#include #include "algo_skel.h" #include "algo_utils.h" #include "utils.h" struct waited_pkt { uint16_t id; int link_num; uint8_t on; int timer_fd; }; struct deferred_pkt { int link_fd; struct buffer_packet* bp; }; struct rr_ctx { uint8_t my_links; uint16_t my_links_ver; uint8_t remote_links; int64_t mjit; uint16_t recv_id; uint16_t sent_id; uint8_t current_link; struct timespec emit_time; struct deferred_pkt real[PACKET_BUFFER_SIZE]; struct waited_pkt wait[PACKET_BUFFER_SIZE]; }; int rr_on_tcp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo); int rr_on_tcp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo); int rr_on_udp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo); int rr_on_udp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo); int rr_on_tcp_co(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { int conn_sock1, conn_sock2; struct sockaddr_in addr; socklen_t in_len; char url[1024], port[6]; struct evt_core_cat local_cat = {0}; struct evt_core_fdinfo to_fdinfo = {0}; to_fdinfo.cat = &local_cat; to_fdinfo.url = url; in_len = sizeof(addr); conn_sock1 = accept(fdinfo->fd, (struct sockaddr*)&addr, &in_len); if (conn_sock1 == -1) goto co_error; conn_sock2 = dup(conn_sock1); if (conn_sock2 == -1) goto co_error; //printf("fd=%d accepts, creating fds=%d,%d\n", fd, conn_sock1, conn_sock2); url_get_port(port, fdinfo->url); to_fdinfo.fd = conn_sock1; to_fdinfo.cat->name = "tcp-read"; sprintf(to_fdinfo.url, "tcp:read:127.0.0.1:%s", port); evt_core_add_fd (ctx, &to_fdinfo); to_fdinfo.fd = conn_sock2; to_fdinfo.cat->name = "tcp-write"; sprintf(to_fdinfo.url, "tcp:write:127.0.0.1:%s", port); evt_core_add_fd (ctx, &to_fdinfo); return 1; co_error: perror("Failed to handle new connection"); exit(EXIT_FAILURE); } int set_timeout(struct evt_core_ctx* evts, uint64_t milli_sec, struct waited_pkt* wpkt) { struct timespec now; struct itimerspec timer_config; char url[1024]; struct evt_core_cat cat = {0}; struct evt_core_fdinfo fdinfo = {0}; fdinfo.cat = &cat; fdinfo.url = url; //printf("Will add a timeout of %ld ms\n", milli_sec); if (clock_gettime(CLOCK_REALTIME, &now) == -1) { perror("clock_gettime"); exit(EXIT_FAILURE); } uint64_t ns = now.tv_nsec + (milli_sec % 1000) * 1000000; timer_config.it_value.tv_sec = now.tv_sec + milli_sec / 1000 + ns / 1000000000; timer_config.it_value.tv_nsec = ns % 1000000000; timer_config.it_interval.tv_sec = 60; timer_config.it_interval.tv_nsec = 0; fdinfo.fd = timerfd_create(CLOCK_REALTIME, 0); if (fdinfo.fd == -1) { perror("Unable to timerfd_create"); exit(EXIT_FAILURE); } if (timerfd_settime (fdinfo.fd, TFD_TIMER_ABSTIME, &timer_config, NULL) == -1) { perror("Unable to timerfd_settime"); exit(EXIT_FAILURE); } fdinfo.cat->name = "timeout"; fdinfo.other = wpkt; // Should put the link number and the id fdinfo.free_other = NULL; sprintf(fdinfo.url, "timer:%ld:1", milli_sec); evt_core_add_fd (evts, &fdinfo); return fdinfo.fd; } void rr_pkt_register(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) { struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; struct rr_ctx* rr = app_ctx->misc; printf("Selected url %s for pkt %d to be queued for delivery\n", fdinfo->url, bp->ip.ap.str.id); // 1. Update links I can use thanks to target feedback if (bp->ip.ap.str.id > rr->my_links_ver) { rr->my_links = bp->ip.ap.str.bitfield; rr->my_links_ver = bp->ip.ap.str.id; } // 2. If packet arrived too late, we discard it if (ring_gt(rr->recv_id, bp->ip.ap.str.id - 1)) { // Packet has already been delivered or dropped, we free the buffer fprintf(stderr, "Packet %d arrived too late (current: %d)\n", bp->ip.ap.str.id, rr->recv_id); mv_buffer_wtor (app_ctx, fdinfo, bp); return; } // 3. If packet arrived too early, we register a timer if (ring_lt(rr->recv_id, bp->ip.ap.str.id - 1)) { int64_t timeout = rr->mjit - (int64_t) bp->ip.ap.str.deltat; //printf("%ld - %ld = %ld\n", rr->mjit, (int64_t) bp->ip.ap.str.deltat, timeout); if (timeout <= 0) timeout = 0; int idx_waited = (bp->ip.ap.str.id - 1) % PACKET_BUFFER_SIZE; rr->wait[idx_waited].on = 1; rr->wait[idx_waited].id = bp->ip.ap.str.id - 1; rr->wait[idx_waited].link_num = bp->ip.ap.str.prevlink; rr->wait[idx_waited].timer_fd = set_timeout(ctx, timeout, &rr->wait[idx_waited]); } // 4. We queue the packet int idx_real = bp->ip.ap.str.id % PACKET_BUFFER_SIZE; rr->real[idx_real].bp = bp; rr->real[idx_real].link_fd = fdinfo->fd; g_hash_table_remove(app_ctx->used_buffer, &fdinfo->fd); // We remove the packet from the reading buffer // 5. We make sure that the remote link is set to up char buffer[16]; url_get_port (buffer, fdinfo->url); int link_num = atoi(buffer) - 7500; // @FIXME Hardcoded rr->remote_links |= 1 << link_num; // Make sure that the link is marked as working } void rr_deliver(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) { struct evt_core_fdinfo *to_fdinfo = NULL; struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; struct rr_ctx* rr = app_ctx->misc; char url[255]; printf("Selected url %s for pkt %d to be delivered\n", fdinfo->url, bp->ip.ap.str.id); // 0. We update our cursor rr->recv_id = bp->ip.ap.str.id; // 1. We check that we don't have a running timeout int idx_real = bp->ip.ap.str.id % PACKET_BUFFER_SIZE; if (rr->wait[idx_real].on) { rr->wait[idx_real].on = 0; evt_core_rm_fd (ctx, rr->wait[idx_real].timer_fd); printf("Removed timer for packet %d\n",bp->ip.ap.str.id); } // 2. We free the buffer if it's a control packet and quit if (bp->ip.ap.str.flags & PKT_CONTROL) { mv_buffer_wtor (app_ctx, fdinfo, bp); return; } // 3. A whole packet has been read, we will find its target sprintf(url, "udp:write:127.0.0.1:%d", bp->ip.ap.str.port); to_fdinfo = evt_core_get_from_url (ctx, url); if (to_fdinfo == NULL) { fprintf(stderr, "No fd for URL %s in udp:write for tcp-read. Dropping packet :( \n", url); mv_buffer_wtor (app_ctx, fdinfo, bp); } // 4. We move the buffer and notify the target mv_buffer_rtow (app_ctx, fdinfo, to_fdinfo, bp); rr_on_udp_write(ctx, to_fdinfo); } void rr_pkt_unroll(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx) { struct rr_ctx* rr = app_ctx->misc; struct evt_core_fdinfo* fdinfo = NULL; struct buffer_packet* bp = NULL; while(1) { struct deferred_pkt* def = &rr->real[(rr->recv_id+1) % PACKET_BUFFER_SIZE]; if (def->bp == NULL) break; bp = def->bp; def->bp = NULL; fdinfo = evt_core_get_from_fd (ctx, def->link_fd); if (fdinfo == NULL) { fprintf(stderr, "An error occured as the link seems to be closed for the requested fd\n"); rr->recv_id++; continue; } rr_deliver(ctx, fdinfo, bp); } } //------ int rr_on_tcp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { struct buffer_packet* bp; struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; struct rr_ctx* rr = app_ctx->misc; int read_res = FDS_READY; // 1. Get current read buffer OR a new read buffer OR subscribe to be notified later if ((bp = get_read_buffer(app_ctx, fdinfo)) == NULL) return 1; // 2. Try to read a whole packet in the buffer while (bp->mode == BP_READING) { read_res = read_packet_from_tcp (fdinfo->fd, bp); if (read_res == FDS_ERR) goto co_error; if (read_res == FDS_AGAIN) return 1; } // 3. Logic on packet rr_pkt_register(ctx, fdinfo, bp); rr_pkt_unroll (ctx, app_ctx); return 0; co_error: perror("Failed to TCP read"); exit(EXIT_FAILURE); } int rr_on_udp_write (struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { struct buffer_packet* bp; struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; int write_res = FDS_READY; // 1. Get current write buffer OR a buffer from the waiting queue OR leave if ((bp = get_write_buffer(app_ctx, fdinfo)) == NULL) return 1; // 2. Write buffer write_res = write_packet_to_udp(fdinfo->fd, bp, fdinfo->other); if (write_res == FDS_ERR) goto co_error; if (write_res == FDS_AGAIN) return 1; // 3. A whole packet has been written // Release the buffer and notify mv_buffer_wtor(app_ctx, fdinfo, bp); notify_read(ctx, app_ctx); return 0; co_error: perror("Failed to UDP write"); exit(EXIT_FAILURE); } int rr_on_udp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { struct buffer_packet* bp; struct evt_core_fdinfo *to_fdinfo = NULL; struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; struct rr_ctx* rr = app_ctx->misc; int read_res = FDS_READY; char url[255]; // 1. Get current read buffer OR a new read buffer OR subscribe to be notified later if ((bp = get_read_buffer(app_ctx, fdinfo)) == NULL) return 1; // 2. Read packet from socket bp->ip.ap.str.port = url_get_port_int (fdinfo->url); read_res = read_packet_from_udp (fdinfo->fd, bp, fdinfo->other); if (read_res == FDS_ERR) goto co_error; if (read_res == FDS_AGAIN) return 1; // 3. Prepare RR state and packet values struct timespec curr; int secs, nsecs; uint64_t mili_sec; if (clock_gettime(CLOCK_MONOTONIC, &curr) == -1){ perror("clock_gettime error"); exit(EXIT_FAILURE); } secs = curr.tv_sec - rr->emit_time.tv_sec; nsecs = curr.tv_nsec - rr->emit_time.tv_nsec; mili_sec = secs * 1000 + nsecs / 1000000; if (mili_sec > rr->mjit) mili_sec = rr->mjit; bp->ip.ap.str.id = rr->sent_id; bp->ip.ap.str.flags = 0; bp->ip.ap.str.deltat = mili_sec; bp->ip.ap.str.bitfield = rr->remote_links; bp->ip.ap.str.prevlink = rr->current_link; int max = 10; while(1) { if (max-- < 0) break; rr->current_link = (rr->current_link + 1) % 10; if (!(rr->my_links & (1 << rr->current_link))) continue; sprintf(url, "tcp:write:127.0.0.1:%d", 7500 + rr->current_link); //@FIXME Hardcoded //printf("-- Trying %s\n", url); to_fdinfo = evt_core_get_from_url (ctx, url); if (to_fdinfo != NULL) { printf("Selected url %s for pkt %d to be sent on Tor\n", url, bp->ip.ap.str.id); break; } } rr->emit_time = curr; rr->sent_id++; // 4. A whole packet has been read, we will find someone to write it if (to_fdinfo == NULL) { fprintf(stderr, "No fd for URL %s in udp-read. Dropping packet :( \n", fdinfo->url); mv_buffer_wtor (app_ctx, fdinfo, bp); return 1; } //printf("Pass packet from %s to %s\n", fdinfo->url, url); // 5. We move the buffer and notify the target mv_buffer_rtow (app_ctx, fdinfo, to_fdinfo, bp); rr_on_tcp_write(ctx, to_fdinfo); return 0; co_error: perror("Failed to UDP read"); exit(EXIT_FAILURE); } int rr_on_tcp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { struct buffer_packet* bp; struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; int write_res = FDS_READY; // 1. Get current write buffer OR a buffer from the waiting queue OR leave if ((bp = get_write_buffer(app_ctx, fdinfo)) == NULL) return 1; // 2. Write data from the buffer to the socket while (bp->mode == BP_WRITING) { write_res = write_packet_to_tcp(fdinfo->fd, bp); if (write_res == FDS_ERR) goto co_error; if (write_res == FDS_AGAIN) return 1; } // 3. A whole packet has been written // Release the buffer and notify mv_buffer_wtor(app_ctx, fdinfo, bp); notify_read(ctx, app_ctx); return 0; co_error: perror("Failed to TCP write"); exit(EXIT_FAILURE); } int rr_on_timer(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; struct rr_ctx* rr = app_ctx->misc; struct waited_pkt* pkt = fdinfo->other; evt_core_rm_fd(ctx, fdinfo->fd); if (ring_lt(pkt->id, rr->recv_id)) return 1; printf("Timer reached for packet %d\n", pkt->id); pkt->on = 0; //rr->remote_links &= 0xffff ^ 1 << pkt->link_num; rr->recv_id = pkt->id; rr_pkt_unroll (ctx, app_ctx); return 1; } int rr_on_err(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) { struct algo_ctx* app_ctx = fdinfo->cat->app_ctx; struct buffer_packet* bp; // 1. If has a "used" buffer, remove it bp = g_hash_table_lookup (app_ctx->used_buffer, &(fdinfo->fd)); if (bp != NULL) { g_hash_table_remove (app_ctx->used_buffer, &(fdinfo->fd)); memset(bp, 0, sizeof(struct buffer_packet)); g_queue_push_tail(app_ctx->free_buffer, bp); } // 2. If appears in the write waiting queue, remove it GQueue* writew = g_hash_table_lookup (app_ctx->write_waiting, &(fdinfo->fd)); while (writew != NULL && (bp = g_queue_pop_head (writew)) != NULL) { memset(bp, 0, sizeof(struct buffer_packet)); g_queue_push_tail(app_ctx->free_buffer, bp); } g_hash_table_remove (app_ctx->write_waiting, &(fdinfo->fd)); // 3. If appears in the read waiting queue, remove it g_queue_remove_all (app_ctx->read_waiting, &(fdinfo->fd)); return 0; } void algo_rr(struct evt_core_ctx* evt, struct algo_skel* as) { struct algo_ctx* ctx = malloc(sizeof(struct algo_ctx)); if (ctx == NULL) goto init_err; memset(ctx, 0, sizeof(struct algo_ctx)); ctx->free_buffer = g_queue_new (); ctx->read_waiting = g_queue_new (); ctx->used_buffer = g_hash_table_new(g_int_hash, g_int_equal); ctx->write_waiting = g_hash_table_new_full (g_int_hash, g_int_equal, NULL, naive_free_simple); struct rr_ctx* rr = malloc(sizeof(struct rr_ctx)); if (rr == NULL) goto init_err; memset(rr, 0, sizeof(struct rr_ctx)); rr->mjit = 200; rr->my_links = 0xff; rr->remote_links = 0xff; rr->sent_id = 1; ctx->misc = rr; for (int i = 0; i < sizeof(ctx->bps) / sizeof(ctx->bps[0]); i++) { g_queue_push_tail(ctx->free_buffer, &(ctx->bps[i])); } as->on_tcp_co.name = "tcp-listen"; as->on_tcp_co.flags = EPOLLIN; as->on_tcp_co.free_app_ctx = free_nothing; as->on_tcp_co.cb = rr_on_tcp_co; as->on_tcp_read.name = "tcp-read"; as->on_tcp_read.flags = EPOLLIN | EPOLLET | EPOLLRDHUP; as->on_tcp_read.app_ctx = ctx; as->on_tcp_read.free_app_ctx = free_naive; as->on_tcp_read.cb = rr_on_tcp_read; as->on_tcp_read.err_cb = rr_on_err; ctx->ref_count++; as->on_udp_read.name = "udp-read"; as->on_udp_read.flags = EPOLLIN | EPOLLET; as->on_udp_read.app_ctx = ctx; as->on_udp_read.free_app_ctx = free_naive; as->on_udp_read.cb = rr_on_udp_read; as->on_udp_read.err_cb = rr_on_err; ctx->ref_count++; as->on_tcp_write.name = "tcp-write"; as->on_tcp_write.flags = EPOLLOUT | EPOLLET | EPOLLRDHUP; as->on_tcp_write.app_ctx = ctx; as->on_tcp_write.free_app_ctx = free_naive; as->on_tcp_write.cb = rr_on_tcp_write; as->on_tcp_write.err_cb = rr_on_err; ctx->ref_count++; as->on_udp_write.name = "udp-write"; as->on_udp_write.flags = EPOLLOUT | EPOLLET; as->on_udp_write.app_ctx = ctx; as->on_udp_write.free_app_ctx = free_naive; as->on_udp_write.cb = rr_on_udp_write; as->on_udp_write.err_cb = rr_on_err; ctx->ref_count++; struct evt_core_cat tcat = { .name = "timeout", .flags = EPOLLIN | EPOLLET, .app_ctx = ctx, .free_app_ctx = free_naive, .cb = rr_on_timer, .err_cb = NULL }; ctx->ref_count++; evt_core_add_cat(evt, &tcat); return; init_err: fprintf(stderr, "Failed to init algo naive\n"); exit(EXIT_FAILURE); }