Garage

Alex Auvolat, Deuxfleurs Association

https://garagehq.deuxfleurs.fr/
Matrix channel: #garage:deuxfleurs.fr

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

1/55

https://garagehq.deuxfleurs.fr/

Who | am

Deuxfleurs
A non-profit self-hosting collective,
member of the CHATONS network

Alex Auvolat
PhD; co-founder of Deuxfleurs

Alex Auvolat, Deuxfleurs Garage

4/
'O

CHATONS

OCamlPro, 2023-09-20

2/55

Our objective at Deuxfleurs

Promote self-hosting and small-scale hosting
as an alternative to large cloud providers

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 3/55

Our objective at Deuxfleurs

Promote self-hosting and small-scale hosting
as an alternative to large cloud providers

Why is it hard?

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 3/55

Our objective at Deuxfleurs

Promote self-hosting and small-scale hosting
as an alternative to large cloud providers

Why is it hard?

Resilience

(we want good uptime/availability with low supervision)

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

3/55

How to make a stable system

Enterprise-grade systems typically employ:

RAID
Redundant power grid + UPS
Redundant Internet connections

Low-latency links

vVvyYyyvyy

— it's costly and only worth it at DC scale

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 4/55

How to make a resilient system

Instead, we use:

» Commodity hardware (e.g. old desktop PCs)

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 5/55

How to make a resilient system

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 5/55

How to make a resilient system

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 5/55

How to make a resilient system

Instead, we use:

» Commodity hardware (e.g. old desktop PCs)

» Commodity Internet (e.g. FTTB, FTTH) and power grid

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 5/55

How to make a resilient system

Instead, we use:

» Commodity hardware (e.g. old desktop PCs)
» Commodity Internet (e.g. FTTB, FTTH) and power grid

» Geographical redundancy (multi-site replication)

Alex Auvolat, Deuxfleurs Garage

OCamlPro, 2023-09-20

5/55

How to make a resilient system

s

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 5/55

How to make this happen

20> @

User-facing application

| I
Y Y

S =
S

Database Filesystem

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 6/55

How to make this happen

20> 0@

User-facing application

Y

Filesystem

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 6/55

How to make this happen

= @

User-facing application

“GldsterFS ﬁ ceph

Filesystem

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 6/55

Distributed file systems are slow

File systems are complex, for example:
» Concurrent modification by several processes
» Folder hierarchies
» Other requirements of the POSIX spec (e.g. locks)

Coordination in a distributed system is costly

Costs explode with commodity hardware / Internet connections
(we experienced this!)

Alex Auvolat, Deuxfleurs Garage

OCamlPro, 2023-09-20

7/55

A simpler solution: object storage

Only two operations:
» Put an object at a key
> Retrieve an object from its key

(and a few others)

Sufficient for many applications!

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 8/55

A simpler solution: object storage

Amazon S3 MINIO Garage

S3: a de-facto standard, many compatible applications
MinlO is self-hostable but not suited for geo-distributed deployments

Garage is a self-hosted drop-in replacement for the Amazon S3 object store

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 9/55

The data model of object storage

Object storage is basically a key-value store:

] Key: file path + name \ Value: file data + metadata

index.html Content-Type: text/html; charset=utf-8
Content-Length: 24929

<binary blob>

img/logo.svg Content-Type: text/svg+xml
Content-Length: 13429

<binary blob>

download/index.html | Content-Type: text/html; charset=utf-8
Content-Length: 26563

<binary blob>

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 10/55

Two big problems

1. How to place data on different nodes?

Constraints: heterogeneous hardware
Objective: n copies of everything, maximize usable capacity, maximize resilience

— the Dynamo model + optimization algorithms

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 11/55

Two big problems

1. How to place data on different nodes?

Constraints: heterogeneous hardware
Objective: n copies of everything, maximize usable capacity, maximize resilience

— the Dynamo model + optimization algorithms

2. How to guarantee consistency?

Constraints: slow network (geographical distance), node unavailability/crashes
Objective: maximize availability, read-after-write guarantee

— CRDTs, monotonicity, read and write quorums

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 11/55

Problem 1: placing data

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 12 /55

Key-value stores, upgraded: the Dynamo model

Two keys:

> Partition key: used to divide data into partitions (a.k.a. shards)

> Sort key: used to identify items inside a partition

’ Partition key: bucket \ Sort key: filename \ Value
website index.html (file data)
website img/logo.svg (file data)
website download/index.html (file data)
backup borg/index.2822 (file data)
backup borg/data/2/2329 (file data)
backup borg/data/2/2680 (file data)
private ‘ qgq3a2nbelqjqOebbvobocspbco ‘ (file data)

Alex Auvolat, Deuxfleurs

Garage

OCamlPro, 2023-09-20

13/55

Key-value stores, upgraded: the Dynamo model

» Data with different partition keys is stored independently,
on a different set of nodes

— no easy way to list all partition keys
— no cross-shard transactions

> Placing data: hash the partition key, select nodes accordingly
— distributed hash table (DHT)

» For a given value of the partition key, items can be listed using their sort keys

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

14 /55

How to spread files over different cluster nodes?

Consistent hashing (Dynamo):

Es

Fla

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

15/55

How to spread files over different cluster nodes?

Consistent hashing (Dynamo):

Es

Fla

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

15/55

How to spread files over different cluster nodes?

Consistent hashing (Dynamo):

Es

Fla

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

15/55

How to spread files over different cluster nodes?

Consistent hashing (Dynamo):

Es

&

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

15/55

: $ docker exec -ti garage /garage status
==== HEALTHY NODES ====

ID

7d50f042280fea98
d9b5959e58a3ab8c
966dfc7ed8049744

8cf284e7df17dofd

156d0f7a88b1e328

5fcb3b6e39db3dcb

a717e5b618267806
1~5 D

Garage replicates data on different zones when possible

Hostname

drosera
datura
celeri
digitale
concombre
courgette

[2a01

[2306

Alex Auvolat, Deuxfleurs

[2a06:
[2a01:
[2a06:

Address
i0 [2a01:
[2a01:

ePa:5e4:1d0::57]:
e0a:260:b5b0: :4]:
:e0a:260:b5b0::2]:
a004:3025:1::33]:
e0a:260:b5b0::3]:
a004:3025:1::31]:
:a004:3025:1::32]:

Garage

Tags
[1o,jupiter]
[drosera,atuin]
[datura,atuin]
[celeri,neptune]
[digitale,atuin]

[concombre,neptune]
[courgette,neptune]

Zone
jupiter
atuin
atuin
neptune
atuin
neptune
neptune

OCamlPro, 2023-09-20

Capacity
20

20

10

5

10

5

5

16 /55

Constraint: location-awareness

Legend

=)
— Azone
== (mutiiple servers)

(1) chunks of data

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

17/55

Issues with consistent hashing

» Consistent hashing doesn't dispatch data based on geographical location of nodes

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 18 /55

Issues with consistent hashing

» Consistent hashing doesn't dispatch data based on geographical location of nodes

» Geographically aware adaptation, try 1:
data quantities not well balanced between nodes

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 18 /55

Issues with consistent hashing

» Consistent hashing doesn't dispatch data based on geographical location of nodes

» Geographically aware adaptation, try 1:
data quantities not well balanced between nodes

» Geographically aware adaptation, try 2:
too many reshuffles when adding/removing nodes

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 18 /55

How to spread files over different cluster nodes?
Garage’s method: build an index table

Realization: we can actually precompute an optimal solution

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 19 /55

How to spread files over different cluster nodes?

Garage’s method:

build an index table

Realization: we can actually precompute an optimal solution

Partition \ Node 1 \ Node 2 \ Node 3 \
Partition 0 lo (jupiter) Drosera (atuin) Courgette (neptune)
Partition 1 Datura (atuin) Courgette (neptune) | lo (jupiter)

Partition 2 lo(jupiter) Drosera (atuin)

Celeri (neptune)

Partition 255

Concombre (neptune)

lo (jupiter)

Drosera (atuin)

Alex Auvolat, Deuxfleurs

Garage

OCamlPro, 2023-09-20

How to spread files over different cluster nodes?

Garage’s method:

build an index table

Realization: we can actually precompute an optimal solution

Partition \ Node 1 \ Node 2 \ Node 3 \
Partition 0 lo (jupiter) Drosera (atuin) Courgette (neptune)
Partition 1 Datura (atuin) Courgette (neptune) | lo (jupiter)

Partition 2 lo(jupiter) Drosera (atuin)

Celeri (neptune)

Partition 255

Concombre (neptune)

lo (jupiter)

Drosera (atuin)

The index table is built centrally using an optimal algorithm,
then propagated to all nodes

Alex Auvolat, Deuxfleurs

Garage

OCamlPro, 2023-09-20

19/55

The relationship between partition and partition key

| Partition key | Partition | Sort key | Value \
website Partition 12 | index.html (file data)
website Partition 12 | img/logo.svg (file data)
website Partition 12 | download/index.html (file data)
backup Partition 42 | borg/index.2822 (file data)
backup Partition 42 | borg/data/2/2329 (file data)
backup Partition 42 | borg/data/2/2680 (file data)
private Partition 42 ‘ qgq3a2nbelqjqOebbvobocspbco ‘ (file data) ‘

To read or write an item: hash partition key
— determine partition number (first 8 bits)
— find associated nodes

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 20 /55

Objects table Versions table Blocks table

Object
} bucket
§ file path
- Version
Version 2
i)'6 id Data block
size h(block 1) 4+=————3¢| hash
MIME type h(b].OCk 2) data
Version 1
Jeloted L = partition key
b = sort key

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 21 /55

Storing and retrieving files

Storing a file over Garage,
User a simplified example
puts a file

= +

the file is chunked,
A descriptor is built each chunk is checksumed

with the key and the hashes
of the blocks

[BLock 1] [BLOCK 2] [BLOCK 3] [BLOCK 4] [BLOCK 5

The descriptor s stored Servers are selected according to chunks' hashes
according to key's hash Each chunk is replicated on 2 servers in this example

[0x00, Ox5F] [0x60, 0xBF] [0xCO, OxFF]

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

22 /55

Storing and retrieving files

Fetching a file over Garage,
a simplified example

asks for a file
User

s U 1
T

[BLock 1] [BLock 2] [BLocK 3] [BLOCK 4] [BLOCK 5]

The descriptor is fetched
by hashing the key

From the descriptor,
we get the list of blocks

El

[0x00, 0X5F] [0x60, OXBF] [0xCO, OXFF]

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

22 /55

Problem 2: ensuring consistency

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 23 /55

Consensus vs weak consistency

Consensus-based systems:

» Leader-based: a leader is elected to
coordinate all reads and writes

> Linearizability of all operations
(strongest consistency guarantee)

» Any sequential specification can be
implemented as a replicated state

machine

» Costly, the leader is a bottleneck;
leader elections on failure take time

Alex Auvolat, Deuxfleurs

Garage

OCamlPro, 2023-09-20

24 /55

Consensus vs weak consistency

Consensus-based systems: Weakly consistent systems:
> Leader-based: a leader is elected to » Nodes are equivalent, any node can
coordinate all reads and writes originate a read or write operation
> Linearizability of all operations > Read-after-write consistency with
(strongest consistency guarantee) quorums, eventual consistency without

» Any sequential specification can be

implemented as a replicated state » Operations have to commute,

machine i.e. we can only implement CRDTs
» Costly, the leader is a bottleneck; » Fast, no single bottleneck;

leader elections on failure take time works the same with offline nodes

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 24 /55

Consensus vs weak consistency

From a theoretical point of view:

Consensus-based systems: Weakly consistent systems:

Require additional assumptions such as Can be implemented in any

a fault detector or a strong RNG asynchronous message passing
(FLP impossibility theorem) distributed system with node crashes

They represent different classes of computational capability

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 25 /55

Consensus vs weak consistency

The same objects cannot be implemented in both models.

Consensus-based systems: Weakly consistent systems:
Any sequential specification Only CRDTs

(conflict-free replicated data types)
Easier to program for: just write your Part of the complexity is reported to
program as if it were sequential on a sin- the consumer of the API

gle machine

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 26 /55

Understanding the power of consensus

Consensus: an APl with a single operation, propose(x)
1. nodes all call propose(x) with their proposed value;

2. nodes all receive the same value as a return value, which is one of the proposed values

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 27 /55

Understanding the power of consensus

Consensus: an APl with a single operation, propose(x)
1. nodes all call propose(x) with their proposed value;

2. nodes all receive the same value as a return value, which is one of the proposed values

Equivalent to a distributed algorithm that gives a total order on all requests

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 27 /55

Understanding the power of consensus

Consensus: an APl with a single operation, propose(x)
1. nodes all call propose(x) with their proposed value;

2. nodes all receive the same value as a return value, which is one of the proposed values

Equivalent to a distributed algorithm that gives a total order on all requests

Implemented by this simple replicated state machine:

N propose(x)/x

propose(y)/x

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 27 /55

Can my object be implemented without consensus?

Given the specification of an API:

» Using this API, we can implement the consensus object (the propose function)
— the APl is equivalent to consensus/total ordering of messages
— the API cannot be implemented in a weakly consistent system

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 28 /55

Can my object be implemented without consensus?

Given the specification of an API:

» Using this API, we can implement the consensus object (the propose function)
— the APl is equivalent to consensus/total ordering of messages
— the API cannot be implemented in a weakly consistent system

» This API can be implemented using only weak primitives
(e.g. in the asynchronous message passing model with no further assumption)
— the APl is strictly weaker than consensus
— we can implement it in Garage!

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 28 /55

Why avoid consensus?

Consensus can be implemented reasonably well in practice, so why avoid it?

» Software complexity: RAFT and PAXOS are complex beasts;
harder to prove, harder to reason about

» Performance issues:

» Theoretical requirements (RNG, failure detector) translate into practical costs

» The leader is a bottleneck for all requests;
even in leaderless approaches, all nodes must process all operations in order

» Particularly sensitive to higher latency between nodes

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 29 /55

Performance gains in practice

S3 endpoint latency in a simulated geo-distributed cluster

100 measurements, 6 nodes in 3 DC (2 nodes/DC), 100ms RTT + 20ms jitter between DC
no contention: latency is due to intra-cluster communications

colored bar = mean latency, error bar = min and max latency

removeobject

putobject

listobjects

Daemon

. garage 0.5.0

[minio RELEASE 2021-11-24T25-19-832

S8 Endpoint

listouckets

getobject

500 1000

Latency (ms)
Get the code to reproduce this graph at https:/git.deuxfleurs.fr/quentin/benchmarks

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 30/55

What can we implement without consensus?

» Any conflict-free replicated data type (CRDT)

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 31/55

What can we implement without consensus?

» Any conflict-free replicated data type (CRDT)

» Non-transactional key-value stores such as S3 are equivalent to a simple CRDT:
a map of last-writer-wins registers (each key is its own CRDT)

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 31/55

What can we implement without consensus?

» Any conflict-free replicated data type (CRDT)

» Non-transactional key-value stores such as S3 are equivalent to a simple CRDT:
a map of last-writer-wins registers (each key is its own CRDT)

» Read-after-write consistency can be implemented using quorums on read and write
operations

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

31/55

What can we implement without consensus?

» Any conflict-free replicated data type (CRDT)

» Non-transactional key-value stores such as S3 are equivalent to a simple CRDT:
a map of last-writer-wins registers (each key is its own CRDT)

» Read-after-write consistency can be implemented using quorums on read and write
operations

» Monotonicity of reads can be implemented with repair-on-read
(makes reads more costly, not implemented in Garage)

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 31/55

CRDTs and quorums: read-after-write consistency

Alex Auvolat, Deuxfleurs

{a, b, c}
T
{a, b} {a,c} {b, c}
{T} {b} {T}
a b c
~1

32/55

CRDTs and quorums: read-after-write consistency

write({a}):
® 7 {a}
® 7 {a}
® 2 {a}

Alex Auvolat, Deuxfleurs

{a, b, c}
TN
{a, b} {a, c} {b,c}
{T} {b} {T}
a b c

oo

32/55

CRDTs and quorums: read-after-write consistency

write({a}): {a, b, c}
S N
® {2} {a, b} {a, c} {b,c}
> >
{a} @ {b} {c}
P
oo

32/55

CRDTs and quorums: read-after-write consistency

write({a}):
® J{a} > OK
® J{a} - OK
® 7 {a}
return OK

Alex Auvolat, Deuxfleurs

{a, b, c}
{a, b} /{aaTC}\ {b,c}
> >
{a} @@ {b} {c}
P
*

32/55

CRDTs and quorums: read-after-write consistency

write({a}):
® J{a} > OK
® J{a} - OK
® 7 {a}
return OK

read():

Alex Auvolat, Deuxfleurs

{a, b, c}
{a, b} /{B,TC}\ {b,c}
> >
{a} @@ {b} {c}
P
*

32/55

CRDTs and quorums: read-after-write consistency

write({a}):
® J{a} > OK
® J{a} - OK
® 7 {a}
return OK

read():
®—{}

Alex Auvolat, Deuxfleurs

{a, b, c}
{a, b} /{B,TC}\ {b,c}
> >
{a} @@ {b} {c}
P
*

32/55

write({a}): {a, b, c}

® J{a} > OK T

® J{a} - OK

r:urn OK o el o
o P> >

o 1) @} ee () e}

r.et;n{f}} U {a} = {a} \ T /

eeeeeeeeeeeeeeeeeeeeeeeeeeee

write({a}): {a,b,c}

® J{a} - OK T

: % }a{ oo {a. b} {a,c} {b,c}

retl;rn OK ,T >< ’ >< T
reag(i 0 {a} @00 {b} {c}

r.et;n{f}} U {a} = {a} \ T /

eeeeeeeeeeeeeeeeeeeeeeeeeeee

CRDTs and quorums: read-after-write consistency

Property: If node A did an operation write(x) and received an OK response,
and node B starts an operation read() after A received OK,

then B will read a value x’ J x.

Algorithm read():
1. Broadcast read() to all nodes
2. Wait for k > n/2 nodes to reply
with values xi, ..., xk

3. Return xy LI ... L x5

Algorithm write(x):
1. Broadcast write(x) to all nodes
2. Wait for k > n/2 nodes to reply OK
3. Return OK

Why does it work? There is at least one node at the intersection between the two sets of
nodes that replied to each request, that “saw” x before the read() started (x; 2 x).

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 33/55

CRDTs and quorums: monotonic-reads consistency

write({a}): {a, b, c}

® / {a}

° o]

® /2 {a} {a,Tb} {a,c} {baTC}
write({b}):

{a} {b} {c}
® / {b}
® b ~_1 _

arage OCamlPro, 2023-09-20

34 /55

CRDTs and quorums: monotonic-reads consistency

write({a}): {a, b, c}

® 1 {a} - OK T

® / {a}

® / {a} {a,Tb} {a, c} {baTC}
write({b}):

{at @ {b} {c}

® / {b}

® b ~_1 _

o7 (b) o 4

34 /55

CRDTs and quorums: monotonic-reads consistency

write({a}): {a, b, c}

® 1 {a} - OK T

® 7 {a}

® / {a} {a,Tb} {a, c} {baTC}
write({b}):

{at @ {b} ® {c}

® 2 {b}

® 1 {b} — OK

® 3 (b} I {T} -

34 /55

CRDTs and quorums: monotonic-reads consistency

write({a}): {a, b, c}

® 1 {a} - OK T

® 7 {a}

® / {a} {a,Tb} {a, c} {baTC}
write({b}):

{at @ {b} ® {c}

® 2 {b}

® 1 {b} — OK

® 3 (b} I {T} -

read():

34 /55

CRDTs and quorums: monotonic-reads consistency

write({a}): {a, b, c}

e }ai — OK T

® /{2

® 7 {a} {a,Tb} {a,c} {baTC}
write({b}):

{a} @ {b} ® {c}

® 2 {b}

® 1 {b} — OK

°Z 11 s ! -

read():
e — {a}

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

34 /55

CRDTs and quorums: monotonic-reads consistency

write({a}): {a, b, c}
® 1 {a} - OK T
® 7 {a}
® / {a} {a,Tb} {a, c} {baTC}
write({b}):
{af @ {b} ® {c}
® 2 {b}
® 1 {b} — OK
® 3 (b} I {T} -
read():
® — {a}
®— {}
return {a}

34 /55

CRDTs and quorums: monotonic-reads consistency

write({a}): {a, b, c}
® 1 {a} - OK T
® / {a}
® / {a} {a,Tb} {a, c} {baTC}
write({b}):
{a} @ {b} ® {c}
® 2 {b}
® 1 {b} — OK
® 3 (b} I {T} -
read(): read():
® — {a}
®— {}
return {a}

34 /55

CRDTs and quorums: monotonic-reads consistency

write({a}): {a, b, c}
® 1 {a} - OK T
® / {a}
® / {a} {a,Tb} {a, c} {baTC}
write({b}):
{af @ {b} ® {c}
® 2 {b}
® 1 {b} — OK
® 3 (b} I {T} -
read(): read():
e {a} _ o {}
®— {} ’
return {a}

34 /55

write({a}): {a, b, c}
® 1 {a} » OK T
[
o {a,b) {a,c} {b,c}
write({b}): T T
{a} @ {b} ® {c}
o
® 0 {b} — OK \ I /
¢ °*
read(): read():
® — {a} . o {}
[: ® — {b}
return {a} return {b}

34 /55

CRDTs and quorums: monotonic-reads consistency

write({a}): {a, b, c}
e }a% — OK T
® /{2
® 7 {a} {aaTb} {a,c} {baTC}
write({b}):
{af @ {b} ® {c}
® [{b
® 1 {b} — OK
°Z 11 s ! -
re.adg:{ \ rea.d(i 0
o {} ! ®— (b 71
return {a} return {b} {a} Z {b}

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

34 /55

CRDTs and quorums: monotonic-reads consistency

Property: If node A did an operation read() and received x as a response,
and node B starts an operation read() after A received x,
then B will read a value x’ J x.

Algorithm monotonic_read(): (a.k.a. repair-on-read)
1. Broadcast read() to all nodes
2. Wait for k > n/2 nodes to reply with values xi, ..., Xk

3. If x; # x; for some nodes i and J,
then call write(xy U ... U xx) and wait for OK from k' > n/2 nodes

4. Return xq U ... L xx

This makes reads slower in some cases, and is not implemented in Garage.

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

35/55

A hard problem: layout changes

» We rely on quorums k > n/2 within each partition:

n=S3, k>?2

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 36 /55

A hard problem: layout changes

» We rely on quorums k > n/2 within each partition:

n=S3, k>?2

» When rebalancing, the set of nodes responsible for a partition can change:

{nA7 ng, nC} - {nA7 np, nE}

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

36 /55

A hard problem: layout changes

» We rely on quorums k > n/2 within each partition:

n=S3, k>?2

» When rebalancing, the set of nodes responsible for a partition can change:

{na,ng,nc} — {na,np, ne}

» During the rebalancing, D and E don't yet have the data,
and B and C want to get rid of the data to free up space

— quorums only within the new set of nodes don't work
— how to coordinate? currently, we don't...

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

36 /55

Operating big Garage clusters

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 37/55

HEALTHY NOI

ataAvail

ytun <] n GB

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 38/55

HEALTHY NOD

status

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 38/55

Alex Auvolat, Deuxfleurs

Garage as a set of components

S3 API Custom API
KV Store Block Manager
Anl CRDT | | Scheduler || Layout
Entropy

Network

Garage

OCamlPro, 2023-09-20

39/55

Merkle tree sync

)

4 4 A
Y A Y
> >
object version block_ref
metadata table -4 metadata table -4 metadata table

locally stored data blocks

reference counters

local block

A

A
A 4

Block resync queue/scheduler

)

Alex Auvolat, Deuxfleurs

Garage

OCamlPro, 2023-09-20

39/55

docker exec -ti 74a@9 /garage stats

[Garage version: v0.8.2 [features: k2v, sled, lmdb, sqlite, consul-discovery, kubernetes-discovery, metrics, telemetry-otlp, bundled-1ibs]
Rust compiler version: 1.63.0

Database engine: LMDB (using Heed crate)

[Table stats:
Table Items MklItems MklTodo GcTodo
bucket_v2 124 150 [0] (0]

56 59 o (0]
607630 749155 0 0
version 498551 553360 o}
block_ref 1098024 1192560 [}

Block manager stats:
number of RC entries (~= number of blocks): 594820
resync queue length: 3
blocks with resync errors: 1

If values are missing above (marked as NC), consider adding the --detailed flag (this will be slow)

IStorage nodes:
1D

Hostname Zone Capacity Part. DataAvail MetaAvail
942dd71ea95f4904 df-ymf bespin 86 264.5 GB/499 GB . 264.5 GB/499
a717e5b618267806 courgette neptune 42 393.3 GB/499.9 GB .7%) 372.8 GB/486.
17ee03c6b81d9235 df-ykl bespin 85 280.2 GB/499.9 GB . 280.2 GB/499.
5fcb3b6e39db3dcb concombre neptune 42 393.4 GB/499 GB .7%) 380.4 GB/486
fdfaf7832d8359e0 df-ymk bespin 85 263.3 GB/499 GB 5 263.3 GB/499
0a03ab7c082ad929 ananas scorpio 128 1.7 TB/2.0 TB (83. 396.2 GB/477.
8cf284e7df17dofd celeri neptune 172 1.6 TB/2.0 TB (78. 417.3 GB/486.
2032d0a37f249c4a abricot scorpio 128 1.7 TB/2.0 TB (83 433.2 GB/482

Estimated available storage space cluster-wide (might be lower in practice):
data: 787.4 GB
metadata: 621.1

Alex Auvolat, Deuxfleurs OCamlPro, 2023-09-20

t

Name

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 40/55

c-tranquilit

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 40/55

Potential limitations and bottlenecks

» Global:
> Max. ~100 nodes per cluster (excluding gateways)

» Metadata:
» One big bucket = bottleneck, object list on 3 nodes only

» Block manager:

» Lots of small files on disk
» Processing the resync queue can be slow
» Multi-HDD support not yet released (soon!)

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 41/55

Deployment advice for very large clusters

» Metadata storage:

» ZFS mirror (x2) on fast NVMe
» Use LMDB storage engine

» Data block storage:

» Wait for v0.9 with multi-HDD support

» XFS on individual drives

> Increase block size (1IMB — 10MB, requires more RAM and good networking)
> Tune resync-tranquility and resync-worker-count dynamically

» Other :
» Split data over several buckets

P Use less than 100 storage nodes
P> Use gateway nodes

Current deployments: < 10 TB, we don't have much experience with more

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 42 /55

Going further than the S3 API

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 43 /55

Using Garage for everything

20> 0@

User-facing application

Y

o

Garage

Object storage

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 44 /55

Using Garage for everything

20> 0@

User-facing application

| I
Y Y

il

o

Garage K2V Garage
Data base* *(not really a database) ObJECt StO rage
Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

44 /55

Custom user-facing application

| I
Y Y

N v

[[
Garage K2V Garage
Data base* *(not really a database) ObJECt StO rage
Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

44 /55

K2V Design

» A new, custom, minimal API

» Single-item operations
» Operations on ranges and batches of items
» Polling operations to help implement a PubSub pattern

OCamlPro, 2023-09-20 45 /55

Alex Auvolat, Deuxfleurs Garage

K2V Design

» A new, custom, minimal API

» Single-item operations
» Operations on ranges and batches of items
» Polling operations to help implement a PubSub pattern

» Exposes the partitoning mechanism of Garage
K2V = partition key / sort key / value (like Dynamo)

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

45 /55

K2V Design

» A new, custom, minimal API

» Single-item operations
» Operations on ranges and batches of items
» Polling operations to help implement a PubSub pattern

» Exposes the partitoning mechanism of Garage
K2V = partition key / sort key / value (like Dynamo)

» Weakly consistent, CRDT-friendly
— no support for transactions (not ACID)

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 45 /55

K2V Design

» A new, custom, minimal API

» Single-item operations
» Operations on ranges and batches of items
» Polling operations to help implement a PubSub pattern

» Exposes the partitoning mechanism of Garage
K2V = partition key / sort key / value (like Dynamo)

» Weakly consistent, CRDT-friendly
— no support for transactions (not ACID)

» Cryptography-friendly: values are binary blobs

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

45 /55

Handling concurrent values

How to handle concurrency? Example:

1. Client A reads the initial value of a key, xg

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 46 /55

Handling concurrent values

How to handle concurrency? Example:
1. Client A reads the initial value of a key, xg

2. Client B also reads the initial value xp of that key

Alex Auvolat, Deuxfleurs Garage

OCamlPro, 2023-09-20

46 /55

Handling concurrent values

How to handle concurrency? Example:
1. Client A reads the initial value of a key, xg
2. Client B also reads the initial value xp of that key

3. Client A modifies xg, and writes a new value x;

Alex Auvolat, Deuxfleurs Garage

OCamlPro, 2023-09-20

46 /55

Handling concurrent values

How to handle concurrency? Example:
1. Client A reads the initial value of a key, xg
2. Client B also reads the initial value xp of that key
3. Client A modifies xg, and writes a new value x;

4. Client B also modifies xp, and writes a new value xj,
without having a chance to first read x;

— what should the final state be?

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 46 /55

Handling concurrent values

> If we keep only x; or x], we risk loosing application data

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 47 /55

Handling concurrent values

> If we keep only x; or x], we risk loosing application data

» Values are opaque binary blobs, K2V cannot resolve conflicts by itself
(e.g. by implementing a CRDT)

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 47 /55

Handling concurrent values

> If we keep only x; or x], we risk loosing application data

» Values are opaque binary blobs, K2V cannot resolve conflicts by itself
(e.g. by implementing a CRDT)

» Solution: we keep both!
— the value of the key is now {x1, x] }
— the client application can decide how to resolve conflicts on the next read

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 47 /55

Keeping track of causality

How does K2V know that x; and x; are concurrent?

» read() returns a set of values and an associated causality token

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 48 /55

Keeping track of causality

How does K2V know that x; and x; are concurrent?

» read() returns a set of values and an associated causality token

» When calling write(), the client sends the causality token from its last read

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 48 /55

Keeping track of causality

How does K2V know that x; and x; are concurrent?

» read() returns a set of values and an associated causality token
» When calling write(), the client sends the causality token from its last read

> The causality token represents the set of values already seen by the client
— those values are the causal past of the write operation
— K2V can keep concurrent values and overwrite all ones in the causal past

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

48 /55

Keeping track of causality

How does K2V know that x; and x; are concurrent?

» read() returns a set of values and an associated causality token
» When calling write(), the client sends the causality token from its last read

> The causality token represents the set of values already seen by the client
— those values are the causal past of the write operation
— K2V can keep concurrent values and overwrite all ones in the causal past

> Internally, the causality token is a vector clock

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

48 /55

Application: an e-mail storage server

@ Message K2V AP _I
%‘ index
. : Message Garage

y Aerogramme bodies
v S3 API J

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

49/55

Aerogramme data model

Alex Auvolat, Deuxfleurs

immutable mutable
KoV Email Lo
Summary 9
Full .
S3 Email Checkpoint
Garage

OCamlPro, 2023-09-20

50 /55

Aerogramme data model

immutable mutable
KoV Email Lo
Summary 9
Full .
S3 Email Checkpoint

Aerogramme encrypts all stored values for privacy
(Garage server administrators can’t read your mail)

Alex Auvolat, Deuxfleurs

Garage

OCamlPro, 2023-09-20

50 /55

User's Devices Service Provider

MDA (IMAP Daemon) Garage Daemon

IMAP
Protocol

MUA
(eg. Thunderbird)

> IMAP Framework y| S3
; S3 REST API

Internals

Domain Logic y K2V

Y

(encryption) K2V REST API

TR

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 51/55

User's Devices

MUA
(eg. Thunderbird)

IMAP
Protocol

MDA (IMAP Daemon)

Alex Auvolat, Deuxfleurs

A

Garage Daemon

» IMAP Framework
S3 REST API
Internals
D in Logi 4
omain Logic
(encl tiog) < P Kav
ryp K2V REST API
Garage OCamlPro, 2023-09-20

51/55

A new model for building resilient software

How to build an application using only Garage as a data store:

1. Design a data model suited to K2V
(see Cassandra docs on porting SQL data models to Cassandra)

> Use CRDTs or other eventually consistent data types (see e.g. Bayou)

» Store opaque binary blobs to provide End-to-End Encryption

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

52 /55

A new model for building resilient software

How to build an application using only Garage as a data store:

1. Design a data model suited to K2V
(see Cassandra docs on porting SQL data models to Cassandra)

> Use CRDTs or other eventually consistent data types (see e.g. Bayou)

» Store opaque binary blobs to provide End-to-End Encryption

2. Store big blobs (files) using the S3 API

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

52 /55

A new model for building resilient software

How to build an application using only Garage as a data store:

1. Design a data model suited to K2V
(see Cassandra docs on porting SQL data models to Cassandra)

> Use CRDTs or other eventually consistent data types (see e.g. Bayou)

» Store opaque binary blobs to provide End-to-End Encryption

2. Store big blobs (files) using the S3 API

3. Let Garage manage sharding, replication, failover, etc.

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

52 /55

Conclusion

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 53 /55

Perspectives

» Fix the consistency issue when rebalancing

» Write about Garage's architecture and properties,
and about our proposed architecture for (E2EE) apps over K2V+S3

» Continue developing Garage; finish Aerogramme; build new applications...

» Anything else?

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20 54 /55

Where to find us

Garage

https://garagehq.deuxfleurs.fr/
mailto:garagehq@deuxfleurs.fr
#garage:deuxfleurs.fr on Matrix

@ 4GP\ 2

Free as in Freedom

Alex Auvolat, Deuxfleurs Garage OCamlPro, 2023-09-20

55 /55

https://garagehq.deuxfleurs.fr/
mailto:garagehq@deuxfleurs.fr

	Problem 1: placing data
	Problem 2: ensuring consistency
	Operating big Garage clusters
	Going further than the S3 API
	Conclusion

