tor_multipath_voip/src/algo_rr.c
2019-05-24 15:13:20 +02:00

363 lines
12 KiB
C

#include <sys/timerfd.h>
#include "algo_utils.h"
#include "utils.h"
#include "url.h"
#include "proxy.h"
#include "timer.h"
struct timer_info {
uint16_t health_id;
uint8_t prevlink;
uint16_t min_blocked_pkt;
struct algo_ctx* algo;
};
struct queued_pkt {
uint8_t on;
int link_fd;
int idx;
uint16_t id;
struct algo_ctx* algo;
};
struct rr_ctx {
uint8_t my_links;
uint8_t remote_links;
uint8_t current_link;
int64_t mjit;
uint16_t health_id;
uint16_t health_id_late;
uint16_t content_id;
uint16_t sent_health_id;
uint16_t sent_content_id;
struct internet_packet prev_packet;
struct timespec emit_time;
struct queued_pkt real[PACKET_BUFFER_SIZE];
struct timer_info wait[PACKET_BUFFER_SIZE];
};
void show_link_availability(struct rr_ctx* rr) {
printf("Links availability: my_links[");
for (int i = 0; i < 8; i++) {
if (rr->my_links & 1 << i) printf("U");
else printf("-");
}
printf("], rem_links[");
for (int i = 0; i < 8; i++) {
if (rr->remote_links & 1 << i) printf("U");
else printf("-");
}
printf("]\n");
}
void on_timeout_health (struct evt_core_ctx* ctx, void* user);
void rr_pkt_register(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
uint16_t real_idx = bp->ip.ap.fmt.content.clear.id % PACKET_BUFFER_SIZE;
assert(bp->ip.ap.fmt.headers.cmd == CMD_CLEAR);
// 1. We queue the packet to keep it
if (rr->real[real_idx].on && ring_lt(rr->real[real_idx].id, bp->ip.ap.fmt.content.clear.id)) {
fprintf(stderr, "Real array is full for id=%d, idx=%d, BUG: [\n", bp->ip.ap.fmt.content.clear.id, real_idx);
for (int i = 0; i < PACKET_BUFFER_SIZE; i++) {
fprintf(stderr, "\t%d => %d\n", rr->real[i].id, rr->real[i].on);
}
fprintf(stderr, "] - could be replaced by drop\n");
exit(EXIT_FAILURE);
} else if (!rr->real[real_idx].on && ring_gt(bp->ip.ap.fmt.content.clear.id, rr->content_id)) {
rr->real[real_idx].on = 1;
rr->real[real_idx].id = bp->ip.ap.fmt.content.clear.id;
rr->real[real_idx].idx = real_idx;
rr->real[real_idx].link_fd = fdinfo->fd;
rr->real[real_idx].algo = app_ctx;
mv_buffer_rtoa(app_ctx, fdinfo, &rr->real[real_idx].idx);
} else {
if (ctx->verbose) fprintf(stdout, "Packet %d already received (current: %d)\n", bp->ip.ap.fmt.content.clear.id, rr->content_id);
mv_buffer_rtof (app_ctx, fdinfo);
}
}
void rr_deliver(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx, struct queued_pkt* dp) {
struct evt_core_fdinfo *to_fdinfo = NULL;
struct rr_ctx* rr = app_ctx->misc;
char url[255];
// 1. Marked the packet as handled
dp->on = 0;
// 2. Get the buffer
struct buffer_packet* bp = get_app_buffer (app_ctx, &dp->idx);
assert(bp->ip.ap.fmt.headers.cmd == CMD_CLEAR);
// 3. We update our cursor
rr->content_id = bp->ip.ap.fmt.content.clear.id;
// 4. Find its target
sprintf(url, "udp:write:127.0.0.1:%d", bp->ip.ap.fmt.content.clear.port);
to_fdinfo = evt_core_get_from_url (ctx, url);
if (to_fdinfo == NULL) {
fprintf(stderr, "No fd for URL %s in udp:write for tcp-read. Dropping packet %d :( \n", url, dp->idx);
//mv_buffer_wtor (app_ctx, fdinfo, bp);
mv_buffer_atof (app_ctx, &dp->idx);
}
// 5. We move the buffer and notify the target
//mv_buffer_rtow (app_ctx, fdinfo, to_fdinfo, bp);
mv_buffer_atow (app_ctx, &dp->idx, to_fdinfo);
main_on_udp_write(ctx, to_fdinfo);
}
void rr_pkt_manage_links(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
assert(bp->ip.ap.fmt.headers.cmd == CMD_HEALTH);
// 1. Health packet was received too late, dropping it
if (ring_le(bp->ip.ap.fmt.content.health.id, rr->health_id_late)) goto release;
// 2. Reactivate link if deactivated
char buffer[16];
url_get_port (buffer, fdinfo->url);
int link_num = atoi(buffer) - 7500; // @FIXME Hardcoded
if (!(rr->remote_links & (1 << link_num))) {
printf("Activate link=%d | ", link_num);
rr->remote_links |= 1 << link_num; // Make sure that the link is marked as working
show_link_availability (rr);
}
// 3. Update RR structure if its the greatest health_id we received
if (ring_gt(bp->ip.ap.fmt.content.health.id, rr->health_id)) {
// 3.1. Update current health id
rr->health_id = bp->ip.ap.fmt.content.health.id;
// 3.2. Update my links I can use thanks to target feedback
if (bp->ip.ap.fmt.content.health.bitfield != rr->my_links) {
rr->my_links = bp->ip.ap.fmt.content.health.bitfield;
printf("Update my links | ");
show_link_availability (rr);
}
}
// 4. Set callback to close this health packet window
int64_t timeout = rr->mjit - (int64_t) bp->ip.ap.fmt.content.health.deltat;
if (timeout <= 0) timeout = 0;
uint64_t idx = bp->ip.ap.fmt.content.health.id % PACKET_BUFFER_SIZE;
rr->wait[idx].health_id = bp->ip.ap.fmt.content.health.id;
rr->wait[idx].prevlink = bp->ip.ap.fmt.content.health.prevlink;
rr->wait[idx].min_blocked_pkt = bp->ip.ap.fmt.content.health.min_blocked_pkt;
rr->wait[idx].algo = app_ctx;
set_timeout (ctx, timeout, &rr->wait[idx], on_timeout_health);
release:
mv_buffer_rtof(app_ctx, fdinfo);
}
uint64_t rr_pkt_unroll(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx) {
struct rr_ctx* rr = app_ctx->misc;
struct evt_core_fdinfo* fdinfo = NULL;
struct buffer_packet* bp = NULL;
uint64_t delivered = 0;
while(1) {
//printf("Trying to deliver %d\n", rr->recv_id+1);
struct queued_pkt* def = &rr->real[(rr->content_id+1) % PACKET_BUFFER_SIZE];
if (!def->on) break;
rr_deliver(ctx, app_ctx, def);
delivered++;
//printf("Delivered %d\n", rr->recv_id);
}
return delivered;
}
//------
int algo_rr_on_stream(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
if (bp->ip.ap.fmt.headers.cmd == CMD_CLEAR) {
if (ctx->verbose > 1) fprintf(stderr, " [algo/rr] Received a CLEAR packet of size %d on URL %s\n", bp->ip.ap.fmt.headers.size, fdinfo->url);
// 1. Register packet in our queue
rr_pkt_register(ctx, fdinfo, bp);
// 2. Process queue
rr_pkt_unroll (ctx, app_ctx);
} else if (bp->ip.ap.fmt.headers.cmd == CMD_HEALTH) {
if (ctx->verbose > 1) fprintf(stderr, " [algo/rr] Received a HEALTH packet of size %d on URL %s\n", bp->ip.ap.fmt.headers.size, fdinfo->url);
rr_pkt_manage_links(ctx, fdinfo, bp);
} else {
fprintf(stderr, " [algo/rr] Packet CMD unrecognized (%d)\n", bp->ip.ap.fmt.headers.cmd);
mv_buffer_rtof(app_ctx, fdinfo);
}
return 0;
}
int algo_rr_on_datagram(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
struct evt_core_fdinfo *to_fdinfo = NULL;
uint16_t min_pkt;
char url[255];
size_t health_packet_size = sizeof(bp->ip.ap.fmt.headers) + sizeof(bp->ip.ap.fmt.content.health);
size_t max_size = sizeof(struct internet_packet) - health_packet_size;
if (ctx->verbose > 1) fprintf(stderr, " [algo/rr] Read a UDP packet on URL %s\n", fdinfo->url);
// 1. Prepare RR state and packet values
struct timespec curr;
int secs, nsecs;
uint64_t mili_sec;
if (clock_gettime(CLOCK_MONOTONIC, &curr) == -1){
perror("clock_gettime error");
exit(EXIT_FAILURE);
}
// 2. Compute delta t
secs = curr.tv_sec - rr->emit_time.tv_sec;
nsecs = curr.tv_nsec - rr->emit_time.tv_nsec;
rr->emit_time = curr;
mili_sec = secs * 1000 + nsecs / 1000000;
if (mili_sec > rr->mjit) mili_sec = rr->mjit;
// 3. Prepare fresh packet
assert(bp->ip.ap.fmt.headers.cmd == CMD_CLEAR);
bp->ip.ap.fmt.content.clear.id = rr->sent_content_id;
min_pkt = rr->sent_content_id;
rr->sent_content_id++;
if (bp->ip.ap.fmt.headers.size > max_size) {
fprintf(stderr, "Packet is too big to be relayed. Oops...\n");
exit(EXIT_FAILURE);
}
// 4. Append redundancy if needed
if (app_ctx->ap.redundant_data == 1) {
size_t current_size = get_full_size (bp);
size_t final_size = current_size + rr->prev_packet.ap.fmt.headers.size;
if (final_size <= max_size) {
min_pkt = rr->prev_packet.ap.fmt.content.clear.id;
append_buffer(&bp->ip.ap, bp->ap_count, &rr->prev_packet.ap); // We append previous packet
bp->ap_count++;
} else if (ctx->verbose) {
fprintf(stderr, " [algo/rr] Can't append redundancy (current=%ld, after=%ld, max=%ld)\n", current_size, final_size, max_size);
}
append_buffer(&rr->prev_packet.ap, 0, &bp->ip.ap); // We store current packet for next time
}
// 5. Append health packet
struct buffer_packet hp;
hp.ip.ap.fmt.headers.cmd = CMD_HEALTH;
hp.ip.ap.fmt.headers.size = sizeof(bp->ip.ap.fmt.headers) + sizeof(bp->ip.ap.fmt.content.health);
hp.ip.ap.fmt.content.health.id = rr->sent_health_id;
hp.ip.ap.fmt.content.health.deltat = mili_sec;
hp.ip.ap.fmt.content.health.prevlink = rr->current_link;
hp.ip.ap.fmt.content.health.bitfield = rr->remote_links;
hp.ip.ap.fmt.content.health.min_blocked_pkt = min_pkt;
rr->sent_health_id++;
append_buffer(&bp->ip.ap, bp->ap_count, &hp.ip.ap);
bp->ap_count++;
// 6. Try to find someone to send it
int max = 16;
uint8_t sel_link = rr->current_link;
while(max-- >= 0) {
if (app_ctx->ap.is_waiting_bootstrap && !app_ctx->is_rdy) goto not_ready; // Still bootstrapping
sel_link = (sel_link + 1) % app_ctx->ap.links;
sprintf(url, "tcp:write:127.0.0.1:%d", 7500 + sel_link); //@FIXME Hardcoded
to_fdinfo = evt_core_get_from_url (ctx, url);
if (to_fdinfo == NULL) continue; // Missing link
if (!app_ctx->ap.is_healing /* if healing deactivated */|| rr->my_links & (1 << sel_link) /* if link not down */ ) {
rr->current_link = sel_link;
mv_buffer_rtow (app_ctx, fdinfo, to_fdinfo);
main_on_tcp_write(ctx, to_fdinfo);
return 0;
} else {
struct buffer_packet* dup_bp = dup_buffer_tow(app_ctx, bp, to_fdinfo);
/*
* for later
dup_bp->ip.ap.fmt.content.health.min_blocked_pkt = 0;
dup_bp->ap_count = 1; // We want to send only health packet to help link recover... Bwarf same traffic on Tor...
*/
main_on_tcp_write(ctx, to_fdinfo);
}
}
not_ready:
// 3. We find no up target
fprintf(stderr, "Still bootstrapping or no link to forward data from %s in udp-read. Dropping packet :( \n", fdinfo->url);
mv_buffer_wtof (app_ctx, fdinfo);
return 0;
}
void on_timeout_health (struct evt_core_ctx* ctx, void* raw) {
struct timer_info* t = raw;
struct algo_ctx* app_ctx = t->algo;
struct rr_ctx* rr = app_ctx->misc;
// 1. Update link recovery window if needed
if (ring_gt(t->health_id, rr->health_id_late)) rr->health_id_late = t->health_id;
// 2. Blacklist previous link if needed
uint16_t prev_health_id = (t->health_id - 1);
uint16_t prev_health_idx = prev_health_id % PACKET_BUFFER_SIZE;
struct timer_info* t_old = &rr->wait[prev_health_idx];
if (t_old->health_id != prev_health_id) {
printf("Blacklist link=%d | ", t->prevlink);
rr->remote_links &= 0xff ^ 1 << t->prevlink;
show_link_availability (rr);
}
// 3. Deliver blocked packets
// @FIXME CRAPPY CODE / CRAPPY LOGIC
//printf("t->min_blocked_pkt=%d, rr->content_id=%d\n", t->min_blocked_pkt, rr->content_id);
if (ring_gt(t->min_blocked_pkt, rr->content_id) && !rr->real[t->min_blocked_pkt % PACKET_BUFFER_SIZE].on) {
fprintf(stderr, "min_blocked_packet has not been received, t->min_blocked_pkt=%d, rr->content_id=%d\n", t->min_blocked_pkt, rr->content_id);
exit(EXIT_FAILURE);
}
while (ring_gt(t->min_blocked_pkt, rr->content_id - 1)) {
rr->content_id++;
rr_pkt_unroll (ctx, app_ctx);
}
rr_pkt_unroll (ctx, app_ctx);
}
int algo_rr_on_err(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
// We do nothing
return 0;
}
void algo_rr_free(void* v) {
struct rr_ctx* rr = v;
free(rr);
}
void algo_rr_init(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx, struct algo_params* ap) {
struct rr_ctx* rr = malloc(sizeof(struct rr_ctx));
if (rr == NULL) {
perror("malloc failed for rr_init.");
exit(EXIT_FAILURE);
}
memset(rr, 0, sizeof(struct rr_ctx));
rr->mjit = 200;
rr->my_links = 0xff;
rr->remote_links = 0xff;
rr->sent_health_id = 1;
rr->sent_content_id = 1;
rr->health_id = 0;
rr->health_id_late = 0;
rr->content_id = 0;
rr->current_link = 0;
app_ctx->misc = rr;
app_ctx->free_misc = algo_rr_free;
init_timer(ctx);
}