tor_multipath_voip/src/algo_rr.c
2019-04-04 10:19:55 +02:00

568 lines
18 KiB
C

#include <sys/timerfd.h>
#include "algo_skel.h"
#include "algo_utils.h"
#include "utils.h"
struct waited_pkt {
uint16_t id;
int link_num;
uint8_t on;
int timer_fd;
};
struct deferred_pkt {
int link_fd;
int idx;
uint16_t id;
uint8_t on;
};
struct rr_ctx {
uint8_t my_links;
uint16_t my_links_ver;
uint8_t remote_links;
int64_t mjit;
uint16_t recv_id;
uint16_t recv_id_late;
uint16_t sent_id;
uint8_t current_link;
struct timespec emit_time;
struct deferred_pkt real[PACKET_BUFFER_SIZE];
struct waited_pkt wait[PACKET_BUFFER_SIZE];
};
int rr_on_tcp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
int rr_on_tcp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
int rr_on_udp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
int rr_on_udp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
int rr_on_tcp_co(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
int conn_sock1, conn_sock2;
struct sockaddr_in addr;
socklen_t in_len;
char url[1024], port[6];
struct evt_core_cat local_cat = {0};
struct evt_core_fdinfo to_fdinfo = {0};
to_fdinfo.cat = &local_cat;
to_fdinfo.url = url;
in_len = sizeof(addr);
conn_sock1 = accept(fdinfo->fd, (struct sockaddr*)&addr, &in_len);
if (conn_sock1 == -1 && errno == EAGAIN) return 1;
if (conn_sock1 == -1) goto co_error;
conn_sock2 = dup(conn_sock1);
if (conn_sock2 == -1) goto co_error;
//printf("fd=%d accepts, creating fds=%d,%d\n", fd, conn_sock1, conn_sock2);
url_get_port(port, fdinfo->url);
to_fdinfo.fd = conn_sock1;
to_fdinfo.cat->name = "tcp-read";
sprintf(to_fdinfo.url, "tcp:read:127.0.0.1:%s", port);
evt_core_add_fd (ctx, &to_fdinfo);
to_fdinfo.fd = conn_sock2;
to_fdinfo.cat->name = "tcp-write";
sprintf(to_fdinfo.url, "tcp:write:127.0.0.1:%s", port);
evt_core_add_fd (ctx, &to_fdinfo);
return 0;
co_error:
perror("Failed to handle new connection");
exit(EXIT_FAILURE);
}
void show_link_availability(struct rr_ctx* rr) {
printf("Links availability: my_links[");
for (int i = 0; i < 8; i++) {
if (rr->my_links & 1 << i) printf("U");
else printf("-");
}
printf("], rem_links[");
for (int i = 0; i < 8; i++) {
if (rr->remote_links & 1 << i) printf("U");
else printf("-");
}
printf("]\n");
}
int set_timeout(struct evt_core_ctx* evts, uint64_t milli_sec, struct waited_pkt* wpkt) {
struct timespec now;
struct itimerspec timer_config;
char url[1024];
struct evt_core_cat cat = {0};
struct evt_core_fdinfo fdinfo = {0};
fdinfo.cat = &cat;
fdinfo.url = url;
//printf("Will add a timeout of %ld ms\n", milli_sec);
if (clock_gettime(CLOCK_REALTIME, &now) == -1) {
perror("clock_gettime");
exit(EXIT_FAILURE);
}
uint64_t ns = now.tv_nsec + (milli_sec % 1000) * 1000000;
timer_config.it_value.tv_sec = now.tv_sec + milli_sec / 1000 + ns / 1000000000;
timer_config.it_value.tv_nsec = ns % 1000000000;
timer_config.it_interval.tv_sec = 60;
timer_config.it_interval.tv_nsec = 0;
fdinfo.fd = timerfd_create(CLOCK_REALTIME, 0);
if (fdinfo.fd == -1) {
perror("Unable to timerfd_create");
exit(EXIT_FAILURE);
}
if (timerfd_settime (fdinfo.fd, TFD_TIMER_ABSTIME, &timer_config, NULL) == -1) {
perror("Unable to timerfd_settime");
exit(EXIT_FAILURE);
}
fdinfo.cat->name = "timeout";
fdinfo.other = wpkt; // Should put the link number and the id
fdinfo.free_other = NULL;
sprintf(fdinfo.url, "timer:%ld:1", milli_sec);
evt_core_add_fd (evts, &fdinfo);
return fdinfo.fd;
}
void rr_pkt_register(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
char buffer[16];
url_get_port (buffer, fdinfo->url);
int link_num = atoi(buffer) - 7500; // @FIXME Hardcoded
//printf("Selected url %s for pkt %d to be queued for delivery\n", fdinfo->url, bp->ip.ap.str.id);
// 0. Update remote links
if (ring_lt(rr->recv_id_late, bp->ip.ap.str.id) && !(rr->remote_links & 1 << link_num)) {
printf("Activate link=%d | ", link_num);
rr->remote_links |= 1 << link_num; // Make sure that the link is marked as working
show_link_availability (rr);
}
// 1. Update my links I can use thanks to target feedback
if (bp->ip.ap.str.id > rr->my_links_ver && bp->ip.ap.str.bitfield != rr->my_links) {
rr->my_links = bp->ip.ap.str.bitfield;
rr->my_links_ver = bp->ip.ap.str.id;
printf("Update my links | ");
show_link_availability (rr);
}
// 2. If packet arrived too late, we discard it
if (ring_gt(rr->recv_id, bp->ip.ap.str.id - 1)) {
// Packet has already been delivered or dropped, we free the buffer
fprintf(stderr, "Packet %d arrived too late (current: %d)\n", bp->ip.ap.str.id, rr->recv_id);
mv_buffer_wtof (app_ctx, fdinfo);
return;
}
// 3. If packet arrived too early, we register a timer
//printf("%d < %d = %d\n", rr->recv_id, bp->ip.ap.str.id - 1, ring_lt(rr->recv_id, bp->ip.ap.str.id - 1));
if (ring_lt(rr->recv_id, bp->ip.ap.str.id - 1)) {
int64_t timeout = rr->mjit - (int64_t) bp->ip.ap.str.deltat;
//printf("%ld - %ld = %ld\n", rr->mjit, (int64_t) bp->ip.ap.str.deltat, timeout);
if (timeout <= 0) timeout = 0;
int idx_waited = (bp->ip.ap.str.id - 1) % PACKET_BUFFER_SIZE;
rr->wait[idx_waited].on = 1;
rr->wait[idx_waited].id = bp->ip.ap.str.id - 1;
rr->wait[idx_waited].link_num = bp->ip.ap.str.prevlink;
rr->wait[idx_waited].timer_fd = set_timeout(ctx, timeout, &rr->wait[idx_waited]);
}
// 4. If packet has not already a timer or has a wrong timer
int idx_real = bp->ip.ap.str.id % PACKET_BUFFER_SIZE;
if (rr->wait[idx_real].on && rr->wait[idx_real].id != bp->ip.ap.str.id) {
fprintf(stderr, "Waiting array is full, BUG\n");
exit(EXIT_FAILURE);
} else if (!rr->wait[idx_real].on) {
rr->wait[idx_real].on = 1;
rr->wait[idx_real].id = bp->ip.ap.str.id;
rr->wait[idx_real].link_num = link_num;
rr->wait[idx_real].timer_fd = set_timeout(ctx, rr->mjit + 1, &rr->wait[idx_real]);
}
// 5. We queue the packet
if (rr->real[idx_real].on && rr->real[idx_real].id != bp->ip.ap.str.id) {
fprintf(stderr, "Real array is full for id=%d, idx=%d, BUG: [\n", bp->ip.ap.str.id, idx_real);
for (int i = 0; i < PACKET_BUFFER_SIZE; i++) {
printf("\t%d => %d\n", i, rr->real[i].on);
}
printf("]\n");
exit(EXIT_FAILURE);
} else if (!rr->real[idx_real].on) {
rr->real[idx_real].on = 1;
rr->real[idx_real].id = bp->ip.ap.str.id;
rr->real[idx_real].idx = idx_real;
rr->real[idx_real].link_fd = fdinfo->fd;
mv_buffer_rtoa(app_ctx, fdinfo, &rr->real[idx_real].idx);
//printf("%d is added to real as %d\n", bp->ip.ap.str.id, idx_real);
} else {
fprintf(stdout, "Packet %d already received (current: %d)\n", bp->ip.ap.str.id, rr->recv_id);
mv_buffer_wtof (app_ctx, fdinfo);
}
}
void rr_deliver(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct deferred_pkt* dp) {
struct evt_core_fdinfo *to_fdinfo = NULL;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
char url[255];
// 1. Marked the packet as handled
dp->on = 0;
// 2. Get the buffer and update rr state
struct buffer_packet* bp = get_app_buffer (app_ctx, &dp->idx);
int idx_real = bp->ip.ap.str.id % PACKET_BUFFER_SIZE;
rr->real[idx_real].on = 0;
//printf("%d is removed from real as %d\n", bp->ip.ap.str.id, idx_real);
//printf("Selected url %s for pkt %d to be delivered\n", fdinfo->url, bp->ip.ap.str.id);
// 3. We update our cursor
rr->recv_id = bp->ip.ap.str.id;
// 4. We free the buffer if it's a control packet and quit
/*if (bp->ip.ap.str.flags & PKT_CONTROL) {
mv_buffer_atof (app_ctx, &dp->idx);
return;
}*/
// 5. Find its target
sprintf(url, "udp:write:127.0.0.1:%d", bp->ip.ap.str.port);
to_fdinfo = evt_core_get_from_url (ctx, url);
if (to_fdinfo == NULL) {
fprintf(stderr, "No fd for URL %s in udp:write for tcp-read. Dropping packet :( \n", url);
//mv_buffer_wtor (app_ctx, fdinfo, bp);
mv_buffer_atof (app_ctx, &dp->idx);
}
// 6. We move the buffer and notify the target
//mv_buffer_rtow (app_ctx, fdinfo, to_fdinfo, bp);
mv_buffer_atow (app_ctx, &dp->idx, to_fdinfo);
rr_on_udp_write(ctx, to_fdinfo);
}
void rr_pkt_unroll(struct evt_core_ctx* ctx, struct algo_ctx* app_ctx) {
struct rr_ctx* rr = app_ctx->misc;
struct evt_core_fdinfo* fdinfo = NULL;
struct buffer_packet* bp = NULL;
while(1) {
//printf("Trying to deliver %d\n", rr->recv_id+1);
struct deferred_pkt* def = &rr->real[(rr->recv_id+1) % PACKET_BUFFER_SIZE];
if (!def->on) break;
fdinfo = evt_core_get_from_fd (ctx, def->link_fd);
if (fdinfo == NULL) {
fprintf(stderr, "An error occured as the link seems to be closed for the requested fd\n");
rr->recv_id++;
continue;
}
rr_deliver(ctx, fdinfo, def);
//printf("Delivered %d\n", rr->recv_id);
}
}
//------
int rr_on_tcp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
int read_res = FDS_READY;
// 1. Get current read buffer OR a new read buffer OR subscribe to be notified later
if ((bp = get_read_buffer(app_ctx, fdinfo)) == NULL) return 1;
// 2. Try to read a whole packet in the buffer
while (bp->mode == BP_READING) {
read_res = read_packet_from_tcp (fdinfo->fd, bp);
if (read_res == FDS_ERR) goto co_error;
if (read_res == FDS_AGAIN) return 1;
}
// 3. Logic on packet
rr_pkt_register(ctx, fdinfo, bp);
rr_pkt_unroll (ctx, app_ctx);
return 0;
co_error:
perror("Failed to TCP read");
exit(EXIT_FAILURE);
}
int rr_on_udp_write (struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
int write_res = FDS_READY;
// 1. Get current write buffer OR a buffer from the waiting queue OR leave
if ((bp = get_write_buffer(app_ctx, fdinfo)) == NULL) return 1;
// 2. Write buffer
write_res = write_packet_to_udp(fdinfo->fd, bp, fdinfo->other);
if (write_res == FDS_ERR) goto co_error;
if (write_res == FDS_AGAIN) return 1;
// 3. A whole packet has been written
// Release the buffer and notify
mv_buffer_wtof(app_ctx, fdinfo);
notify_read(ctx, app_ctx);
return 0;
co_error:
perror("Failed to UDP write");
exit(EXIT_FAILURE);
}
int rr_on_udp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct evt_core_fdinfo *to_fdinfo = NULL;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
int read_res = FDS_READY;
char url[255];
// 1. Get current read buffer OR a new read buffer OR subscribe to be notified later
if ((bp = get_read_buffer(app_ctx, fdinfo)) == NULL) return 1;
// 2. Read packet from socket
bp->ip.ap.str.port = url_get_port_int (fdinfo->url);
read_res = read_packet_from_udp (fdinfo->fd, bp, fdinfo->other);
if (read_res == FDS_ERR) goto co_error;
if (read_res == FDS_AGAIN) return 1;
// 3. Prepare RR state and packet values
struct timespec curr;
int secs, nsecs;
uint64_t mili_sec;
if (clock_gettime(CLOCK_MONOTONIC, &curr) == -1){
perror("clock_gettime error");
exit(EXIT_FAILURE);
}
secs = curr.tv_sec - rr->emit_time.tv_sec;
nsecs = curr.tv_nsec - rr->emit_time.tv_nsec;
mili_sec = secs * 1000 + nsecs / 1000000;
if (mili_sec > rr->mjit) mili_sec = rr->mjit;
bp->ip.ap.str.id = rr->sent_id;
bp->ip.ap.str.flags = 0;
bp->ip.ap.str.deltat = mili_sec;
bp->ip.ap.str.bitfield = rr->remote_links;
bp->ip.ap.str.prevlink = rr->current_link;
//printf("Will send packet id=%d\n", bp->ip.ap.str.id);
rr->emit_time = curr;
rr->sent_id++;
int max = 10;
uint8_t sel_link = rr->current_link;
while(max-- >= 0) {
sel_link = (sel_link + 1) % 8;
sprintf(url, "tcp:write:127.0.0.1:%d", 7500 + sel_link); //@FIXME Hardcoded
to_fdinfo = evt_core_get_from_url (ctx, url);
if (to_fdinfo == NULL) continue; // Missing link
if (app_ctx->ap.is_waiting_bootstrap && !app_ctx->is_rdy) goto not_ready; // Some links are down
if (!app_ctx->ap.is_healing || rr->my_links & (1 << sel_link)) {
rr->current_link = sel_link;
mv_buffer_rtow (app_ctx, fdinfo, to_fdinfo);
rr_on_tcp_write(ctx, to_fdinfo);
return 0;
} else {
dup_buffer_tow(app_ctx, bp, to_fdinfo);
rr_on_tcp_write(ctx, to_fdinfo);
}
}
not_ready:
// 4. A whole packet has been read, we will find someone to write it
fprintf(stderr, "Still bootstrapping or no link to forward data from %s in udp-read. Dropping packet :( \n", fdinfo->url);
mv_buffer_wtof (app_ctx, fdinfo);
return 0;
co_error:
perror("Failed to UDP read");
exit(EXIT_FAILURE);
}
int rr_on_tcp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
int write_res = FDS_READY;
// 0. Show some information about circuits
uint8_t is_rdy = fdinfo->cat->socklist->len >= app_ctx->link_count ? 1 : 0;
if (!app_ctx->is_rdy && is_rdy) printf("=== Our %d requested circuits are now up ===\n", app_ctx->link_count);
else if (app_ctx->is_rdy && !is_rdy) printf("=== Only %d/%d circuits are available, results could be biased ===\n", fdinfo->cat->socklist->len, app_ctx->link_count);
app_ctx->is_rdy = app_ctx->is_rdy || is_rdy; // @FIXME prevent deactivation for our tests
// 1. Get current write buffer OR a buffer from the waiting queue OR leave
if ((bp = get_write_buffer(app_ctx, fdinfo)) == NULL) return 1;
// 2. Write data from the buffer to the socket
while (bp->mode == BP_WRITING) {
write_res = write_packet_to_tcp(fdinfo->fd, bp);
if (write_res == FDS_ERR) goto co_error;
if (write_res == FDS_AGAIN) return 1;
}
// 3. A whole packet has been written
// Release the buffer and notify
mv_buffer_wtof(app_ctx, fdinfo);
notify_read(ctx, app_ctx);
return 0;
co_error:
perror("Failed to TCP write");
exit(EXIT_FAILURE);
}
int rr_on_timer(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
uint64_t ctr;
ssize_t tmr_rd;
tmr_rd = read(fdinfo->fd, &ctr, sizeof(ctr));
if (tmr_rd == -1 && errno == EAGAIN) return 1;
if (tmr_rd < 0) {
perror("read on timer");
fprintf(stderr, "An error occured on timer fd=%d\n", fdinfo->fd);
exit(EXIT_FAILURE);
}
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
struct waited_pkt* pkt = fdinfo->other;
pkt->on = 0;
if (ring_gt (pkt->id, rr->recv_id_late)) rr->recv_id_late = pkt->id;
if (ring_le (pkt->id, rr->recv_id)) goto end;
printf("Timer reached for packet %d\n", pkt->id);
// !BLACKLIST LINK
printf("Blacklist link=%d | ", pkt->link_num);
rr->remote_links &= 0xff ^ 1 << pkt->link_num;
show_link_availability (rr);
while (ring_lt(rr->recv_id, pkt->id)) {
rr->recv_id++;
rr_pkt_unroll (ctx, app_ctx);
}
end:
evt_core_rm_fd(ctx, fdinfo->fd);
return 1;
}
int rr_on_err(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct buffer_packet* bp;
// 1. If has a "used" buffer, remove it
bp = g_hash_table_lookup (app_ctx->used_buffer, &(fdinfo->fd));
if (bp != NULL) {
g_hash_table_remove (app_ctx->used_buffer, &(fdinfo->fd));
memset(bp, 0, sizeof(struct buffer_packet));
g_queue_push_tail(app_ctx->free_buffer, bp);
}
// 2. If appears in the write waiting queue, remove it
GQueue* writew = g_hash_table_lookup (app_ctx->write_waiting, &(fdinfo->fd));
while (writew != NULL && (bp = g_queue_pop_head (writew)) != NULL) {
memset(bp, 0, sizeof(struct buffer_packet));
g_queue_push_tail(app_ctx->free_buffer, bp);
}
if (writew) g_hash_table_remove (app_ctx->write_waiting, &(fdinfo->fd));
// 3. If appears in the read waiting queue, remove it
g_queue_remove_all (app_ctx->read_waiting, &(fdinfo->fd));
return 0;
}
void algo_rr(struct evt_core_ctx* evt, struct algo_skel* as, struct algo_params* ap) {
struct algo_ctx* ctx = malloc(sizeof(struct algo_ctx));
if (ctx == NULL) goto init_err;
memset(ctx, 0, sizeof(struct algo_ctx));
ctx->free_buffer = g_queue_new ();
ctx->read_waiting = g_queue_new ();
ctx->application_waiting = g_hash_table_new (NULL, NULL);
ctx->used_buffer = g_hash_table_new(g_int_hash, g_int_equal);
ctx->write_waiting = g_hash_table_new_full (g_int_hash, g_int_equal, NULL, naive_free_simple);
ctx->link_count = 8;
ctx->is_rdy = 0;
ctx->ap = *ap;
struct rr_ctx* rr = malloc(sizeof(struct rr_ctx));
if (rr == NULL) goto init_err;
memset(rr, 0, sizeof(struct rr_ctx));
rr->mjit = 200;
rr->my_links = 0xff;
rr->remote_links = 0xff;
rr->sent_id = 1;
rr->recv_id = 0;
rr->recv_id_late = 0;
ctx->misc = rr;
for (int i = 0; i < sizeof(ctx->bps) / sizeof(ctx->bps[0]); i++) {
g_queue_push_tail(ctx->free_buffer, &(ctx->bps[i]));
}
as->on_tcp_co.name = "tcp-listen";
as->on_tcp_co.flags = EPOLLIN;
as->on_tcp_co.free_app_ctx = free_nothing;
as->on_tcp_co.cb = rr_on_tcp_co;
as->on_tcp_read.name = "tcp-read";
as->on_tcp_read.flags = EPOLLIN | EPOLLET | EPOLLRDHUP;
as->on_tcp_read.app_ctx = ctx;
as->on_tcp_read.free_app_ctx = free_naive;
as->on_tcp_read.cb = rr_on_tcp_read;
as->on_tcp_read.err_cb = rr_on_err;
ctx->ref_count++;
as->on_udp_read.name = "udp-read";
as->on_udp_read.flags = EPOLLIN | EPOLLET;
as->on_udp_read.app_ctx = ctx;
as->on_udp_read.free_app_ctx = free_naive;
as->on_udp_read.cb = rr_on_udp_read;
as->on_udp_read.err_cb = rr_on_err;
ctx->ref_count++;
as->on_tcp_write.name = "tcp-write";
as->on_tcp_write.flags = EPOLLOUT | EPOLLET | EPOLLRDHUP;
as->on_tcp_write.app_ctx = ctx;
as->on_tcp_write.free_app_ctx = free_naive;
as->on_tcp_write.cb = rr_on_tcp_write;
as->on_tcp_write.err_cb = rr_on_err;
ctx->ref_count++;
as->on_udp_write.name = "udp-write";
as->on_udp_write.flags = EPOLLOUT | EPOLLET;
as->on_udp_write.app_ctx = ctx;
as->on_udp_write.free_app_ctx = free_naive;
as->on_udp_write.cb = rr_on_udp_write;
as->on_udp_write.err_cb = rr_on_err;
ctx->ref_count++;
struct evt_core_cat tcat = {
.name = "timeout",
.flags = EPOLLIN | EPOLLET,
.app_ctx = ctx,
.free_app_ctx = free_naive,
.cb = rr_on_timer,
.err_cb = NULL
};
ctx->ref_count++;
evt_core_add_cat(evt, &tcat);
return;
init_err:
fprintf(stderr, "Failed to init algo naive\n");
exit(EXIT_FAILURE);
}