scripts | ||
src | ||
.gitignore | ||
CMakeLists.txt | ||
Dockerfile | ||
README.md | ||
torrc_simple |
Donar
Quickstart
Installation
The following steps are provided for Fedora 29 Workstation. We assume you have two containers or two virtual machines or two physical machines.
To setup each machine, you should do:
sudo dnf install --refresh -y cmake gcc gcc-c++ ninja-build glib2-devel glib2 tor valgrind git net-tools nmap-ncat
git clone https://gitlab.inria.fr/qdufour/donar.git
cd donar
mkdir out && cd out && cmake -GNinja .. && ninja && sudo ninja install
Commands
Now your machine is ready and you will be able to use the following commads:
donar
is our main binary. It can be run as a client or a server.udpecho
is a simple udp server that send back the data sent to him.torecho
is a simple tcp server that send back the data sent to him + configure the tor daemon to generate a hidden service URL and be accessible on the Tor network.measlat
can be used in conjunction withudpecho
ortorecho
to measure a Rount Time Trip (RTT)
Try to run the previous commands in your terminal without any option, you will see their help.
At any moment, you can use the following commands that are not part of the project to understand what you are doing:
netstat -ulpn # Show programs that listen on an UDP port
netstat -tlpn # Show prograns that listen on a TCP port
nc 127.0.0.1 8000 # Connect via TCP on server 127.0.0.1 listening on port 8000
nc -u 127.0.0.1 8000 # Connect via UDP on server 127.0.0.1 listening on port 8000
Introduction to the debug tools udpecho
and measlat
Now let's start simple, we will launch our udp echo server and access it locally:
udpecho -p 8000 &
nc 127.0.0.1 8000
If you write some data on your terminal and press enter, you will see that your data has been repeated. Well done!
Now, instead of using nc
, we will use measlat
to use this echo server to measure latencies (make sure that udpecho
is still running):
measlat -h 127.0.0.1 -p 8000 -t udp
measlat
will send one packet to our udpecho server and wait to receive it back, measure the time it took, display it and exit.
You can use measlat
more extensively by defining the number of measures to do, an interval and the size of the packet:
measlat -h 127.0.0.1 -p 8000 -t udp -c 10 -i 100 -s 150
Introduction to donar
Now, let's introduce our main project.
First, kill all the remaining processes killall udpecho measlat nc
.
On both machine
Move to the donar repository root where you will see the torrc_simple
file.
We will need to start by launching tor in a terminal:
tor -f ./torrc_simple
On machine A
Launch Donar server in a second terminal:
donar -s -a naive -e 3000 -r 3001
In a third terminal, launch your echo service:
udpecho -p 3000
Display the content of the file onion_services.pub
that has been created in your working directory.
On machine B
Copy the content of the file onion_services.pub
that is on machine A to machine B in a file named machine_a.pub
.
Now, run Donar client in a second terminal:
donar -c -a naive -o machine_a.pub -r 3000 -e 3001
In a third terminal, launch your echo service:
udpecho -p 3001
On machine A You can access to the echo service from machine B by running:
nc 127.13.3.7 3001
# or
measlat -h 127.13.3.7 -p 3001 -t udp
On machine B You can access to the echo service from machine A by running:
nc 127.13.3.7 3000
# or
measlat -h 127.13.3.7 -p 3000 -t udp
If it works, that's all! You are now mastering Donar!
Linphone configuration
Choose a SIP UDP, Audio RTP/UDP and Video RTP/UDP that is different between your clients. Go to manage account. Add a new SIP proxy.
Username: <username>@127.13.3.7:<SIP_PORT>
Proxy: 127.13.3.7:<SIP_PORT>
Leave the rest empty.
Uncheck all the checkboxes.
Docker build
sudo docker build -t registry.gitlab.inria.fr/qdufour/donar .
sudo docker push registry.gitlab.inria.fr/qdufour/donar
sudo docker pull registry.gitlab.inria.fr/qdufour/donar
mkdir -p ./{xp1-shared,xp1-res}
sudo chown -R 1000 ./{xp1-shared,xp1-res}
sudo docker run -t -i \
--privileged \
-v `pwd`/xp1-shared:/home/donar/shared \
registry.gitlab.inria.fr/qdufour/donar \
xp1-server
sudo docker run -t -i \
--privileged \
-v `pwd`/xp1-res:/home/donar/res \
-v `pwd`/xp1-shared:/home/donar/shared \
registry.gitlab.inria.fr/qdufour/donar \
xp1-client 1000 100 100
Run an XP instance
sudo ./scripts/xp1 1000 100 100
Run instances in parallel
We generate the name of the algorithm to run on the right side of the parallel command.
The idea is to generate a sequence like the following: orig naive rr rrh orig naive rr rrh orig...
.
parallel -j 12 bash -c './xp-instance-runner $1 6000 100 100' -- `xp0=orig xp1=naive xp2=rr xp3=rrh; for i in {0..99}; do q='xp'$((i % 4)); echo ${!q}; done`
parallel.moreutils -j 16 bash -c './xp-instance-runner $0 6000 100 100' -- `xp0=orig xp1=naive xp2=rr xp3=rrh; for i in {0..219}; do q='xp'$((i % 4)); echo ${!q}; done`
Tests:
parallel.moreutils -j 16 bash -c './xp-instance-runner rr 6000 100 100' -- `seq 0 15`
Helpers
Track measures that didn't finish:
ls | grep -P '^naive-|^rrh-|^rr-|^orig-' | while read n; do echo -n "$n "; tail -n1 $n/res/*.csv ; done | grep -v "Measurement done"
Check if timer's bug occured:
ls | grep -P '^naive-|^rrh-|^rr-|^orig-' | while read n; do echo "$n "; grep 'bug' $n/log/client-measlat-stderr.log; done