#include "proxy.h" int main_on_tcp_co(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { int conn_sock1, conn_sock2; struct sockaddr_in addr; socklen_t in_len; char url[1024], port[6]; struct evt_core_cat local_cat = {0}; struct evt_core_fdinfo to_fdinfo = {0}; to_fdinfo.cat = &local_cat; to_fdinfo.url = url; in_len = sizeof(addr); conn_sock1 = accept(fdinfo->fd, (struct sockaddr*)&addr, &in_len); if (conn_sock1 == -1 && errno == EAGAIN) return 1; if (conn_sock1 == -1) goto co_error; conn_sock2 = dup(conn_sock1); if (conn_sock2 == -1) goto co_error; //printf("fd=%d accepts, creating fds=%d,%d\n", fd, conn_sock1, conn_sock2); url_get_port(port, fdinfo->url); to_fdinfo.fd = conn_sock1; to_fdinfo.cat->name = "tcp-read"; sprintf(to_fdinfo.url, "tcp:read:127.0.0.1:%s", port); evt_core_add_fd (ctx, &to_fdinfo); to_fdinfo.fd = conn_sock2; to_fdinfo.cat->name = "tcp-write"; sprintf(to_fdinfo.url, "tcp:write:127.0.0.1:%s", port); evt_core_add_fd (ctx, &to_fdinfo); return 0; co_error: perror("Failed to handle new connection"); exit(EXIT_FAILURE); } int main_on_tcp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { struct buffer_packet* bp; struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; int read_res = FDS_READY; if (ctx->verbose > 1) fprintf(stderr, " [proxy] Get current read buffer OR a new read buffer OR subscribe to be notified later\n"); if ((bp = get_read_buffer(app_ctx, fdinfo)) == NULL) return 1; if (ctx->verbose > 1) fprintf(stderr, " [proxy] Try to read a whole packet in the buffer\n"); while (bp->mode == BP_READING) { read_res = read_packet_from_tcp (fdinfo->fd, bp); if (read_res == FDS_ERR) goto co_error; if (read_res == FDS_AGAIN) return 1; } if (ctx->verbose > 1) fprintf(stderr, " [proxy] Call logic on packet\n"); return app_ctx->desc->on_stream(ctx, fdinfo, bp); co_error: perror("Failed to TCP read"); exit(EXIT_FAILURE); } int main_on_udp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { struct buffer_packet* bp; struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; int read_res = FDS_READY; char url[255]; // 1. Get current read buffer OR a new read buffer OR subscribe to be notified later if ((bp = get_read_buffer(app_ctx, fdinfo)) == NULL) return 1; // 2. Read packet from socket bp->ip.ap.fmt.content.clear.port = url_get_port_int (fdinfo->url); read_res = read_packet_from_udp (fdinfo->fd, bp, fdinfo->other); if (read_res == FDS_ERR) goto co_error; if (read_res == FDS_AGAIN) return 1; // 3. Apply logic return app_ctx->desc->on_datagram(ctx, fdinfo, bp); co_error: perror("Failed to UDP read"); exit(EXIT_FAILURE); } int main_on_tcp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { struct buffer_packet* bp; struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; struct rr_ctx* rr = app_ctx->misc; int write_res = FDS_READY; // 0. Show some information about circuits uint8_t is_rdy = fdinfo->cat->socklist->len >= app_ctx->link_count ? 1 : 0; if (!app_ctx->is_rdy && is_rdy) printf("=== Our %d requested circuits are now up ===\n", app_ctx->link_count); else if (app_ctx->is_rdy && !is_rdy) printf("=== Only %d/%d circuits are available, results could be biased ===\n", fdinfo->cat->socklist->len, app_ctx->link_count); app_ctx->is_rdy = app_ctx->is_rdy || is_rdy; // @FIXME prevent deactivation for our tests // 1. Get current write buffer OR a buffer from the waiting queue OR leave if ((bp = get_write_buffer(app_ctx, fdinfo)) == NULL) return 1; // 2. Write data from the buffer to the socket while (bp->mode == BP_WRITING) { write_res = write_packet_to_tcp(fdinfo->fd, bp); if (write_res == FDS_ERR) goto co_error; if (write_res == FDS_AGAIN) return 1; } // 3. A whole packet has been written // Release the buffer and notify mv_buffer_wtof(app_ctx, fdinfo); notify_read(ctx, app_ctx); return 0; co_error: perror("Failed to TCP write"); exit(EXIT_FAILURE); } int main_on_udp_write (struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { struct buffer_packet* bp; struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; int write_res = FDS_READY; // 1. Get current write buffer OR a buffer from the waiting queue OR leave if ((bp = get_write_buffer(app_ctx, fdinfo)) == NULL) return 1; // 2. Write buffer write_res = write_packet_to_udp(fdinfo->fd, bp, fdinfo->other); if (write_res == FDS_ERR) goto co_error; if (write_res == FDS_AGAIN) return 1; // 3. A whole packet has been written // Release the buffer and notify mv_buffer_wtof(app_ctx, fdinfo); notify_read(ctx, app_ctx); return 0; co_error: perror("Failed to UDP write"); exit(EXIT_FAILURE); } int main_on_err(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; struct buffer_packet* bp; // 1. If has a "used" buffer, remove it bp = g_hash_table_lookup (app_ctx->used_buffer, &(fdinfo->fd)); if (bp != NULL) { g_hash_table_remove (app_ctx->used_buffer, &(fdinfo->fd)); memset(bp, 0, sizeof(struct buffer_packet)); g_queue_push_tail(app_ctx->free_buffer, bp); } // 2. If appears in the write waiting queue, remove it GQueue* writew = g_hash_table_lookup (app_ctx->write_waiting, &(fdinfo->fd)); while (writew != NULL && (bp = g_queue_pop_head (writew)) != NULL) { memset(bp, 0, sizeof(struct buffer_packet)); g_queue_push_tail(app_ctx->free_buffer, bp); } if (writew) g_hash_table_remove (app_ctx->write_waiting, &(fdinfo->fd)); // 3. If appears in the read waiting queue, remove it g_queue_remove_all (app_ctx->read_waiting, &(fdinfo->fd)); return app_ctx->desc->on_err(ctx, fdinfo); } void algo_main_init(struct evt_core_ctx* evt, struct algo_params* ap) { struct algo_ctx* ctx = malloc(sizeof(struct algo_ctx)); if (ctx == NULL) goto init_err; memset(ctx, 0, sizeof(struct algo_ctx)); ctx->free_buffer = g_queue_new (); ctx->read_waiting = g_queue_new (); ctx->application_waiting = g_hash_table_new (NULL, NULL); ctx->used_buffer = g_hash_table_new(g_int_hash, g_int_equal); ctx->write_waiting = g_hash_table_new_full (g_int_hash, g_int_equal, NULL, naive_free_simple); ctx->link_count = 8; ctx->is_rdy = 0; ctx->ap = *ap; for (int i = 0; i < sizeof(ctx->bps) / sizeof(ctx->bps[0]); i++) { g_queue_push_tail(ctx->free_buffer, &(ctx->bps[i])); } struct evt_core_cat tcp_listen = { .name = "tcp-listen", .flags = EPOLLIN, .app_ctx = ctx, .free_app_ctx = free_naive, .cb = main_on_tcp_co, .err_cb = NULL }; ctx->ref_count++; evt_core_add_cat(evt, &tcp_listen); struct evt_core_cat tcp_read = { .name = "tcp-read", .flags = EPOLLIN | EPOLLET | EPOLLRDHUP, .app_ctx = ctx, .free_app_ctx = free_naive, .cb = main_on_tcp_read, .err_cb = main_on_err }; ctx->ref_count++; evt_core_add_cat(evt, &tcp_read); struct evt_core_cat udp_read = { .name = "udp-read", .flags = EPOLLIN | EPOLLET | EPOLLRDHUP, .app_ctx = ctx, .free_app_ctx = free_naive, .cb = main_on_udp_read, .err_cb = main_on_err }; ctx->ref_count++; evt_core_add_cat(evt, &udp_read); struct evt_core_cat tcp_write = { .name = "tcp-write", .flags = EPOLLOUT | EPOLLET | EPOLLRDHUP, .app_ctx = ctx, .free_app_ctx = free_naive, .cb = main_on_tcp_write, .err_cb = main_on_err }; ctx->ref_count++; evt_core_add_cat(evt, &tcp_write); struct evt_core_cat udp_write = { .name = "udp-write", .flags = EPOLLOUT | EPOLLET, .app_ctx = ctx, .free_app_ctx = free_naive, .cb = main_on_udp_write, .err_cb = main_on_err }; ctx->ref_count++; evt_core_add_cat(evt, &udp_write); for (int i = 0; i < sizeof(available_algo) / sizeof(available_algo[0]); i++) { if (strcmp(available_algo[i].name, ap->algo_name) == 0) { ctx->desc = &(available_algo[i]); ctx->desc->init(evt, ctx, ap); return; } } fprintf(stderr, "Algorithm %s has not been found\n", ap->algo_name); exit(EXIT_FAILURE); init_err: fprintf(stderr, "Failed to init proxy\n"); exit(EXIT_FAILURE); }