garage/src/table/merkle.rs

466 lines
12 KiB
Rust
Raw Normal View History

use std::sync::Arc;
use std::time::Duration;
use futures::select;
use futures_util::future::*;
use log::{debug, warn};
use serde::{Deserialize, Serialize};
use sled::transaction::{
ConflictableTransactionError, ConflictableTransactionResult, TransactionalTree,
};
2021-03-16 11:43:58 +01:00
use tokio::sync::watch;
use garage_util::background::BackgroundRunner;
use garage_util::data::*;
use garage_util::error::Error;
2021-03-16 12:18:03 +01:00
use garage_rpc::ring::*;
2021-03-16 11:43:58 +01:00
use crate::data::*;
use crate::replication::*;
use crate::schema::*;
// This modules partitions the data in 2**16 partitions, based on the top
// 16 bits (two bytes) of item's partition keys' hashes.
// It builds one Merkle tree for each of these 2**16 partitions.
2021-03-16 11:43:58 +01:00
pub struct MerkleUpdater<F: TableSchema, R: TableReplication> {
data: Arc<TableData<F, R>>,
// Content of the todo tree: items where
// - key = the key of an item in the main table, ie hash(partition_key)+sort_key
// - value = the hash of the full serialized item, if present,
// or an empty vec if item is absent (deleted)
2021-03-16 11:43:58 +01:00
// Fields in data:
// pub(crate) merkle_todo: sled::Tree,
// pub(crate) merkle_todo_notify: Notify,
// Content of the merkle tree: items where
// - key = .bytes() for MerkleNodeKey
// - value = serialization of a MerkleNode, assumed to be MerkleNode::empty if not found
2021-03-16 11:43:58 +01:00
// Field in data:
// pub(crate) merkle_tree: sled::Tree,
empty_node_hash: Hash,
}
2021-03-11 19:30:24 +01:00
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct MerkleNodeKey {
2021-03-16 12:18:03 +01:00
// partition number
pub partition: Partition,
// prefix: a prefix for the hash of full keys, i.e. hash(hash(partition_key)+sort_key)
2021-03-15 18:40:27 +01:00
#[serde(with = "serde_bytes")]
pub prefix: Vec<u8>,
}
#[derive(PartialEq, Eq, Debug, Serialize, Deserialize)]
pub enum MerkleNode {
// The empty Merkle node
Empty,
// An intermediate Merkle tree node for a prefix
// Contains the hashes of the 256 possible next prefixes
Intermediate(Vec<(u8, Hash)>),
// A final node for an item
// Contains the full key of the item and the hash of the value
Leaf(Vec<u8>, Hash),
}
2021-03-16 11:43:58 +01:00
impl<F, R> MerkleUpdater<F, R>
where
F: TableSchema + 'static,
R: TableReplication + 'static,
{
2021-03-16 15:58:40 +01:00
pub(crate) fn launch(background: &BackgroundRunner, data: Arc<TableData<F, R>>) -> Arc<Self> {
let empty_node_hash = blake2sum(&rmp_to_vec_all_named(&MerkleNode::Empty).unwrap()[..]);
2021-03-11 16:54:15 +01:00
let ret = Arc::new(Self {
2021-03-16 11:43:58 +01:00
data,
empty_node_hash,
2021-03-11 16:54:15 +01:00
});
2021-03-11 16:54:15 +01:00
let ret2 = ret.clone();
2021-03-16 11:47:39 +01:00
background.spawn_worker(
2021-03-16 11:43:58 +01:00
format!("Merkle tree updater for {}", ret.data.name),
2021-03-11 16:54:15 +01:00
|must_exit: watch::Receiver<bool>| ret2.updater_loop(must_exit),
);
2021-03-11 16:54:15 +01:00
ret
}
async fn updater_loop(self: Arc<Self>, mut must_exit: watch::Receiver<bool>) {
while !*must_exit.borrow() {
2021-03-16 11:43:58 +01:00
if let Some(x) = self.data.merkle_todo.iter().next() {
match x {
Ok((key, valhash)) => {
if let Err(e) = self.update_item(&key[..], &valhash[..]) {
warn!(
"({}) Error while updating Merkle tree item: {}",
2021-03-16 11:43:58 +01:00
self.data.name, e
);
}
}
Err(e) => {
warn!(
"({}) Error while iterating on Merkle todo tree: {}",
2021-03-16 11:43:58 +01:00
self.data.name, e
);
2021-03-15 22:36:41 +01:00
tokio::time::sleep(Duration::from_secs(10)).await;
}
}
} else {
select! {
2021-03-16 11:43:58 +01:00
_ = self.data.merkle_todo_notify.notified().fuse() => (),
2021-03-15 22:36:41 +01:00
_ = must_exit.changed().fuse() => (),
}
}
}
}
fn update_item(&self, k: &[u8], vhash_by: &[u8]) -> Result<(), Error> {
let khash = blake2sum(k);
let new_vhash = if vhash_by.len() == 0 {
None
} else {
Some(Hash::try_from(&vhash_by[..]).unwrap())
};
let key = MerkleNodeKey {
2021-03-16 15:58:40 +01:00
partition: self
.data
.replication
.partition_of(&Hash::try_from(&k[0..32]).unwrap()),
prefix: vec![],
};
2021-03-16 11:43:58 +01:00
self.data
.merkle_tree
.transaction(|tx| self.update_item_rec(tx, k, &khash, &key, new_vhash))?;
let deleted = self
2021-03-16 11:43:58 +01:00
.data
.merkle_todo
.compare_and_swap::<_, _, Vec<u8>>(k, Some(vhash_by), None)?
.is_ok();
if !deleted {
debug!(
"({}) Item not deleted from Merkle todo because it changed: {:?}",
2021-03-16 11:43:58 +01:00
self.data.name, k
);
}
Ok(())
}
fn update_item_rec(
&self,
tx: &TransactionalTree,
k: &[u8],
khash: &Hash,
key: &MerkleNodeKey,
new_vhash: Option<Hash>,
) -> ConflictableTransactionResult<Option<Hash>, Error> {
let i = key.prefix.len();
2021-03-11 16:54:15 +01:00
// Read node at current position (defined by the prefix stored in key)
// Calculate an update to apply to this node
// This update is an Option<_>, so that it is None if the update is a no-op
// and we can thus skip recalculating and re-storing everything
let mutate = match self.read_node_txn(tx, &key)? {
MerkleNode::Empty => {
if let Some(vhv) = new_vhash {
Some(MerkleNode::Leaf(k.to_vec(), vhv))
} else {
2021-03-11 16:54:15 +01:00
// Nothing to do, keep empty node
None
}
}
MerkleNode::Intermediate(mut children) => {
let key2 = key.next_key(khash);
if let Some(subhash) = self.update_item_rec(tx, k, khash, &key2, new_vhash)? {
2021-03-11 16:54:15 +01:00
// Subtree changed, update this node as well
if subhash == self.empty_node_hash {
intermediate_rm_child(&mut children, key2.prefix[i]);
} else {
intermediate_set_child(&mut children, key2.prefix[i], subhash);
}
2021-03-11 16:54:15 +01:00
if children.len() == 0 {
// should not happen
warn!(
"({}) Replacing intermediate node with empty node, should not happen.",
2021-03-16 11:43:58 +01:00
self.data.name
);
Some(MerkleNode::Empty)
} else if children.len() == 1 {
2021-03-11 16:54:15 +01:00
// We now have a single node (case when the update deleted one of only two
// children). If that node is a leaf, move it to this level.
let key_sub = key.add_byte(children[0].0);
let subnode = self.read_node_txn(tx, &key_sub)?;
match subnode {
MerkleNode::Empty => {
warn!(
"({}) Single subnode in tree is empty Merkle node",
self.data.name
);
Some(MerkleNode::Empty)
}
MerkleNode::Intermediate(_) => Some(MerkleNode::Intermediate(children)),
x @ MerkleNode::Leaf(_, _) => {
tx.remove(key_sub.encode())?;
Some(x)
}
}
} else {
Some(MerkleNode::Intermediate(children))
}
} else {
2021-03-11 16:54:15 +01:00
// Subtree not changed, nothing to do
None
}
}
MerkleNode::Leaf(exlf_k, exlf_vhash) => {
if exlf_k == k {
2021-03-11 16:54:15 +01:00
// This leaf is for the same key that the one we are updating
match new_vhash {
Some(vhv) if vhv == exlf_vhash => None,
Some(vhv) => Some(MerkleNode::Leaf(k.to_vec(), vhv)),
None => Some(MerkleNode::Empty),
}
} else {
2021-03-11 16:54:15 +01:00
// This is an only leaf for another key
if new_vhash.is_some() {
2021-03-11 16:54:15 +01:00
// Move that other key to a subnode, create another subnode for our
// insertion and replace current node by an intermediary node
let mut int = vec![];
let exlf_khash = blake2sum(&exlf_k[..]);
assert_eq!(khash.as_slice()[..i], exlf_khash.as_slice()[..i]);
{
let exlf_subkey = key.next_key(&exlf_khash);
let exlf_sub_hash = self
.update_item_rec(
tx,
&exlf_k[..],
&exlf_khash,
&exlf_subkey,
Some(exlf_vhash),
)?
.unwrap();
intermediate_set_child(&mut int, exlf_subkey.prefix[i], exlf_sub_hash);
assert_eq!(int.len(), 1);
}
{
let key2 = key.next_key(khash);
let subhash = self
.update_item_rec(tx, k, khash, &key2, new_vhash)?
.unwrap();
intermediate_set_child(&mut int, key2.prefix[i], subhash);
if exlf_khash.as_slice()[i] == khash.as_slice()[i] {
assert_eq!(int.len(), 1);
} else {
assert_eq!(int.len(), 2);
}
}
Some(MerkleNode::Intermediate(int))
} else {
2021-03-11 16:54:15 +01:00
// Nothing to do, we don't want to insert this value because it is None,
// and we don't want to change the other value because it's for something
// else
None
}
}
}
};
if let Some(new_node) = mutate {
let hash = self.put_node_txn(tx, &key, &new_node)?;
Ok(Some(hash))
} else {
Ok(None)
}
}
// Merkle tree node manipulation
fn read_node_txn(
&self,
tx: &TransactionalTree,
k: &MerkleNodeKey,
) -> ConflictableTransactionResult<MerkleNode, Error> {
let ent = tx.get(k.encode())?;
MerkleNode::decode_opt(ent).map_err(ConflictableTransactionError::Abort)
}
fn put_node_txn(
&self,
tx: &TransactionalTree,
k: &MerkleNodeKey,
v: &MerkleNode,
) -> ConflictableTransactionResult<Hash, Error> {
2021-03-11 19:30:24 +01:00
trace!("Put Merkle node: {:?} => {:?}", k, v);
if *v == MerkleNode::Empty {
tx.remove(k.encode())?;
Ok(self.empty_node_hash)
} else {
let vby = rmp_to_vec_all_named(v)
.map_err(|e| ConflictableTransactionError::Abort(e.into()))?;
let rethash = blake2sum(&vby[..]);
tx.insert(k.encode(), vby)?;
Ok(rethash)
}
}
2021-03-11 16:54:15 +01:00
// Access a node in the Merkle tree, used by the sync protocol
pub(crate) fn read_node(&self, k: &MerkleNodeKey) -> Result<MerkleNode, Error> {
2021-03-16 11:43:58 +01:00
let ent = self.data.merkle_tree.get(k.encode())?;
MerkleNode::decode_opt(ent)
}
2021-03-15 19:51:16 +01:00
pub fn merkle_tree_len(&self) -> usize {
2021-03-16 11:43:58 +01:00
self.data.merkle_tree.len()
2021-03-15 19:51:16 +01:00
}
pub fn todo_len(&self) -> usize {
2021-03-16 11:43:58 +01:00
self.data.merkle_todo.len()
2021-03-15 19:51:16 +01:00
}
}
impl MerkleNodeKey {
fn encode(&self) -> Vec<u8> {
let mut ret = Vec::with_capacity(2 + self.prefix.len());
2021-03-16 12:18:03 +01:00
ret.extend(&u16::to_be_bytes(self.partition)[..]);
ret.extend(&self.prefix[..]);
ret
}
pub fn next_key(&self, h: &Hash) -> Self {
assert_eq!(h.as_slice()[0..self.prefix.len()], self.prefix[..]);
let mut s2 = self.clone();
s2.prefix.push(h.as_slice()[self.prefix.len()]);
s2
}
pub fn add_byte(&self, b: u8) -> Self {
let mut s2 = self.clone();
s2.prefix.push(b);
s2
}
}
impl MerkleNode {
fn decode_opt(ent: Option<sled::IVec>) -> Result<Self, Error> {
match ent {
None => Ok(MerkleNode::Empty),
Some(v) => Ok(rmp_serde::decode::from_read_ref::<_, MerkleNode>(&v[..])?),
}
}
pub fn is_empty(&self) -> bool {
*self == MerkleNode::Empty
}
}
fn intermediate_set_child(ch: &mut Vec<(u8, Hash)>, pos: u8, v: Hash) {
for i in 0..ch.len() {
if ch[i].0 == pos {
ch[i].1 = v;
return;
} else if ch[i].0 > pos {
ch.insert(i, (pos, v));
return;
}
}
ch.push((pos, v));
}
fn intermediate_rm_child(ch: &mut Vec<(u8, Hash)>, pos: u8) {
for i in 0..ch.len() {
if ch[i].0 == pos {
ch.remove(i);
return;
}
}
}
#[test]
fn test_intermediate_aux() {
let mut v = vec![];
intermediate_set_child(&mut v, 12u8, [12u8; 32].into());
assert_eq!(v, vec![(12u8, [12u8; 32].into())]);
intermediate_set_child(&mut v, 42u8, [42u8; 32].into());
assert_eq!(
v,
vec![(12u8, [12u8; 32].into()), (42u8, [42u8; 32].into())]
);
intermediate_set_child(&mut v, 4u8, [4u8; 32].into());
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(12u8, [12u8; 32].into()),
(42u8, [42u8; 32].into())
]
);
intermediate_set_child(&mut v, 12u8, [8u8; 32].into());
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(12u8, [8u8; 32].into()),
(42u8, [42u8; 32].into())
]
);
intermediate_set_child(&mut v, 6u8, [6u8; 32].into());
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(6u8, [6u8; 32].into()),
(12u8, [8u8; 32].into()),
(42u8, [42u8; 32].into())
]
);
intermediate_rm_child(&mut v, 42u8);
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(6u8, [6u8; 32].into()),
(12u8, [8u8; 32].into())
]
);
intermediate_rm_child(&mut v, 11u8);
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(6u8, [6u8; 32].into()),
(12u8, [8u8; 32].into())
]
);
intermediate_rm_child(&mut v, 6u8);
assert_eq!(v, vec![(4u8, [4u8; 32].into()), (12u8, [8u8; 32].into())]);
intermediate_set_child(&mut v, 6u8, [7u8; 32].into());
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(6u8, [7u8; 32].into()),
(12u8, [8u8; 32].into())
]
);
}