo->fd));
return NULL;
}
// 3. Update state
g_hash_table_insert(app_ctx->used_buffer, &(fdinfo->fd), bp);
return bp;
}
/**
* Returns a buffer if available, NULL otherwise
*/
struct buffer_packet* get_write_buffer(struct naive_ctx *app_ctx, struct evt_core_fdinfo *fdinfo) {
struct buffer_packet* bp;
GQueue* q;
// 1. Check if we don't have a buffer
bp = g_hash_table_lookup (app_ctx->used_buffer, &fdinfo->fd);
if (bp != NULL) return bp;
// 2. Check our waiting queue otherwise
if ((q = g_hash_table_lookup(app_ctx->write_waiting, &(fdinfo->fd))) == NULL) return NULL;
bp = g_queue_pop_head(q);
if (bp == NULL) return NULL; // No packet to process
// 3. Update state
g_hash_table_insert(app_ctx->used_buffer, &(fdinfo->fd), bp);
return bp;
}
void mv_buffer_rtow(struct naive_ctx* app_ctx,
struct evt_core_fdinfo* from,
struct evt_core_fdinfo* to,
struct buffer_packet* bp) {
// 1. We get the target writing queue
GQueue* q;
q = g_hash_table_lookup(app_ctx->write_waiting, &(to->fd));
if (q == NULL) {
q = g_queue_new ();
g_hash_table_insert(app_ctx->write_waiting, &(to->fd), q);
}
// 2. We move the buffer to the target queue
g_hash_table_remove(app_ctx->used_buffer, &from->fd);
g_queue_push_tail(q, bp);
}
void mv_buffer_wtor(struct naive_ctx* app_ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
bp->mode = BP_READING;
bp->aread = 0;
g_queue_push_tail (app_ctx->free_buffer, bp);
g_hash_table_remove(app_ctx->used_buffer, &(fdinfo->fd));
}
void notify_read(struct evt_core_ctx* ctx, struct naive_ctx* app_ctx) {
struct evt_core_fdinfo* next_fdinfo = NULL;
while (next_fdinfo == NULL) {
int fd = GPOINTER_TO_INT(g_queue_pop_head(app_ctx->read_waiting));
if (fd == 0) break;
next_fdinfo = evt_core_get_from_fd (ctx, fd);
if (strcmp(next_fdinfo->cat->name, "tcp-read") == 0) on_tcp_read(ctx, next_fdinfo);
else if (strcmp(next_fdinfo->cat->name, "udp-read") == 0) on_udp_read(ctx, next_fdinfo);
else {
fprintf(stderr, "A fd from category %s can't be stored in read_waiting\n", next_fdinfo->cat->name);
exit(EXIT_FAILURE);
}
}
}
int on_tcp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct evt_core_fdinfo *to_fdinfo = NULL;
struct naive_ctx* app_ctx = fdinfo->cat->app_ctx;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
int read_res = FDS_READY;
char url[255];
@ -187,7 +82,7 @@ co_error:
int on_tcp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct naive_ctx* app_ctx = fdinfo->cat->app_ctx;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
int write_res = FDS_READY;
// 1. Get current write buffer OR a buffer from the waiting queue OR leave
@ -214,7 +109,7 @@ co_error:
int on_udp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct evt_core_fdinfo *to_fdinfo;
struct naive_ctx* app_ctx = fdinfo->cat->app_ctx;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
int read_res = FDS_READY;
char url[255];
@ -250,7 +145,7 @@ co_error:
int on_udp_write (struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct naive_ctx* app_ctx = fdinfo->cat->app_ctx;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
int write_res = FDS_READY;
// 1. Get current write buffer OR a buffer from the waiting queue OR leave
@ -272,13 +167,8 @@ co_error:
exit(EXIT_FAILURE);
}
void naive_free_simple(void* v) {
free(v);
}
int on_err(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct naive_ctx* app_ctx = fdinfo->cat->app_ctx;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct buffer_packet* bp;
// 1. If has a "used" buffer, remove it
@ -304,9 +194,9 @@ int on_err(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
}
void algo_naive(struct algo_skel* as) {
struct naive_ctx* ctx = malloc(sizeof(struct naive_ctx));
struct algo_ctx* ctx = malloc(sizeof(struct algo_ctx));
if (ctx == NULL) goto init_err;
memset(ctx, 0, sizeof(struct naive_ctx));
memset(ctx, 0, sizeof(struct algo_ctx));
ctx->free_buffer = g_queue_new ();
ctx->read_waiting = g_queue_new ();
ctx->used_buffer = g_hash_table_new(g_int_hash, g_int_equal);

58
src/algo_rr.c Normal file
View file

@ -0,0 +1,58 @@
#include "algo_skel.h"
#include "algo_utils.h"
void algo_rr(struct algo_skel* as) {
struct algo_ctx* ctx = malloc(sizeof(struct algo_ctx));
if (ctx == NULL) goto init_err;
memset(ctx, 0, sizeof(struct algo_ctx));
ctx->free_buffer = g_queue_new ();
ctx->read_waiting = g_queue_new ();
ctx->used_buffer = g_hash_table_new(g_int_hash, g_int_equal);
ctx->write_waiting = g_hash_table_new_full (g_int_hash, g_int_equal, NULL, naive_free_simple);
for (int i = 0; i < sizeof(ctx->bps) / sizeof(ctx->bps[0]); i++) {
g_queue_push_tail(ctx->free_buffer, &(ctx->bps[i]));
}
/*
as->on_tcp_co.name = "tcp-listen";
as->on_tcp_co.flags = EPOLLIN;
as->on_tcp_co.free_app_ctx = free_nothing;
as->on_tcp_co.cb = on_tcp_co;
as->on_tcp_read.name = "tcp-read";
as->on_tcp_read.flags = EPOLLIN | EPOLLET | EPOLLRDHUP;
as->on_tcp_read.app_ctx = ctx;
as->on_tcp_read.free_app_ctx = free_naive;
as->on_tcp_read.cb = on_tcp_read;
as->on_tcp_read.err_cb = on_err;
ctx->ref_count++;
as->on_udp_read.name = "udp-read";
as->on_udp_read.flags = EPOLLIN | EPOLLET;
as->on_udp_read.app_ctx = ctx;
as->on_udp_read.free_app_ctx = free_naive;
as->on_udp_read.cb = on_udp_read;
as->on_udp_read.err_cb = on_err;
ctx->ref_count++;
as->on_tcp_write.name = "tcp-write";
as->on_tcp_write.flags = EPOLLOUT | EPOLLET | EPOLLRDHUP;
as->on_tcp_write.app_ctx = ctx;
as->on_tcp_write.free_app_ctx = free_naive;
as->on_tcp_write.cb = on_tcp_write;
as->on_tcp_write.err_cb = on_err;
ctx->ref_count++;
as->on_udp_write.name = "udp-write";
as->on_udp_write.flags = EPOLLOUT | EPOLLET;
as->on_udp_write.app_ctx = ctx;
as->on_udp_write.free_app_ctx = free_naive;
as->on_udp_write.cb = on_udp_write;
as->on_udp_write.err_cb = on_err;
ctx->ref_count++;
*/
return;
init_err:
fprintf(stderr, "Failed to init algo naive\n");
exit(EXIT_FAILURE);
}

104
src/algo_utils.c Normal file
View file

@ -0,0 +1,104 @@
#include "algo_utils.h"
void free_nothing(void* app_ctx) {}
void free_naive(void* app_ctx) {
struct algo_ctx* ctx = (struct algo_ctx*) app_ctx;
ctx->ref_count--;
if (ctx->ref_count > 0) return;
g_queue_free(ctx->free_buffer);
g_queue_free(ctx->read_waiting);
g_hash_table_destroy (ctx->used_buffer);
g_hash_table_destroy (ctx->write_waiting);
free(ctx);
}
/**
* Returns a buffer if available, NULL otherwise
*/
struct buffer_packet* get_read_buffer(struct algo_ctx *app_ctx, struct evt_core_fdinfo *fdinfo) {
struct buffer_packet* bp;
// 1. Check if we don't have a buffer
bp = g_hash_table_lookup (app_ctx->used_buffer, &fdinfo->fd);
if (bp != NULL) return bp;
// 2. Get a new buffer otherwise
bp = g_queue_pop_head(app_ctx->free_buffer);
if (bp == NULL) {
// 2.1 If no buffer is available, we subscribe to be notified later
g_queue_push_tail (app_ctx->read_waiting, &(fdinfo->fd));
return NULL;
}
// 3. Update state
g_hash_table_insert(app_ctx->used_buffer, &(fdinfo->fd), bp);
return bp;
}
/**
* Returns a buffer if available, NULL otherwise
*/
struct buffer_packet* get_write_buffer(struct algo_ctx *app_ctx, struct evt_core_fdinfo *fdinfo) {
struct buffer_packet* bp;
GQueue* q;
// 1. Check if we don't have a buffer
bp = g_hash_table_lookup (app_ctx->used_buffer, &fdinfo->fd);
if (bp != NULL) return bp;
// 2. Check our waiting queue otherwise
if ((q = g_hash_table_lookup(app_ctx->write_waiting, &(fdinfo->fd))) == NULL) return NULL;
bp = g_queue_pop_head(q);
if (bp == NULL) return NULL; // No packet to process
// 3. Update state
g_hash_table_insert(app_ctx->used_buffer, &(fdinfo->fd), bp);
return bp;
}
void mv_buffer_rtow(struct algo_ctx* app_ctx,
struct evt_core_fdinfo* from,
struct evt_core_fdinfo* to,
struct buffer_packet* bp) {
// 1. We get the target writing queue
GQueue* q;
q = g_hash_table_lookup(app_ctx->write_waiting, &(to->fd));
if (q == NULL) {
q = g_queue_new ();
g_hash_table_insert(app_ctx->write_waiting, &(to->fd), q);
}
// 2. We move the buffer to the target queue
g_hash_table_remove(app_ctx->used_buffer, &from->fd);
g_queue_push_tail(q, bp);
}
void mv_buffer_wtor(struct algo_ctx* app_ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
bp->mode = BP_READING;
bp->aread = 0;
g_queue_push_tail (app_ctx->free_buffer, bp);
g_hash_table_remove(app_ctx->used_buffer, &(fdinfo->fd));
}
void notify_read(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx) {
struct evt_core_fdinfo* next_fdinfo = NULL;
while (next_fdinfo == NULL) {
int fd = GPOINTER_TO_INT(g_queue_pop_head(app_ctx->read_waiting));
if (fd == 0) break;
next_fdinfo = evt_core_get_from_fd (ctx, fd);
if (strcmp(next_fdinfo->cat->name, "tcp-read") == 0 || strcmp(next_fdinfo->cat->name, "udp-read") == 0) {
next_fdinfo->cat->cb(ctx, next_fdinfo);
} else {
fprintf(stderr, "A fd from category %s can't be stored in read_waiting\n", next_fdinfo->cat->name);
exit(EXIT_FAILURE);
}
}
}
void naive_free_simple(void* v) {
free(v);
}

26
src/algo_utils.h Normal file
View file

@ -0,0 +1,26 @@
#pragma once
#include "algo_skel.h"
#include <glib-2.0/glib.h>
#include <glib-2.0/gmodule.h>
#include <glib-2.0/glib-object.h>
struct algo_ctx {
int ref_count;
struct buffer_packet bps[10];
GQueue* free_buffer; // Available buffers
GHashTable* used_buffer; // Buffers used for reading or writing
GQueue* read_waiting; // Who wait to be notified for a read
GHashTable* write_waiting; // Structure to track packets waiting to be written
};
void mv_buffer_rtow(struct algo_ctx* app_ctx,
struct evt_core_fdinfo* from,
struct evt_core_fdinfo* to,
struct buffer_packet* bp);
void mv_buffer_wtor(struct algo_ctx* app_ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp);
struct buffer_packet* get_write_buffer(struct algo_ctx *app_ctx, struct evt_core_fdinfo *fdinfo);
struct buffer_packet* get_read_buffer(struct algo_ctx *app_ctx, struct evt_core_fdinfo *fdinfo);
void free_naive(void* app_ctx);
void free_nothing(void* app_ctx);
void notify_read(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx);
void naive_free_simple(void* v);