garage/src/rpc/ring.rs

328 lines
9.1 KiB
Rust
Raw Normal View History

2021-03-22 00:00:09 +01:00
//! Module containing types related to computing nodes which should receive a copy of data blocks
2021-04-06 05:25:28 +02:00
//! and metadata
2021-03-05 16:22:29 +01:00
use std::collections::{HashMap, HashSet};
use std::convert::TryInto;
2021-02-21 13:11:10 +01:00
use serde::{Deserialize, Serialize};
use garage_util::data::*;
/// A partition id, which is stored on 16 bits
/// i.e. we have up to 2**16 partitions.
/// (in practice we have exactly 2**PARTITION_BITS partitions)
2021-03-16 12:18:03 +01:00
pub type Partition = u16;
2021-03-05 16:22:29 +01:00
// TODO: make this constant parametrizable in the config file
// For deployments with many nodes it might make sense to bump
// it up to 10.
// Maximum value : 16
2021-03-22 00:00:09 +01:00
/// How many bits from the hash are used to make partitions. Higher numbers means more fairness in
/// presence of numerous nodes, but exponentially bigger ring. Max 16
2021-03-05 16:22:29 +01:00
pub const PARTITION_BITS: usize = 8;
const PARTITION_MASK_U16: u16 = ((1 << PARTITION_BITS) - 1) << (16 - PARTITION_BITS);
/// The user-defined configuration of the cluster's nodes
2021-02-21 13:11:10 +01:00
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct NetworkConfig {
2021-03-22 00:00:09 +01:00
/// Map of each node's id to it's configuration
2021-05-02 23:13:08 +02:00
pub members: HashMap<Uuid, NetworkConfigEntry>,
2021-03-22 00:00:09 +01:00
/// Version of this config
2021-02-21 13:11:10 +01:00
pub version: u64,
}
impl NetworkConfig {
pub(crate) fn new() -> Self {
2021-02-23 18:46:25 +01:00
Self {
2021-02-21 13:11:10 +01:00
members: HashMap::new(),
version: 0,
}
}
pub(crate) fn migrate_from_021(old: garage_rpc_021::ring::NetworkConfig) -> Self {
let members = old
.members
.into_iter()
.map(|(id, conf)| {
(
Hash::try_from(id.as_slice()).unwrap(),
NetworkConfigEntry {
zone: conf.datacenter,
capacity: if conf.capacity == 0 {
None
} else {
Some(conf.capacity)
},
tag: conf.tag,
},
)
})
.collect();
Self {
members,
version: old.version,
}
}
2021-02-21 13:11:10 +01:00
}
2021-03-22 00:00:09 +01:00
/// The overall configuration of one (possibly remote) node
2021-02-21 13:11:10 +01:00
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct NetworkConfigEntry {
2021-03-22 00:00:09 +01:00
/// Datacenter at which this entry belong. This infromation might be used to perform a better
/// geodistribution
pub zone: String,
2021-03-22 00:00:09 +01:00
/// The (relative) capacity of the node
/// If this is set to None, the node does not participate in storing data for the system
/// and is only active as an API gateway to other nodes
pub capacity: Option<u32>,
2021-03-22 00:00:09 +01:00
/// A tag to recognize the entry, not used for other things than display
2021-02-21 13:11:10 +01:00
pub tag: String,
}
impl NetworkConfigEntry {
pub fn capacity_string(&self) -> String {
match self.capacity {
Some(c) => format!("{}", c),
None => "gateway".to_string(),
}
}
}
2021-03-22 00:00:09 +01:00
/// A ring distributing fairly objects to nodes
2021-02-21 13:11:10 +01:00
#[derive(Clone)]
pub struct Ring {
/// The replication factor for this ring
pub replication_factor: usize,
2021-03-22 00:00:09 +01:00
/// The network configuration used to generate this ring
2021-02-21 13:11:10 +01:00
pub config: NetworkConfig,
// Internal order of nodes used to make a more compact representation of the ring
nodes: Vec<Uuid>,
// The list of entries in the ring
ring: Vec<RingEntry>,
2021-02-21 13:11:10 +01:00
}
// Type to store compactly the id of a node in the system
// Change this to u16 the day we want to have more than 256 nodes in a cluster
type CompactNodeType = u8;
// The maximum number of times an object might get replicated
// This must be at least 3 because Garage supports 3-way replication
// Here we use 6 so that the size of a ring entry is 8 bytes
// (2 bytes partition id, 6 bytes node numbers as u8s)
const MAX_REPLICATION: usize = 6;
2021-03-22 00:00:09 +01:00
/// An entry in the ring
2021-02-21 13:11:10 +01:00
#[derive(Clone, Debug)]
struct RingEntry {
// The two first bytes of the first hash that goes in this partition
// (the next bytes are zeroes)
hash_prefix: u16,
// The nodes that store this partition, stored as a list of positions in the `nodes`
// field of the Ring structure
// Only items 0 up to ring.replication_factor - 1 are used, others are zeros
nodes_buf: [CompactNodeType; MAX_REPLICATION],
2021-02-21 13:11:10 +01:00
}
impl Ring {
2021-03-22 00:00:09 +01:00
// TODO this function MUST be refactored, it's 100 lines long, with a 50 lines loop, going up to 6
// levels of imbrication. It is basically impossible to test, maintain, or understand for an
// outsider.
pub(crate) fn new(config: NetworkConfig, replication_factor: usize) -> Self {
2021-03-05 16:22:29 +01:00
// Create a vector of partition indices (0 to 2**PARTITION_BITS-1)
let partitions_idx = (0usize..(1usize << PARTITION_BITS)).collect::<Vec<_>>();
let zones = config
2021-03-05 16:22:29 +01:00
.members
.iter()
.filter(|(_id, info)| info.capacity.is_some())
.map(|(_id, info)| info.zone.as_str())
2021-03-05 16:22:29 +01:00
.collect::<HashSet<&str>>();
let n_zones = zones.len();
2021-03-05 16:22:29 +01:00
// Prepare ring
2021-05-02 23:13:08 +02:00
let mut partitions: Vec<Vec<(&Uuid, &NetworkConfigEntry)>> = partitions_idx
2021-03-05 16:22:29 +01:00
.iter()
.map(|_i| Vec::new())
.collect::<Vec<_>>();
// Create MagLev priority queues for each node
let mut queues = config
.members
.iter()
.filter(|(_id, info)| info.capacity.is_some())
2021-03-05 16:22:29 +01:00
.map(|(node_id, node_info)| {
let mut parts = partitions_idx
.iter()
.map(|i| {
let part_data =
[&u16::to_be_bytes(*i as u16)[..], node_id.as_slice()].concat();
(*i, fasthash(&part_data[..]))
})
.collect::<Vec<_>>();
parts.sort_by_key(|(_i, h)| *h);
let parts_i = parts.iter().map(|(i, _h)| *i).collect::<Vec<_>>();
(node_id, node_info, parts_i, 0)
})
.collect::<Vec<_>>();
2021-03-10 14:52:03 +01:00
let max_capacity = config
2021-03-05 16:22:29 +01:00
.members
.iter()
.filter_map(|(_, node_info)| node_info.capacity)
2021-03-05 16:22:29 +01:00
.fold(0, std::cmp::max);
assert!(replication_factor <= MAX_REPLICATION);
2021-03-05 16:22:29 +01:00
// Fill up ring
for rep in 0..replication_factor {
2021-03-05 16:22:29 +01:00
queues.sort_by_key(|(ni, _np, _q, _p)| {
let queue_data = [&u16::to_be_bytes(rep as u16)[..], ni.as_slice()].concat();
fasthash(&queue_data[..])
});
for (_, _, _, pos) in queues.iter_mut() {
*pos = 0;
2021-02-21 13:11:10 +01:00
}
2021-03-05 16:22:29 +01:00
let mut remaining = partitions_idx.len();
while remaining > 0 {
let remaining0 = remaining;
2021-03-10 14:52:03 +01:00
for i_round in 0..max_capacity {
2021-03-05 16:22:29 +01:00
for (node_id, node_info, q, pos) in queues.iter_mut() {
if i_round >= node_info.capacity.unwrap() {
2021-03-05 16:22:29 +01:00
continue;
}
2021-04-09 02:32:42 +02:00
for (pos2, &qv) in q.iter().enumerate().skip(*pos) {
2021-03-05 16:22:29 +01:00
if partitions[qv].len() != rep {
continue;
}
let p_zns = partitions[qv]
2021-03-05 16:22:29 +01:00
.iter()
.map(|(_id, info)| info.zone.as_str())
2021-03-05 16:22:29 +01:00
.collect::<HashSet<&str>>();
if (p_zns.len() < n_zones && !p_zns.contains(&node_info.zone.as_str()))
|| (p_zns.len() == n_zones
2021-03-05 16:22:29 +01:00
&& !partitions[qv].iter().any(|(id, _i)| id == node_id))
{
partitions[qv].push((node_id, node_info));
remaining -= 1;
*pos = pos2 + 1;
break;
}
}
}
}
if remaining == remaining0 {
// No progress made, exit
warn!("Could not build ring, not enough nodes configured.");
return Self {
replication_factor,
2021-03-05 16:22:29 +01:00
config,
nodes: vec![],
2021-03-05 16:22:29 +01:00
ring: vec![],
};
}
2021-02-21 13:11:10 +01:00
}
}
// Make a canonical order for nodes
let nodes = config
.members
.iter()
.filter(|(_id, info)| info.capacity.is_some())
.map(|(id, _)| *id)
.collect::<Vec<_>>();
let nodes_rev = nodes
.iter()
.enumerate()
.map(|(i, id)| (*id, i as CompactNodeType))
.collect::<HashMap<Uuid, CompactNodeType>>();
2021-03-05 16:22:29 +01:00
let ring = partitions
.iter()
.enumerate()
.map(|(i, nodes)| {
let top = (i as u16) << (16 - PARTITION_BITS);
let nodes = nodes
.iter()
.map(|(id, _info)| *nodes_rev.get(id).unwrap())
.collect::<Vec<CompactNodeType>>();
assert!(nodes.len() == replication_factor);
let mut nodes_buf = [0u8; MAX_REPLICATION];
nodes_buf[..replication_factor].copy_from_slice(&nodes[..]);
2021-03-05 16:22:29 +01:00
RingEntry {
hash_prefix: top,
nodes_buf,
2021-03-05 16:22:29 +01:00
}
})
.collect::<Vec<_>>();
2021-02-21 13:11:10 +01:00
Self {
replication_factor,
config,
nodes,
ring,
}
2021-02-21 13:11:10 +01:00
}
2021-03-22 00:00:09 +01:00
/// Get the partition in which data would fall on
pub fn partition_of(&self, position: &Hash) -> Partition {
let top = u16::from_be_bytes(position.as_slice()[0..2].try_into().unwrap());
2021-03-16 11:14:27 +01:00
top >> (16 - PARTITION_BITS)
}
2021-04-06 05:25:28 +02:00
/// Get the list of partitions and the first hash of a partition key that would fall in it
2021-03-16 12:18:03 +01:00
pub fn partitions(&self) -> Vec<(Partition, Hash)> {
let mut ret = vec![];
for (i, entry) in self.ring.iter().enumerate() {
let mut location = [0u8; 32];
location[..2].copy_from_slice(&u16::to_be_bytes(entry.hash_prefix)[..]);
ret.push((i as u16, location.into()));
2021-03-16 12:18:03 +01:00
}
2021-04-09 02:32:42 +02:00
if !ret.is_empty() {
2021-03-16 12:18:03 +01:00
assert_eq!(ret[0].1, [0u8; 32].into());
}
ret
}
2021-03-22 00:00:09 +01:00
/// Walk the ring to find the n servers in which data should be replicated
pub fn get_nodes(&self, position: &Hash, n: usize) -> Vec<Uuid> {
2021-03-05 16:22:29 +01:00
if self.ring.len() != 1 << PARTITION_BITS {
2021-03-10 21:50:09 +01:00
warn!("Ring not yet ready, read/writes will be lost!");
2021-03-05 16:22:29 +01:00
return vec![];
2021-02-21 13:11:10 +01:00
}
let partition_idx = self.partition_of(position) as usize;
2021-03-05 16:22:29 +01:00
let partition = &self.ring[partition_idx];
2021-02-21 13:11:10 +01:00
let top = u16::from_be_bytes(position.as_slice()[0..2].try_into().unwrap());
// Check that we haven't messed up our partition table, i.e. that this partition
// table entrey indeed corresponds to the item we are storing
assert_eq!(
partition.hash_prefix & PARTITION_MASK_U16,
top & PARTITION_MASK_U16
);
assert!(n <= self.replication_factor);
partition.nodes_buf[..n]
.iter()
.map(|i| self.nodes[*i as usize])
.collect::<Vec<_>>()
}
}
#[cfg(test)]
mod tests {
use super::*;
2021-02-21 13:11:10 +01:00
#[test]
fn test_ring_entry_size() {
assert_eq!(std::mem::size_of::<RingEntry>(), 8);
2021-02-21 13:11:10 +01:00
}
}