tor_multipath_voip/src/algo_rr.c
2019-03-19 13:50:38 +01:00

365 lines
11 KiB
C

#include <sys/timerfd.h>
#include "algo_skel.h"
#include "algo_utils.h"
#include "utils.h"
#define WAITING 10
struct deferred_pkt {
int link_fd;
struct buffer_packet* bp;
};
struct rr_ctx {
uint8_t my_links;
uint16_t my_links_ver;
uint8_t remote_links;
uint16_t mjit;
uint16_t recv_id;
uint16_t sent_id;
uint8_t current_link;
struct deferred_pkt real[WAITING];
struct buffer_packet stub_bp;
};
int rr_on_tcp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
int rr_on_tcp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
int rr_on_udp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
int rr_on_udp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo);
int rr_on_tcp_co(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
int conn_sock1, conn_sock2;
struct sockaddr_in addr;
socklen_t in_len;
char url[1024], port[6];
struct evt_core_cat local_cat = {0};
struct evt_core_fdinfo to_fdinfo = {0};
to_fdinfo.cat = &local_cat;
to_fdinfo.url = url;
in_len = sizeof(addr);
conn_sock1 = accept(fdinfo->fd, (struct sockaddr*)&addr, &in_len);
if (conn_sock1 == -1) goto co_error;
conn_sock2 = dup(conn_sock1);
if (conn_sock2 == -1) goto co_error;
//printf("fd=%d accepts, creating fds=%d,%d\n", fd, conn_sock1, conn_sock2);
url_get_port(port, fdinfo->url);
to_fdinfo.fd = conn_sock1;
to_fdinfo.cat->name = "tcp-read";
sprintf(to_fdinfo.url, "tcp:read:127.0.0.1:%s", port);
evt_core_add_fd (ctx, &to_fdinfo);
to_fdinfo.fd = conn_sock2;
to_fdinfo.cat->name = "tcp-write";
sprintf(to_fdinfo.url, "tcp:write:127.0.0.1:%s", port);
evt_core_add_fd (ctx, &to_fdinfo);
return 1;
co_error:
perror("Failed to handle new connection");
exit(EXIT_FAILURE);
}
void set_timeout(struct evt_core_ctx* evts, uint64_t micro_sec, int64_t link) {
struct timespec now;
struct itimerspec timer_config;
char url[1024];
struct evt_core_cat cat = {0};
struct evt_core_fdinfo fdinfo = {0};
fdinfo.cat = &cat;
fdinfo.url = url;
if (clock_gettime(CLOCK_REALTIME, &now) == -1) {
perror("clock_gettime");
exit(EXIT_FAILURE);
}
timer_config.it_value.tv_sec = now.tv_sec + micro_sec / 1000;
timer_config.it_value.tv_nsec = now.tv_nsec + micro_sec % 1000 * 1000000;
timer_config.it_interval.tv_sec = 60;
timer_config.it_interval.tv_nsec = 0;
fdinfo.fd = timerfd_create(CLOCK_REALTIME, 0);
if (fdinfo.fd == -1) {
perror("Unable to timerfd_create");
exit(EXIT_FAILURE);
}
if (timerfd_settime (fdinfo.fd, TFD_TIMER_ABSTIME, &timer_config, NULL) == -1) {
perror("Unable to timerfd_time");
exit(EXIT_FAILURE);
}
fdinfo.cat->name = "timeout";
fdinfo.other = (void*)link; // Should put the link number and the id
fdinfo.free_other = NULL;
sprintf(fdinfo.url, "timer:%ld:1", micro_sec);
evt_core_add_fd (evts, &fdinfo);
}
int rr_update_states(struct evt_core_ctx* ctx, struct buffer_packet* bp, struct evt_core_fdinfo* fdinfo) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
// 1. Update links I can use thanks to target feedback
if (bp->ip.ap.str.id > rr->my_links_ver) {
rr->my_links = bp->ip.ap.str.bitfield;
rr->my_links_ver = bp->ip.ap.str.id;
}
// 2. If packet arrived too late
if (ring_gt(rr->recv_id, bp->ip.ap.str.id - 1)) {
if (bp->ip.ap.str.flags & PKT_TIMEOUT) return 0; // We don't use real buffer pkt for PKT_TIMEOUT
// Packet has already been delivered or dropped, we free the buffer
g_hash_table_remove (app_ctx->used_buffer, &(fdinfo->fd));
memset(bp, 0, sizeof(struct buffer_packet));
g_queue_push_tail(app_ctx->free_buffer, bp);
return 0;
}
// 3. If packet arrived too early
if (ring_lt(rr->recv_id, bp->ip.ap.str.id - 1)) {
int64_t timeout = rr->mjit - (int64_t) bp->ip.ap.str.deltat;
if (timeout <= 0) timeout = 0;
set_timeout(ctx, timeout, bp->ip.ap.str.prevlink);
// Add a buffer to stub too
// Bitfield can be anything as a greater packet has triggered the bitfield update before
int idx = bp->ip.ap.str.id % PACKET_BUFFER_SIZE;
rr->real[idx].bp = bp;
rr->real[idx].link_fd = fdinfo->fd;
return 0;
}
// 4. If we were waiting this packet
rr->recv_id = bp->ip.ap.str.id;
char buffer[16];
url_get_port (buffer, fdinfo->url);
int link_num = atoi(buffer) - 7500; // @FIXME Hardcoded
// 4.1 This is a timeout packet, we set the link as dead
if (bp->ip.ap.str.flags & PKT_TIMEOUT) {
rr->remote_links &= (1 << link_num) ^ UINT16_MAX;
return 0;
}
// 4.2 This is a control packet, we set the link as alive
if (bp->ip.ap.str.flags & PKT_CONTROL) {
rr->remote_links |= 1 << link_num;
return 0;
}
return 1;
}
void rr_deliver(struct evt_core_ctx* ctx, struct buffer_packet* bp, struct evt_core_fdinfo* fdinfo) {
struct evt_core_fdinfo *to_fdinfo = NULL;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
char url[255];
// 1. A whole packet has been read, we will find its target
sprintf(url, "udp:write:127.0.0.1:%d", bp->ip.ap.str.port);
to_fdinfo = evt_core_get_from_url (ctx, url);
if (to_fdinfo == NULL) {
fprintf(stderr, "No fd for URL %s in udp:write for tcp-read. Dropping packet :( \n", url);
mv_buffer_wtor (app_ctx, fdinfo, bp);
}
// 2. We move the buffer and notify the target
mv_buffer_rtow (app_ctx, fdinfo, to_fdinfo, bp);
rr_on_udp_write(ctx, to_fdinfo);
}
void rr_pkt_recv(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo, struct buffer_packet* bp) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
do {
if(rr_update_states(ctx, bp, fdinfo)) rr_deliver(ctx, bp, fdinfo);
do {
struct deferred_pkt* def = &rr->real[(rr->recv_id+1) % PACKET_BUFFER_SIZE];
if (def->bp == NULL) break;
def->bp = NULL;
struct evt_core_fdinfo* fdinfo = evt_core_get_from_fd (ctx, def->link_fd);
if (fdinfo == NULL) {
fprintf(stderr, "An error occured as the link seems to be closed for the requested fd\n");
rr->recv_id++;
}
} while (fdinfo == NULL);
} while(1);
}
int rr_on_tcp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
int read_res = FDS_READY;
// 1. Get current read buffer OR a new read buffer OR subscribe to be notified later
if ((bp = get_read_buffer(app_ctx, fdinfo)) == NULL) return 1;
// 2. Try to read a whole packet in the buffer
while (bp->mode == BP_READING) {
read_res = read_packet_from_tcp (fdinfo->fd, bp);
if (read_res == FDS_ERR) goto co_error;
if (read_res == FDS_AGAIN) return 1;
}
// 3. Logic on packet
rr_pkt_recv (ctx, fdinfo, bp);
return 0;
co_error:
perror("Failed to TCP read");
exit(EXIT_FAILURE);
}
int rr_on_udp_write (struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
int write_res = FDS_READY;
// 1. Get current write buffer OR a buffer from the waiting queue OR leave
if ((bp = get_write_buffer(app_ctx, fdinfo)) == NULL) return 1;
// 2. Write buffer
write_res = write_packet_to_udp(fdinfo->fd, bp, fdinfo->other);
if (write_res == FDS_ERR) goto co_error;
if (write_res == FDS_AGAIN) return 1;
// 3. A whole packet has been written
// Release the buffer and notify
mv_buffer_wtor(app_ctx, fdinfo, bp);
notify_read(ctx, app_ctx);
return 0;
co_error:
perror("Failed to UDP write");
exit(EXIT_FAILURE);
}
int rr_on_timer(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
uint16_t id;
evt_core_rm_fd (ctx, fdinfo->fd); // We use the timeout only once
int fd = (int)fdinfo->other;
struct evt_core_fdinfo* tfdinfo = evt_core_get_from_fd (ctx, fd);
if (tfdinfo == NULL) {
fprintf(stderr, "An error occured as the link seems to be closed for the requested fd\n");
rr->recv_id++;
return 1;
}
rr->stub_bp.ip.ap.str.id = 0; //?
rr->stub_bp.ip.ap.str.flags = PKT_TIMEOUT;
rr->stub_bp.ip.ap.str.deltat = rr->mjit;
rr->stub_bp.ip.ap.str.prevlink = UINT8_MAX;
rr_pkt_recv (ctx, tfdinfo, &rr->stub_bp);
return 1;
}
int rr_on_err(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct buffer_packet* bp;
// 1. If has a "used" buffer, remove it
bp = g_hash_table_lookup (app_ctx->used_buffer, &(fdinfo->fd));
if (bp != NULL) {
g_hash_table_remove (app_ctx->used_buffer, &(fdinfo->fd));
memset(bp, 0, sizeof(struct buffer_packet));
g_queue_push_tail(app_ctx->free_buffer, bp);
}
// 2. If appears in the write waiting queue, remove it
GQueue* writew = g_hash_table_lookup (app_ctx->write_waiting, &(fdinfo->fd));
while (writew != NULL && (bp = g_queue_pop_head (writew)) != NULL) {
memset(bp, 0, sizeof(struct buffer_packet));
g_queue_push_tail(app_ctx->free_buffer, bp);
}
g_hash_table_remove (app_ctx->write_waiting, &(fdinfo->fd));
// 3. If appears in the read waiting queue, remove it
g_queue_remove_all (app_ctx->read_waiting, &(fdinfo->fd));
return 0;
}
void algo_rr(struct evt_core_ctx* evt, struct algo_skel* as) {
struct algo_ctx* ctx = malloc(sizeof(struct algo_ctx));
if (ctx == NULL) goto init_err;
memset(ctx, 0, sizeof(struct algo_ctx));
ctx->free_buffer = g_queue_new ();
ctx->read_waiting = g_queue_new ();
ctx->used_buffer = g_hash_table_new(g_int_hash, g_int_equal);
ctx->write_waiting = g_hash_table_new_full (g_int_hash, g_int_equal, NULL, naive_free_simple);
struct rr_ctx* rr = malloc(sizeof(struct rr_ctx));
if (rr == NULL) goto init_err;
memset(rr, 0, sizeof(struct rr_ctx));
rr->mjit = 200;
rr->my_links = 0xff;
rr->remote_links = 0xff;
ctx->misc = rr;
for (int i = 0; i < sizeof(ctx->bps) / sizeof(ctx->bps[0]); i++) {
g_queue_push_tail(ctx->free_buffer, &(ctx->bps[i]));
}
as->on_tcp_co.name = "tcp-listen";
as->on_tcp_co.flags = EPOLLIN;
as->on_tcp_co.free_app_ctx = free_nothing;
as->on_tcp_co.cb = rr_on_tcp_co;
as->on_tcp_read.name = "tcp-read";
as->on_tcp_read.flags = EPOLLIN | EPOLLET | EPOLLRDHUP;
as->on_tcp_read.app_ctx = ctx;
as->on_tcp_read.free_app_ctx = free_naive;
as->on_tcp_read.cb = rr_on_tcp_read;
as->on_tcp_read.err_cb = rr_on_err;
ctx->ref_count++;
/*
as->on_udp_read.name = "udp-read";
as->on_udp_read.flags = EPOLLIN | EPOLLET;
as->on_udp_read.app_ctx = ctx;
as->on_udp_read.free_app_ctx = free_naive;
as->on_udp_read.cb = on_udp_read;
as->on_udp_read.err_cb = on_err;
ctx->ref_count++;
as->on_tcp_write.name = "tcp-write";
as->on_tcp_write.flags = EPOLLOUT | EPOLLET | EPOLLRDHUP;
as->on_tcp_write.app_ctx = ctx;
as->on_tcp_write.free_app_ctx = free_naive;
as->on_tcp_write.cb = on_tcp_write;
as->on_tcp_write.err_cb = on_err;
ctx->ref_count++;
*/
as->on_udp_write.name = "udp-write";
as->on_udp_write.flags = EPOLLOUT | EPOLLET;
as->on_udp_write.app_ctx = ctx;
as->on_udp_write.free_app_ctx = free_naive;
as->on_udp_write.cb = rr_on_udp_write;
as->on_udp_write.err_cb = rr_on_err;
ctx->ref_count++;
struct evt_core_cat tcat = {
.name = "timeout",
.flags = EPOLLIN | EPOLLET,
.app_ctx = ctx,
.free_app_ctx = free_naive,
.cb = rr_on_timer,
.err_cb = NULL
};
ctx->ref_count++;
evt_core_add_cat(evt, &tcat);
return;
init_err:
fprintf(stderr, "Failed to init algo naive\n");
exit(EXIT_FAILURE);
}