# Donar ## Quickstart ### Installation The following steps are provided for [Fedora 29 Workstation](https://getfedora.org/fr/workstation/download/). We assume you have two containers or two virtual machines or two physical machines. To setup each machine, you should do: ``` sudo dnf install --refresh -y cmake gcc gcc-c++ ninja-build glib2-devel glib2 tor valgrind git net-tools nmap-ncat git clone https://gitlab.inria.fr/qdufour/donar.git cd donar mkdir out && cd out && cmake -GNinja .. && ninja && sudo ninja install ``` ### Commands Now your machine is ready and you will be able to use the following commads: * `donar` is our main binary. It can be run as a client or a server. * `udpecho` is a simple udp server that send back the data sent to him. * `torecho` is a simple tcp server that send back the data sent to him + configure the tor daemon to generate a hidden service URL and be accessible on the Tor network. * `measlat` can be used in conjunction with `udpecho` or `torecho` to measure a Round Trip Time (RTT) Try to run the previous commands in your terminal without any option, you will see their help. At any moment, you can use the following commands that are not part of the project to understand what you are doing: ```bash netstat -ulpn # Show programs that listen on an UDP port netstat -tlpn # Show prograns that listen on a TCP port nc 127.0.0.1 8000 # Connect via TCP on server 127.0.0.1 listening on port 8000 nc -u 127.0.0.1 8000 # Connect via UDP on server 127.0.0.1 listening on port 8000 ``` ### Introduction to the debug tools `udpecho` and `measlat` Now let's start simple, we will launch our udp echo server and access it locally: ```bash udpecho -p 8000 & nc 127.0.0.1 8000 ``` If you write some data on your terminal and press enter, you will see that your data has been repeated. Well done! Now, instead of using `nc`, we will use `measlat` to use this echo server to measure latencies (make sure that `udpecho` is still running): ```bash measlat -h 127.0.0.1 -p 8000 -t udp ``` `measlat` will send one packet to our udpecho server and wait to receive it back, measure the time it took, display it and exit. You can use `measlat` more extensively by defining the number of measures to do, an interval and the size of the packet: ```bash measlat -h 127.0.0.1 -p 8000 -t udp -c 10 -i 100 -s 150 ``` ### Introduction to `donar` Now, let's introduce our main project. First, kill all the remaining processes `killall udpecho measlat nc`. *On both machine* Move to the donar repository root where you will see the `torrc_simple` file. We will need to start by launching tor in a terminal: ```bash tor -f ./torrc_simple ``` *On machine A* Launch Donar server in a second terminal: ```bash donar -s -a naive -e 3000 -r 3001 ``` In a third terminal, launch your echo service: ```bash udpecho -p 3000 ``` Display the content of the file `onion_services.pub` that has been created in your working directory. *On machine B* Copy the content of the file `onion_services.pub` that is on *machine A* to *machine B* in a file named `machine_a.pub`. Now, run Donar client in a second terminal: ```bash donar -c -a naive -o machine_a.pub -r 3000 -e 3001 ``` In a third terminal, launch your echo service: ```bash udpecho -p 3001 ``` *On machine A* You can access to the echo service from *machine B* by running: ```bash nc 127.13.3.7 3001 # or measlat -h 127.13.3.7 -p 3001 -t udp ``` *On machine B* You can access to the echo service from *machine A* by running: ```bash nc 127.13.3.7 3000 # or measlat -h 127.13.3.7 -p 3000 -t udp ``` If it works, that's all! You are now mastering Donar! ## Linphone configuration Choose a SIP UDP, Audio RTP/UDP and Video RTP/UDP that is different between your clients. Go to manage account. Add a new SIP proxy. ``` Username: @127.13.3.7:5061 Proxy: 127.13.3.7:5060 Leave the rest empty. Uncheck all the checkboxes. ``` You also need to say to Linphone that you are behind a NAT and put `127.13.3.7` as your public IP address. ## Docker build ``` sudo docker build -t registry.gitlab.inria.fr/qdufour/donar . sudo docker push registry.gitlab.inria.fr/qdufour/donar sudo docker pull registry.gitlab.inria.fr/qdufour/donar ``` ``` mkdir -p ./{xp1-shared,xp1-res} sudo chown -R 1000 ./{xp1-shared,xp1-res} sudo docker run -t -i \ --privileged \ -v `pwd`/xp1-shared:/home/donar/shared \ registry.gitlab.inria.fr/qdufour/donar \ xp1-server sudo docker run -t -i \ --privileged \ -v `pwd`/xp1-res:/home/donar/res \ -v `pwd`/xp1-shared:/home/donar/shared \ registry.gitlab.inria.fr/qdufour/donar \ xp1-client 1000 100 100 ``` ## Run an XP instance ``` sudo ./scripts/xp1 1000 100 100 ``` ## Run instances in parallel We generate the name of the algorithm to run on the right side of the parallel command. The idea is to generate a sequence like the following: `orig naive rr rrh orig naive rr rrh orig...`. ``` parallel -j 12 bash -c './xp-instance-runner $1 6000 100 100' -- `xp0=orig xp1=naive xp2=rr xp3=rrh xp4=witness; for i in {0..99}; do q='xp'$((i % 5)); echo ${!q}; done` parallel.moreutils -j 16 bash -c './xp-instance-runner $0 6000 100 100' -- `xp0=orig xp1=naive xp2=rr xp3=rrh xp4=witness; for i in {0..274}; do q='xp'$((i % 5)); echo ${!q}; done` parallel.moreutils -j 16 bash -c './xp-instance-runner $0 6000 100 100' -- `for i in {0..55}; do echo -n 'orig naive rr rrh witness '; done` ``` Tests: ``` parallel.moreutils -j 16 bash -c './xp-instance-runner rr 6000 100 100' -- `seq 0 15` ``` ## Helpers Track measures that didn't finish: ``` ls | grep -P '^naive-|^rrh-|^rr-|^orig-' | while read n; do echo -n "$n "; tail -n1 $n/res/*.csv ; done | grep -v "Measurement done" ``` Check if timer's bug occured: ``` ls | grep -P '^naive-|^rrh-|^rr-|^orig-' | while read n; do echo "$n "; grep 'bug' $n/log/client-measlat-stderr.log; done ``` Check if a free() invalid pointer bug occured: ``` grep 'free' naive-*/log/*-donar-*.log grep -rn 'free()' . ``` ## Use a Linphone container ``` docker build -f linphone.dockerfile -t superboum/linphone . ``` Run it: ``` docker run \ -ti \ -e DISPLAY=$DISPLAY \ -v /tmp/.X11-unix:/tmp/.X11-unix \ --ipc=host \ superboum/linphone \ bash ``` http://gstreamer-devel.966125.n4.nabble.com/Need-help-with-using-OPUS-over-RTP-td4661409.html ``` # some sources audiotestsrc pulsesrc # some sinks pulsesink # sender gst-launch-1.0 \ pulsesrc ! \ audioconvert ! \ opusenc audio-type=voice inband-fec=false frame-size=20 ! \ rtpopuspay ! \ udpsink host=127.0.0.1 port=5000 # receiver gst-launch-1.0 \ udpsrc port=5000 caps="application/x-rtp" ! \ rtpjitterbuffer do-lost=true do-retransmission=false ! \ rtpopusdepay ! \ opusdec plc=true use-inband-fec=false ! \ pulsesink # both sides with echo cancellation export TARGET=192.168.1.1 gst-launch-1.0 \ pulsesrc ! \ audioconvert ! \ opusenc audio-type=voice inband-fec=false frame-size=20 ! \ rtpopuspay ! \ udpsink host=$TARGET port=5000 \ udpsrc port=5000 caps="application/x-rtp" ! \ rtpjitterbuffer do-lost=true do-retransmission=false ! \ rtpopusdepay ! \ opusdec plc=true use-inband-fec=false ! \ pulsesink ```