tor_multipath_voip/src/proxy.c

249 lines
7.7 KiB
C

#include "proxy.h"
int main_on_tcp_co(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
int conn_sock1, conn_sock2;
struct sockaddr_in addr;
socklen_t in_len;
char url[1024], port[6];
struct evt_core_cat local_cat = {0};
struct evt_core_fdinfo to_fdinfo = {0};
to_fdinfo.cat = &local_cat;
to_fdinfo.url = url;
in_len = sizeof(addr);
conn_sock1 = accept(fdinfo->fd, (struct sockaddr*)&addr, &in_len);
if (conn_sock1 == -1 && errno == EAGAIN) return 1;
if (conn_sock1 == -1) goto co_error;
conn_sock2 = dup(conn_sock1);
if (conn_sock2 == -1) goto co_error;
//printf("fd=%d accepts, creating fds=%d,%d\n", fd, conn_sock1, conn_sock2);
url_get_port(port, fdinfo->url);
to_fdinfo.fd = conn_sock1;
to_fdinfo.cat->name = "tcp-read";
sprintf(to_fdinfo.url, "tcp:read:127.0.0.1:%s", port);
evt_core_add_fd (ctx, &to_fdinfo);
to_fdinfo.fd = conn_sock2;
to_fdinfo.cat->name = "tcp-write";
sprintf(to_fdinfo.url, "tcp:write:127.0.0.1:%s", port);
evt_core_add_fd (ctx, &to_fdinfo);
return 0;
co_error:
perror("Failed to handle new connection");
exit(EXIT_FAILURE);
}
int main_on_tcp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
int read_res = FDS_READY;
if (ctx->verbose > 1) fprintf(stderr, " [proxy] Get current read buffer OR a new read buffer OR subscribe to be notified later\n");
if ((bp = get_read_buffer(app_ctx, fdinfo)) == NULL) return 1;
if (ctx->verbose > 1) fprintf(stderr, " [proxy] Try to read a whole packet in the buffer\n");
while (bp->mode == BP_READING) {
read_res = read_packet_from_tcp (fdinfo->fd, bp);
if (read_res == FDS_ERR) goto co_error;
if (read_res == FDS_AGAIN) return 1;
}
if (ctx->verbose > 1) fprintf(stderr, " [proxy] Call logic on packet\n");
return app_ctx->desc->on_stream(ctx, fdinfo, bp);
co_error:
perror("Failed to TCP read");
evt_core_rm_fd (ctx, fdinfo->fd);
return 1;
}
int main_on_udp_read(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
int read_res = FDS_READY;
char url[255];
// 1. Get current read buffer OR a new read buffer OR subscribe to be notified later
if ((bp = get_read_buffer(app_ctx, fdinfo)) == NULL) return 1;
// 2. Read packet from socket
bp->ip.ap.fmt.content.clear.port = url_get_port_int (fdinfo->url);
read_res = read_packet_from_udp (fdinfo->fd, bp, fdinfo->other);
if (read_res == FDS_ERR) goto co_error;
if (read_res == FDS_AGAIN) return 1;
// 3. Apply logic
return app_ctx->desc->on_datagram(ctx, fdinfo, bp);
co_error:
perror("Failed to UDP read");
return 0;
}
int main_on_tcp_write(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct rr_ctx* rr = app_ctx->misc;
int write_res = FDS_READY;
// 0. Show some information about circuits
uint8_t is_rdy = fdinfo->cat->socklist->len >= app_ctx->link_count ? 1 : 0;
if (!app_ctx->is_rdy && is_rdy) printf("=== Our %d requested circuits are now up ===\n", app_ctx->link_count);
else if (app_ctx->is_rdy && !is_rdy) printf("=== Only %d/%d circuits are available, results could be biased ===\n", fdinfo->cat->socklist->len, app_ctx->link_count);
app_ctx->is_rdy = app_ctx->is_rdy || is_rdy; // @FIXME prevent deactivation for our tests
// 1. Get current write buffer OR a buffer from the waiting queue OR leave
if ((bp = get_write_buffer(app_ctx, fdinfo)) == NULL) return 1;
// 2. Write data from the buffer to the socket
while (bp->mode == BP_WRITING) {
write_res = write_packet_to_tcp(fdinfo->fd, bp);
if (write_res == FDS_ERR) goto co_error;
if (write_res == FDS_AGAIN) return 1;
}
// 3. A whole packet has been written
// Release the buffer and notify
mv_buffer_wtof(app_ctx, fdinfo);
notify_read(ctx, app_ctx);
return 0;
co_error:
perror("Failed to TCP write");
evt_core_rm_fd (ctx, fdinfo->fd);
return 1;
}
int main_on_udp_write (struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct buffer_packet* bp;
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
int write_res = FDS_READY;
// 1. Get current write buffer OR a buffer from the waiting queue OR leave
if ((bp = get_write_buffer(app_ctx, fdinfo)) == NULL) return 1;
// 2. Write buffer
write_res = write_packet_to_udp(fdinfo->fd, bp, fdinfo->other);
if (write_res == FDS_ERR) goto co_error;
if (write_res == FDS_AGAIN) return 1;
// 3. A whole packet has been written
// Release the buffer and notify
mv_buffer_wtof(app_ctx, fdinfo);
notify_read(ctx, app_ctx);
return 0;
co_error:
perror("Failed to UDP write");
return 0;
}
int main_on_err(struct evt_core_ctx* ctx, struct evt_core_fdinfo* fdinfo) {
struct algo_ctx* app_ctx = fdinfo->cat->app_ctx;
struct buffer_packet* bp;
// 1. If has a "used" buffer, remove it
mv_buffer_rtof (app_ctx, fdinfo);
// 2. If appears in the write waiting queue, remove it
while (get_write_buffer (app_ctx, fdinfo) != NULL) {
mv_buffer_wtof(app_ctx, fdinfo);
}
// 3. If appears in the read waiting queue, remove it
g_queue_remove_all (app_ctx->read_waiting, &(fdinfo->fd));
return app_ctx->desc->on_err(ctx, fdinfo);
}
void algo_main_init(struct evt_core_ctx* evt, struct algo_params* ap) {
struct algo_ctx* ctx = malloc(sizeof(struct algo_ctx));
if (ctx == NULL) goto init_err;
memset(ctx, 0, sizeof(struct algo_ctx));
ctx->free_buffer = g_queue_new ();
ctx->read_waiting = g_queue_new ();
ctx->application_waiting = g_hash_table_new (NULL, NULL);
ctx->used_buffer = g_hash_table_new(g_int_hash, g_int_equal);
ctx->write_waiting = g_hash_table_new_full (g_int_hash, g_int_equal, NULL, naive_free_simple);
ctx->link_count = 8;
ctx->is_rdy = 0;
ctx->ap = *ap;
for (int i = 0; i < sizeof(ctx->bps) / sizeof(ctx->bps[0]); i++) {
memset(&(ctx->bps[i]), 0, sizeof(struct buffer_packet));
g_queue_push_tail(ctx->free_buffer, &(ctx->bps[i]));
}
struct evt_core_cat tcp_listen = {
.name = "tcp-listen",
.flags = EPOLLIN,
.app_ctx = ctx,
.free_app_ctx = free_naive,
.cb = main_on_tcp_co,
.err_cb = NULL
};
ctx->ref_count++;
evt_core_add_cat(evt, &tcp_listen);
struct evt_core_cat tcp_read = {
.name = "tcp-read",
.flags = EPOLLIN | EPOLLET | EPOLLRDHUP,
.app_ctx = ctx,
.free_app_ctx = free_naive,
.cb = main_on_tcp_read,
.err_cb = main_on_err
};
ctx->ref_count++;
evt_core_add_cat(evt, &tcp_read);
struct evt_core_cat udp_read = {
.name = "udp-read",
.flags = EPOLLIN | EPOLLET | EPOLLRDHUP,
.app_ctx = ctx,
.free_app_ctx = free_naive,
.cb = main_on_udp_read,
.err_cb = main_on_err
};
ctx->ref_count++;
evt_core_add_cat(evt, &udp_read);
struct evt_core_cat tcp_write = {
.name = "tcp-write",
.flags = EPOLLOUT | EPOLLET | EPOLLRDHUP,
.app_ctx = ctx,
.free_app_ctx = free_naive,
.cb = main_on_tcp_write,
.err_cb = main_on_err
};
ctx->ref_count++;
evt_core_add_cat(evt, &tcp_write);
struct evt_core_cat udp_write = {
.name = "udp-write",
.flags = EPOLLOUT | EPOLLET,
.app_ctx = ctx,
.free_app_ctx = free_naive,
.cb = main_on_udp_write,
.err_cb = main_on_err
};
ctx->ref_count++;
evt_core_add_cat(evt, &udp_write);
for (int i = 0; i < sizeof(available_algo) / sizeof(available_algo[0]); i++) {
if (strcmp(available_algo[i].name, ap->algo_name) == 0) {
ctx->desc = &(available_algo[i]);
ctx->desc->init(evt, ctx, ap);
return;
}
}
fprintf(stderr, "Algorithm %s has not been found\n", ap->algo_name);
exit(EXIT_FAILURE);
init_err:
fprintf(stderr, "Failed to init proxy\n");
exit(EXIT_FAILURE);
}