use std::cmp::Ordering; use std::cmp::{min}; use std::collections::{HashMap}; use serde::{Deserialize, Serialize}; use garage_util::crdt::{AutoCrdt, Crdt, LwwMap}; use garage_util::data::*; use garage_util::bipartite::*; use rand::prelude::SliceRandom; use crate::ring::*; /// The layout of the cluster, i.e. the list of roles /// which are assigned to each cluster node #[derive(Clone, Debug, Serialize, Deserialize)] pub struct ClusterLayout { pub version: u64, pub replication_factor: usize, pub roles: LwwMap, /// node_id_vec: a vector of node IDs with a role assigned /// in the system (this includes gateway nodes). /// The order here is different than the vec stored by `roles`, because: /// 1. non-gateway nodes are first so that they have lower numbers /// 2. nodes that don't have a role are excluded (but they need to /// stay in the CRDT as tombstones) pub node_id_vec: Vec, /// the assignation of data partitions to node, the values /// are indices in node_id_vec #[serde(with = "serde_bytes")] pub ring_assignation_data: Vec, /// Role changes which are staged for the next version of the layout pub staging: LwwMap, pub staging_hash: Hash, } #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)] pub struct NodeRoleV(pub Option); impl AutoCrdt for NodeRoleV { const WARN_IF_DIFFERENT: bool = true; } /// The user-assigned roles of cluster nodes #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)] pub struct NodeRole { /// Datacenter at which this entry belong. This information might be used to perform a better /// geodistribution pub zone: String, /// The (relative) capacity of the node /// If this is set to None, the node does not participate in storing data for the system /// and is only active as an API gateway to other nodes pub capacity: Option, /// A set of tags to recognize the node pub tags: Vec, } impl NodeRole { pub fn capacity_string(&self) -> String { match self.capacity { Some(c) => format!("{}", c), None => "gateway".to_string(), } } } impl ClusterLayout { pub fn new(replication_factor: usize) -> Self { let empty_lwwmap = LwwMap::new(); let empty_lwwmap_hash = blake2sum(&rmp_to_vec_all_named(&empty_lwwmap).unwrap()[..]); ClusterLayout { version: 0, replication_factor, roles: LwwMap::new(), node_id_vec: Vec::new(), ring_assignation_data: Vec::new(), staging: empty_lwwmap, staging_hash: empty_lwwmap_hash, } } pub fn merge(&mut self, other: &ClusterLayout) -> bool { match other.version.cmp(&self.version) { Ordering::Greater => { *self = other.clone(); true } Ordering::Equal => { self.staging.merge(&other.staging); let new_staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]); let changed = new_staging_hash != self.staging_hash; self.staging_hash = new_staging_hash; changed } Ordering::Less => false, } } /// Returns a list of IDs of nodes that currently have /// a role in the cluster pub fn node_ids(&self) -> &[Uuid] { &self.node_id_vec[..] } pub fn num_nodes(&self) -> usize { self.node_id_vec.len() } /// Returns the role of a node in the layout pub fn node_role(&self, node: &Uuid) -> Option<&NodeRole> { match self.roles.get(node) { Some(NodeRoleV(Some(v))) => Some(v), _ => None, } } /// Check a cluster layout for internal consistency /// returns true if consistent, false if error pub fn check(&self) -> bool { // Check that the hash of the staging data is correct let staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]); if staging_hash != self.staging_hash { return false; } // Check that node_id_vec contains the correct list of nodes let mut expected_nodes = self .roles .items() .iter() .filter(|(_, _, v)| v.0.is_some()) .map(|(id, _, _)| *id) .collect::>(); expected_nodes.sort(); let mut node_id_vec = self.node_id_vec.clone(); node_id_vec.sort(); if expected_nodes != node_id_vec { return false; } // Check that the assignation data has the correct length if self.ring_assignation_data.len() != (1 << PARTITION_BITS) * self.replication_factor { return false; } // Check that the assigned nodes are correct identifiers // of nodes that are assigned a role // and that role is not the role of a gateway nodes for x in self.ring_assignation_data.iter() { if *x as usize >= self.node_id_vec.len() { return false; } let node = self.node_id_vec[*x as usize]; match self.roles.get(&node) { Some(NodeRoleV(Some(x))) if x.capacity.is_some() => (), _ => return false, } } true } /// This function calculates a new partition-to-node assignation. /// The computed assignation maximizes the capacity of a /// partition (assuming all partitions have the same size). /// Among such optimal assignation, it minimizes the distance to /// the former assignation (if any) to minimize the amount of /// data to be moved. A heuristic ensures node triplets /// dispersion (in garage_util::bipartite::optimize_matching()). pub fn calculate_partition_assignation(&mut self) -> bool { //The nodes might have been updated, some might have been deleted. //So we need to first update the list of nodes and retrieve the //assignation. let old_node_assignation = self.update_nodes_and_ring(); let (node_zone, _) = self.get_node_zone_capacity(); //We compute the optimal number of partition to assign to //every node and zone. if let Some((part_per_nod, part_per_zone)) = self.optimal_proportions(){ //We collect part_per_zone in a vec to not rely on the //arbitrary order in which elements are iterated in //Hashmap::iter() let part_per_zone_vec = part_per_zone.iter() .map(|(x,y)| (x.clone(),*y)) .collect::>(); //We create an indexing of the zones let mut zone_id = HashMap::::new(); for i in 0..part_per_zone_vec.len(){ zone_id.insert(part_per_zone_vec[i].0.clone(), i); } //We compute a candidate for the new partition to zone //assignation. let nb_zones = part_per_zone.len(); let nb_nodes = part_per_nod.len(); let nb_partitions = 1<> = old_node_assignation.iter().map(|x| x.iter().map( |id| match *id { Some(i) => zone_id[&node_zone[i]] , None => no_zone } ).collect()).collect(); //We minimize the distance to the former zone assignation zone_assignation = optimize_matching( &old_zone_assignation, &zone_assignation, nb_zones+1); //+1 for no_zone //We need to assign partitions to nodes in their zone //We first put the nodes assignation that can stay the same for i in 0..nb_partitions{ for j in 0..self.replication_factor { if let Some(Some(former_node)) = old_node_assignation[i].iter().find( |x| if let Some(id) = x { zone_id[&node_zone[*id]] == zone_assignation[i][j] } else {false} ) { if part_per_nod[*former_node] > 0 { node_assignation[i][j] = Some(*former_node); part_per_nod[*former_node] -= 1; } } } } //We complete the assignation of partitions to nodes let mut rng = rand::thread_rng(); for i in 0..nb_partitions { for j in 0..self.replication_factor { if node_assignation[i][j] == None { let possible_nodes : Vec = (0..nb_nodes) .filter( |id| zone_id[&node_zone[*id]] == zone_assignation[i][j] && part_per_nod[*id] > 0).collect(); assert!(possible_nodes.len()>0); //We randomly pick a node if let Some(nod) = possible_nodes.choose(&mut rng){ node_assignation[i][j] = Some(*nod); part_per_nod[*nod] -= 1; } } } } //We write the assignation in the 1D table self.ring_assignation_data = Vec::::new(); for i in 0..nb_partitions{ for j in 0..self.replication_factor { if let Some(id) = node_assignation[i][j] { self.ring_assignation_data.push(id as CompactNodeType); } else {assert!(false)} } } true } else { false } } /// The LwwMap of node roles might have changed. This function updates the node_id_vec /// and returns the assignation given by ring, with the new indices of the nodes, and /// None of the node is not present anymore. /// We work with the assumption that only this function and calculate_new_assignation /// do modify assignation_ring and node_id_vec. fn update_nodes_and_ring(&mut self) -> Vec>> { let nb_partitions = 1usize< = self.roles.items().iter() .map(|(k, _, _)| *k) .collect(); if ring.len() == rf*nb_partitions { for i in 0..nb_partitions { for j in 0..self.replication_factor { node_assignation[i][j] = new_node_id_vec.iter() .position(|id| *id == self.node_id_vec[ring[i*rf + j] as usize]); } } } self.node_id_vec = new_node_id_vec; self.ring_assignation_data = vec![]; return node_assignation; } ///This function compute the number of partition to assign to ///every node and zone, so that every partition is replicated ///self.replication_factor times and the capacity of a partition ///is maximized. fn optimal_proportions(&mut self) -> Option<(Vec, HashMap)> { let mut zone_capacity :HashMap= HashMap::new(); let (node_zone, node_capacity) = self.get_node_zone_capacity(); let nb_nodes = self.node_id_vec.len(); for i in 0..nb_nodes { if zone_capacity.contains_key(&node_zone[i]) { zone_capacity.insert(node_zone[i].clone(), zone_capacity[&node_zone[i]] + node_capacity[i]); } else{ zone_capacity.insert(node_zone[i].clone(), node_capacity[i]); } } //Compute the optimal number of partitions per zone let sum_capacities: u32 =zone_capacity.values().sum(); if sum_capacities <= 0 { println!("No storage capacity in the network."); return None; } let nb_partitions = 1< = zone_capacity.iter() .map(|(k, v)| (k.clone(), min(nb_partitions, (self.replication_factor*nb_partitions **v as usize)/sum_capacities as usize) ) ).collect(); //The replication_factor-1 upper bounds the number of //part_per_zones that are greater than nb_partitions for _ in 1..self.replication_factor { //The number of partitions that are not assignated to //a zone that takes nb_partitions. let sum_capleft : u32 = zone_capacity.keys() .filter(| k | {part_per_zone[*k] < nb_partitions} ) .map(|k| zone_capacity[k]).sum(); //The number of replication of the data that we need //to ensure. let repl_left = self.replication_factor - part_per_zone.values() .filter(|x| {**x == nb_partitions}) .count(); if repl_left == 0 { break; } for k in zone_capacity.keys() { if part_per_zone[k] != nb_partitions { part_per_zone.insert(k.to_string() , min(nb_partitions, (nb_partitions*zone_capacity[k] as usize *repl_left)/sum_capleft as usize)); } } } //Now we divide the zone's partition share proportionally //between their nodes. let mut part_per_nod : Vec = (0..nb_nodes).map( |i| (part_per_zone[&node_zone[i]]*node_capacity[i] as usize)/zone_capacity[&node_zone[i]] as usize ) .collect(); //We must update the part_per_zone to make it correspond to //part_per_nod (because of integer rounding) part_per_zone = part_per_zone.iter().map(|(k,_)| (k.clone(), 0)) .collect(); for i in 0..nb_nodes { part_per_zone.insert( node_zone[i].clone() , part_per_zone[&node_zone[i]] + part_per_nod[i]); } //Because of integer rounding, the total sum of part_per_nod //might not be replication_factor*nb_partitions. // We need at most to add 1 to every non maximal value of // part_per_nod. The capacity of a partition will be bounded // by the minimal value of // node_capacity_vec[i]/part_per_nod[i] // so we try to maximize this minimal value, keeping the // part_per_zone capped let discrepancy : usize = nb_partitions*self.replication_factor - part_per_nod.iter().sum::(); //We use a stupid O(N^2) algorithm. If the number of nodes //is actually expected to be high, one should optimize this. for _ in 0..discrepancy { if let Some(idmax) = (0..nb_nodes) .filter(|i| part_per_zone[&node_zone[*i]] < nb_partitions) .max_by( |i,j| (node_capacity[*i]*(part_per_nod[*j]+1) as u32) .cmp(&(node_capacity[*j]*(part_per_nod[*i]+1) as u32)) ) { part_per_nod[idmax] += 1; part_per_zone.insert(node_zone[idmax].clone(),part_per_zone[&node_zone[idmax]]+1); } } //We check the algorithm consistency let discrepancy : usize = nb_partitions*self.replication_factor - part_per_nod.iter().sum::(); assert!(discrepancy == 0); assert!(if let Some(v) = part_per_zone.values().max() {*v <= nb_partitions} else {false} ); Some((part_per_nod, part_per_zone)) } //Returns vectors of zone and capacity; indexed by the same (temporary) //indices as node_id_vec. fn get_node_zone_capacity(& self) -> (Vec , Vec) { let node_zone = self.node_id_vec.iter().map( |id_nod| match self.node_role(id_nod) { Some(NodeRole{zone,capacity:_,tags:_}) => zone.clone() , _ => "".to_string() } ).collect(); let node_capacity = self.node_id_vec.iter().map( |id_nod| match self.node_role(id_nod) { Some(NodeRole{zone:_,capacity,tags:_}) => if let Some(c)=capacity {*c} else {0}, _ => 0 } ).collect(); (node_zone,node_capacity) } } #[cfg(test)] mod tests { use super::*; use itertools::Itertools; fn check_assignation(cl : &ClusterLayout) { //Check that input data has the right format let nb_partitions = 1usize<>(); let zone_vec = node_zone.iter().unique().collect::>(); let zone_nb_part = zone_vec.iter().map( |z| cl.ring_assignation_data.iter() .filter(|x| node_zone[**x as usize] == **z) .count() ).collect::>(); //Check optimality of the zone assignation : would it be better for the //node_capacity/node_partitions ratio to change the assignation of a partition if let Some(idmin) = (0..nb_nodes).min_by( |i,j| (node_capacity[*i]*node_nb_part[*j] as u32) .cmp(&(node_capacity[*j]*node_nb_part[*i] as u32)) ){ if let Some(idnew) = (0..nb_nodes) .filter( |i| if let Some(p) = zone_vec.iter().position(|z| **z==node_zone[*i]) {zone_nb_part[p] < nb_partitions } else { false }) .max_by( |i,j| (node_capacity[*i]*(node_nb_part[*j]as u32+1)) .cmp(&(node_capacity[*j]*(node_nb_part[*i] as u32+1))) ){ assert!(node_capacity[idmin]*(node_nb_part[idnew] as u32+1) >= node_capacity[idnew]*node_nb_part[idmin] as u32); } } //In every zone, check optimality of the nod assignation for z in zone_vec { let node_of_z_iter = (0..nb_nodes).filter(|id| node_zone[*id] == *z ); if let Some(idmin) = node_of_z_iter.clone().min_by( |i,j| (node_capacity[*i]*node_nb_part[*j] as u32) .cmp(&(node_capacity[*j]*node_nb_part[*i] as u32)) ){ if let Some(idnew) = node_of_z_iter.min_by( |i,j| (node_capacity[*i]*(node_nb_part[*j] as u32+1)) .cmp(&(node_capacity[*j]*(node_nb_part[*i] as u32+1))) ){ assert!(node_capacity[idmin]*(node_nb_part[idnew] as u32+1) >= node_capacity[idnew]*node_nb_part[idmin] as u32); } } } } fn update_layout(cl : &mut ClusterLayout, node_id_vec : &Vec, node_capacity_vec : &Vec , node_zone_vec : &Vec) { for i in 0..node_id_vec.len(){ if let Some(x) = FixedBytes32::try_from(&[i as u8;32]) { cl.node_id_vec.push(x); } let update = cl.roles.update_mutator(cl.node_id_vec[i] , NodeRoleV(Some(NodeRole{ zone : (node_zone_vec[i].to_string()), capacity : (Some(node_capacity_vec[i])), tags : (vec![])}))); cl.roles.merge(&update); } } #[test] fn test_assignation() { let mut node_id_vec = vec![1,2,3]; let mut node_capacity_vec = vec![4000,1000,2000]; let mut node_zone_vec= vec!["A", "B", "C"].into_iter().map(|x| x.to_string()).collect(); let mut cl = ClusterLayout { node_id_vec: vec![], roles : LwwMap::new(), replication_factor: 3, ring_assignation_data : vec![], version:0, staging: LwwMap::new(), staging_hash: sha256sum(&[1;32]), }; update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec); cl.calculate_partition_assignation(); check_assignation(&cl); node_id_vec = vec![1,2,3, 4, 5, 6, 7, 8, 9]; node_capacity_vec = vec![4000,1000,1000, 3000, 1000, 1000, 2000, 10000, 2000]; node_zone_vec= vec!["A", "B", "C", "C", "C", "B", "G", "H", "I"].into_iter().map(|x| x.to_string()).collect(); update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec); cl.calculate_partition_assignation(); check_assignation(&cl); node_capacity_vec = vec![4000,1000,2000, 7000, 1000, 1000, 2000, 10000, 2000]; update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec); cl.calculate_partition_assignation(); check_assignation(&cl); node_capacity_vec = vec![4000,4000,2000, 7000, 1000, 9000, 2000, 10, 2000]; update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec); cl.calculate_partition_assignation(); check_assignation(&cl); } }