#include "algo_skel.h" #define NAIVE_BUFFER 128 struct naive_ctx { int ref_count; struct ring_buffer tcp_to_udp_rb; struct ring_buffer udp_to_tcp_rb; struct sockaddr_in udp_addr; socklen_t udp_addrlen; }; void free_nothing(void* app_ctx) {} void free_naive(void* app_ctx) { struct naive_ctx* ctx = (struct naive_ctx*) app_ctx; ctx->ref_count--; if (ctx->ref_count <= 0) free(ctx); } void on_tcp_co(struct evt_core_ctx* ctx, struct evt_core_cat* cat, int fd) { int conn_sock1, conn_sock2; struct sockaddr addr; socklen_t in_len; struct epoll_event current_event; in_len = sizeof(addr); conn_sock1 = accept(fd, &addr, &in_len); if (conn_sock1 == -1) goto co_error; conn_sock2 = dup(conn_sock1); if (conn_sock2 == -1) goto co_error; //printf("fd=%d accepts, creating fds=%d,%d\n", fd, conn_sock1, conn_sock2); evt_core_add_fd (ctx, "tcp-read", conn_sock1); evt_core_add_fd (ctx, "tcp-write", conn_sock2); return; co_error: perror("Failed to handle new connection"); exit(EXIT_FAILURE); } void tcp_to_udp(struct evt_core_ctx* ctx, struct evt_core_cat* cat, int fd) { // Get target file descriptor struct evt_core_cat* udp = g_hash_table_lookup (ctx->catlist, "udp-write"); if (udp == NULL || udp->socklist->len < 1) goto co_error; int udp_fd = g_array_index(udp->socklist, int, 0); // Init data structures for the transfer struct naive_ctx* app_ctx = cat->app_ctx; struct ring_buffer* rb = &(app_ctx->tcp_to_udp_rb); char buffer[RING_BUFFER_SIZE]; int nread, nwrite, rb_free_space; while (1) { rb_free_space = ring_buffer_free_space (rb); // We can't afford to read more nread = read(fd, buffer, rb_free_space); // Effective read if (nread == 0) return; // End of file if (nread == -1 && errno == EAGAIN) return; // No more data to read if (nread == -1) goto co_error; // A bad error ring_buffer_write(rb, buffer, nread); // Persist read data in our buffer nread = ring_buffer_read(rb, buffer, RING_BUFFER_SIZE); nwrite = sendto(udp_fd, buffer, nread, 0, (struct sockaddr*)&(app_ctx->udp_addr), app_ctx->udp_addrlen); if (nwrite == -1 && errno == EAGAIN) return; if (nwrite == -1) goto co_error; ring_buffer_ack_read (rb, nwrite); } return; co_error: perror("Failed to handle read write for tcp_to_udp"); exit(EXIT_FAILURE); } void udp_to_tcp(struct evt_core_ctx* ctx, struct evt_core_cat* cat, int fd) { // Get target file descriptor struct evt_core_cat* tcp = g_hash_table_lookup (ctx->catlist, "tcp-write"); if (tcp == NULL || tcp->socklist->len < 1) goto co_error; int tcp_fd = g_array_index(tcp->socklist, int, 0); // Init data structures for the transfer struct naive_ctx* app_ctx = cat->app_ctx; struct ring_buffer* rb = &(app_ctx->udp_to_tcp_rb); char buffer[RING_BUFFER_SIZE]; int nread, nwrite, rb_free_space; while (1) { rb_free_space = ring_buffer_free_space (rb); // We can't afford to read more app_ctx->udp_addrlen = sizeof(struct sockaddr_in); nread = recvfrom(fd, buffer, rb_free_space, 0, (struct sockaddr*)&(app_ctx->udp_addr), &(app_ctx->udp_addrlen)); // Effective read if (nread == 0) return; // End of file if (nread == -1 && errno == EAGAIN) return; // No more data to read if (nread == -1) goto co_error; // A bad error ring_buffer_write(rb, buffer, nread); // Persist read data in our buffer nread = ring_buffer_read(rb, buffer, RING_BUFFER_SIZE); nwrite = write(tcp_fd, buffer, nread); if (nwrite == -1 && errno == EAGAIN) return; if (nwrite == -1) goto co_error; printf("written to tcp_fd=%d\n", nwrite); ring_buffer_ack_read (rb, nwrite); } return; co_error: perror("Failed to handle read write for udp_to_tcp"); exit(EXIT_FAILURE); } void algo_naive(struct algo_skel* as) { struct naive_ctx* ctx = malloc(sizeof(struct naive_ctx)); if (ctx == NULL) goto init_err; memset(ctx, 0, sizeof(struct naive_ctx)); ctx->udp_addrlen = sizeof(struct sockaddr_in); as->on_tcp_co.name = "tcp-listen"; as->on_tcp_co.flags = EPOLLIN; as->on_tcp_co.app_ctx = NULL; as->on_tcp_co.free_app_ctx = free_nothing; as->on_tcp_co.cb = on_tcp_co; as->on_tcp_co.socklist = NULL; as->on_tcp_read.name = "tcp-read"; as->on_tcp_read.flags = EPOLLIN | EPOLLET | EPOLLRDHUP; as->on_tcp_read.app_ctx = ctx; as->on_tcp_read.free_app_ctx = free_naive; as->on_tcp_read.cb = tcp_to_udp; as->on_tcp_read.socklist = NULL; ctx->ref_count++; as->on_udp_read.name = "udp-read"; as->on_udp_read.flags = EPOLLIN | EPOLLET; as->on_udp_read.app_ctx = ctx; as->on_udp_read.free_app_ctx = free_naive; as->on_udp_read.cb = udp_to_tcp; as->on_udp_read.socklist = NULL; ctx->ref_count++; as->on_tcp_write.name = "tcp-write"; as->on_tcp_write.flags = EPOLLOUT | EPOLLET | EPOLLRDHUP; as->on_tcp_write.app_ctx = ctx; as->on_tcp_write.free_app_ctx = free_naive; as->on_tcp_write.cb = udp_to_tcp; as->on_tcp_write.socklist = NULL; ctx->ref_count++; as->on_udp_write.name = "udp-write"; as->on_udp_write.flags = EPOLLOUT | EPOLLET; as->on_udp_write.app_ctx = ctx; as->on_udp_write.free_app_ctx = free_naive; as->on_udp_write.cb = tcp_to_udp; as->on_udp_write.socklist = NULL; ctx->ref_count++; return; init_err: fprintf(stderr, "Failed to init algo naive\n"); exit(EXIT_FAILURE); }