Documentate

This commit is contained in:
Alex 2020-12-02 20:12:24 +01:00
parent 46fae5d138
commit 14d34e76f4
11 changed files with 209 additions and 69 deletions

View file

@ -9,7 +9,7 @@ use structopt::StructOpt;
use sodiumoxide::crypto::auth; use sodiumoxide::crypto::auth;
use sodiumoxide::crypto::sign::ed25519; use sodiumoxide::crypto::sign::ed25519;
use netapp::netapp::*; use netapp::NetApp;
use netapp::peering::basalt::*; use netapp::peering::basalt::*;
#[derive(StructOpt, Debug)] #[derive(StructOpt, Debug)]

View file

@ -7,8 +7,8 @@ use structopt::StructOpt;
use sodiumoxide::crypto::auth; use sodiumoxide::crypto::auth;
use sodiumoxide::crypto::sign::ed25519; use sodiumoxide::crypto::sign::ed25519;
use netapp::netapp::*;
use netapp::peering::fullmesh::*; use netapp::peering::fullmesh::*;
use netapp::NetApp;
#[derive(StructOpt, Debug)] #[derive(StructOpt, Debug)]
#[structopt(name = "netapp")] #[structopt(name = "netapp")]

View file

@ -23,10 +23,12 @@ use crate::netapp::*;
use crate::proto::*; use crate::proto::*;
use crate::util::*; use crate::util::*;
pub struct ServerConn { pub(crate) struct ServerConn {
pub(crate) remote_addr: SocketAddr,
pub(crate) peer_pk: ed25519::PublicKey,
netapp: Arc<NetApp>, netapp: Arc<NetApp>,
pub remote_addr: SocketAddr,
pub peer_pk: ed25519::PublicKey,
resp_send: mpsc::UnboundedSender<(RequestID, RequestPriority, Vec<u8>)>, resp_send: mpsc::UnboundedSender<(RequestID, RequestPriority, Vec<u8>)>,
close_send: watch::Sender<bool>, close_send: watch::Sender<bool>,
} }
@ -115,10 +117,10 @@ impl RecvLoop for ServerConn {
} }
} }
} }
pub struct ClientConn { pub(crate) struct ClientConn {
pub netapp: Arc<NetApp>, pub(crate) remote_addr: SocketAddr,
pub remote_addr: SocketAddr, pub(crate) peer_pk: ed25519::PublicKey,
pub peer_pk: ed25519::PublicKey,
query_send: mpsc::UnboundedSender<(RequestID, RequestPriority, Vec<u8>)>, query_send: mpsc::UnboundedSender<(RequestID, RequestPriority, Vec<u8>)>,
next_query_number: AtomicU16, next_query_number: AtomicU16,
resp_send: mpsc::UnboundedSender<(RequestID, Vec<u8>)>, resp_send: mpsc::UnboundedSender<(RequestID, Vec<u8>)>,
@ -167,7 +169,6 @@ impl ClientConn {
let (close_send, close_recv) = watch::channel(false); let (close_send, close_recv) = watch::channel(false);
let conn = Arc::new(ClientConn { let conn = Arc::new(ClientConn {
netapp: netapp.clone(),
remote_addr, remote_addr,
peer_pk: remote_pk.clone(), peer_pk: remote_pk.clone(),
next_query_number: AtomicU16::from(0u16), next_query_number: AtomicU16::from(0u16),

View file

@ -41,6 +41,8 @@ impl<T> From<tokio::sync::mpsc::error::SendError<T>> for Error {
} }
} }
/// Ths trait adds a `.log_err()` method on `Result<(), E>` types,
/// which dismisses the error by logging it to stderr.
pub trait LogError { pub trait LogError {
fn log_err(self, msg: &'static str); fn log_err(self, msg: &'static str);
} }

View file

@ -1,9 +1,29 @@
//! Netapp is a Rust library that takes care of a few common tasks in distributed software:
//!
//! - establishing secure connections
//! - managing connection lifetime, reconnecting on failure
//! - checking peer's state
//! - peer discovery
//! - query/response message passing model for communications
//! - multiplexing transfers over a connection
//! - overlay networks: full mesh or random peer sampling using Basalt
//!
//! Of particular interest, read the documentation for the `netapp::NetApp` type,
//! the `message::Message` trait, and `proto::RequestPriority` to learn more
//! about message priorization.
//! Also check out the examples to learn how to use this crate.
#![feature(map_first_last)] #![feature(map_first_last)]
pub mod conn;
pub mod error; pub mod error;
pub mod util;
pub mod proto;
pub mod message; pub mod message;
mod conn;
pub mod netapp; pub mod netapp;
pub mod peering; pub mod peering;
pub mod proto;
pub mod util; pub use netapp::*;

View file

@ -2,6 +2,21 @@ use serde::{Deserialize, Serialize};
pub type MessageKind = u32; pub type MessageKind = u32;
/// This trait should be implemented by all messages your application
/// wants to handle (click to read more).
///
/// It defines a `KIND`, which should be a **unique**
/// `u32` that distinguishes these messages from other types of messages
/// (it is used by our communication protocol), as well as an associated
/// `Response` type that defines the type of the response that is given
/// to the message. It is your responsibility to ensure that `KIND` is a
/// unique `u32` that is not used by any other protocol messages.
/// All `KIND` values of the form `0x42xxxxxx` are reserved by the netapp
/// crate for internal purposes.
///
/// A handler for this message has type `Self -> Self::Response`.
/// If you need to return an error, the `Response` type should be
/// a `Result<_, _>`.
pub trait Message: Serialize + for<'de> Deserialize<'de> + Send + Sync { pub trait Message: Serialize + for<'de> Deserialize<'de> + Send + Sync {
const KIND: MessageKind; const KIND: MessageKind;
type Response: Serialize + for<'de> Deserialize<'de> + Send + Sync; type Response: Serialize + for<'de> Deserialize<'de> + Send + Sync;

View file

@ -33,17 +33,31 @@ pub(crate) struct Handler {
>, >,
} }
/// NetApp is the main class that handles incoming and outgoing connections.
///
/// The `request()` method can be used to send a message to any peer to which we have
/// an outgoing connection, or to ourself. On the server side, these messages are
/// processed by the handlers that have been defined using `add_msg_handler()`.
///
/// NetApp can be used in a stand-alone fashion or together with a peering strategy.
/// If using it alone, you will want to set `on_connect` and `on_disconnect` events
/// in order to manage information about the current peer list.
///
/// It is generally not necessary to use NetApp stand-alone, as the provided full mesh
/// and RPS peering strategies take care of the most common use cases.
pub struct NetApp { pub struct NetApp {
pub listen_addr: SocketAddr, pub listen_addr: SocketAddr,
pub netid: auth::Key, pub netid: auth::Key,
pub pubkey: ed25519::PublicKey, pub pubkey: ed25519::PublicKey,
pub privkey: ed25519::SecretKey, pub privkey: ed25519::SecretKey,
pub server_conns: RwLock<HashMap<ed25519::PublicKey, Arc<ServerConn>>>,
pub client_conns: RwLock<HashMap<ed25519::PublicKey, Arc<ClientConn>>>, server_conns: RwLock<HashMap<ed25519::PublicKey, Arc<ServerConn>>>,
client_conns: RwLock<HashMap<ed25519::PublicKey, Arc<ClientConn>>>,
pub(crate) msg_handlers: ArcSwap<HashMap<MessageKind, Arc<Handler>>>, pub(crate) msg_handlers: ArcSwap<HashMap<MessageKind, Arc<Handler>>>,
pub(crate) on_connected: on_connected_handler:
ArcSwapOption<Box<dyn Fn(ed25519::PublicKey, SocketAddr, bool) + Send + Sync>>, ArcSwapOption<Box<dyn Fn(ed25519::PublicKey, SocketAddr, bool) + Send + Sync>>,
pub(crate) on_disconnected: ArcSwapOption<Box<dyn Fn(ed25519::PublicKey, bool) + Send + Sync>>, on_disconnected_handler: ArcSwapOption<Box<dyn Fn(ed25519::PublicKey, bool) + Send + Sync>>,
} }
async fn net_handler_aux<M, F, R>( async fn net_handler_aux<M, F, R>(
@ -78,13 +92,14 @@ where
F: Fn(ed25519::PublicKey, M) -> R + Send + Sync + 'static, F: Fn(ed25519::PublicKey, M) -> R + Send + Sync + 'static,
R: Future<Output = <M as Message>::Response> + Send + Sync, R: Future<Output = <M as Message>::Response> + Send + Sync,
{ {
debug!("Handling message of kind {:08x} from ourself", M::KIND,); debug!("Handling message of kind {:08x} from ourself", M::KIND);
let msg = (msg as Box<dyn Any + 'static>).downcast::<M>().unwrap(); let msg = (msg as Box<dyn Any + 'static>).downcast::<M>().unwrap();
let res = handler(remote, *msg).await; let res = handler(remote, *msg).await;
Box::new(res) Box::new(res)
} }
impl NetApp { impl NetApp {
/// Creates a new instance of NetApp. No background process is
pub fn new( pub fn new(
listen_addr: SocketAddr, listen_addr: SocketAddr,
netid: auth::Key, netid: auth::Key,
@ -99,8 +114,8 @@ impl NetApp {
server_conns: RwLock::new(HashMap::new()), server_conns: RwLock::new(HashMap::new()),
client_conns: RwLock::new(HashMap::new()), client_conns: RwLock::new(HashMap::new()),
msg_handlers: ArcSwap::new(Arc::new(HashMap::new())), msg_handlers: ArcSwap::new(Arc::new(HashMap::new())),
on_connected: ArcSwapOption::new(None), on_connected_handler: ArcSwapOption::new(None),
on_disconnected: ArcSwapOption::new(None), on_disconnected_handler: ArcSwapOption::new(None),
}); });
let netapp2 = netapp.clone(); let netapp2 = netapp.clone();
@ -114,6 +129,26 @@ impl NetApp {
netapp netapp
} }
/// Set the handler to be called when a new connection (incoming or outgoing) has
/// been successfully established. Do not set this if using a peering strategy,
/// as the peering strategy will need to set this itself.
pub fn on_connected<F>(&self, handler: F)
where F: Fn(ed25519::PublicKey, SocketAddr, bool) + Sized + Send + Sync + 'static
{
self.on_connected_handler.store(Some(Arc::new(Box::new(handler))));
}
/// Set the handler to be called when an existing connection (incoming or outgoing) has
/// been closed by either party. Do not set this if using a peering strategy,
/// as the peering strategy will need to set this itself.
pub fn on_disconnected<F>(&self, handler: F)
where F: Fn(ed25519::PublicKey, bool) + Sized + Send + Sync + 'static
{
self.on_disconnected_handler.store(Some(Arc::new(Box::new(handler))));
}
/// Add a handler for a certain message type. Note that only one handler
/// can be specified for each message type.
pub fn add_msg_handler<M, F, R>(&self, handler: F) pub fn add_msg_handler<M, F, R>(&self, handler: F)
where where
M: Message + 'static, M: Message + 'static,
@ -122,10 +157,10 @@ impl NetApp {
{ {
let handler = Arc::new(handler); let handler = Arc::new(handler);
let handler1 = handler.clone(); let handler2 = handler.clone();
let net_handler = Box::new(move |remote: ed25519::PublicKey, bytes: Bytes| { let net_handler = Box::new(move |remote: ed25519::PublicKey, bytes: Bytes| {
let fun: Pin<Box<dyn Future<Output = Vec<u8>> + Sync + Send>> = let fun: Pin<Box<dyn Future<Output = Vec<u8>> + Sync + Send>> =
Box::pin(net_handler_aux(handler1.clone(), remote, bytes)); Box::pin(net_handler_aux(handler2.clone(), remote, bytes));
fun fun
}); });
@ -146,6 +181,8 @@ impl NetApp {
self.msg_handlers.store(Arc::new(handlers)); self.msg_handlers.store(Arc::new(handlers));
} }
/// Main listening process for our app. This future runs during the whole
/// run time of our application.
pub async fn listen(self: Arc<Self>) { pub async fn listen(self: Arc<Self>) {
let mut listener = TcpListener::bind(self.listen_addr).await.unwrap(); let mut listener = TcpListener::bind(self.listen_addr).await.unwrap();
info!("Listening on {}", self.listen_addr); info!("Listening on {}", self.listen_addr);
@ -166,16 +203,21 @@ impl NetApp {
} }
} }
/// Attempt to connect to a peer, given by its ip:port and its public key.
/// The public key will be checked during the secret handshake process.
/// This function returns once the connection has been established and a
/// successfull handshake was made. At this point we can send messages to
/// the other node with `Netapp::request`
pub async fn try_connect( pub async fn try_connect(
self: Arc<Self>, self: Arc<Self>,
ip: SocketAddr, ip: SocketAddr,
pk: ed25519::PublicKey, pk: ed25519::PublicKey,
) -> Result<(), Error> { ) -> Result<(), Error> {
if pk == self.pubkey {
// Don't connect to ourself, we don't care // Don't connect to ourself, we don't care
// but pretend we did // but pretend we did
if pk == self.pubkey {
tokio::spawn(async move { tokio::spawn(async move {
if let Some(h) = self.on_connected.load().as_ref() { if let Some(h) = self.on_connected_handler.load().as_ref() {
h(pk, ip, false); h(pk, ip, false);
} }
}); });
@ -193,11 +235,16 @@ impl NetApp {
Ok(()) Ok(())
} }
pub fn disconnect(self: Arc<Self>, pk: &ed25519::PublicKey) { /// Close the outgoing connection we have to a node specified by its public key,
/// if such a connection is currently open.
pub fn disconnect(self: &Arc<Self>, pk: &ed25519::PublicKey) {
// Don't disconnect from ourself (we aren't connected anyways)
// but pretend we did
if *pk == self.pubkey { if *pk == self.pubkey {
let pk = *pk; let pk = *pk;
let self2 = self.clone();
tokio::spawn(async move { tokio::spawn(async move {
if let Some(h) = self.on_disconnected.load().as_ref() { if let Some(h) = self2.on_disconnected_handler.load().as_ref() {
h(pk, false); h(pk, false);
} }
}); });
@ -206,10 +253,30 @@ impl NetApp {
let conn = self.client_conns.read().unwrap().get(pk).cloned(); let conn = self.client_conns.read().unwrap().get(pk).cloned();
if let Some(c) = conn { if let Some(c) = conn {
debug!("Closing connection to {} ({})",
hex::encode(c.peer_pk),
c.remote_addr);
c.close(); c.close();
} }
} }
/// Close the incoming connection from a certain client to us,
/// if such a connection is currently open.
pub fn server_disconnect(self: &Arc<Self>, pk: &ed25519::PublicKey) {
let conn = self.server_conns.read().unwrap().get(pk).cloned();
if let Some(c) = conn {
debug!("Closing incoming connection from {} ({})",
hex::encode(c.peer_pk),
c.remote_addr);
c.close();
}
}
// Called from conn.rs when an incoming connection is successfully established
// Registers the connection in our list of connections
// Do not yet call the on_connected handler, because we don't know if the remote
// has an actual IP address and port we can call them back on.
// We will know this when they send a Hello message, which is handled below.
pub(crate) fn connected_as_server(&self, id: ed25519::PublicKey, conn: Arc<ServerConn>) { pub(crate) fn connected_as_server(&self, id: ed25519::PublicKey, conn: Arc<ServerConn>) {
info!("Accepted connection from {}", hex::encode(id)); info!("Accepted connection from {}", hex::encode(id));
@ -217,8 +284,13 @@ impl NetApp {
conn_list.insert(id.clone(), conn); conn_list.insert(id.clone(), conn);
} }
// Handle hello message from a client. This message is used for them to tell us
// that they are listening on a certain port number on which we can call them back.
// At this point we know they are a full network member, and not just a client,
// and we call the on_connected handler so that the peering strategy knows
// we have a new potential peer
fn handle_hello_message(&self, id: ed25519::PublicKey, msg: HelloMessage) { fn handle_hello_message(&self, id: ed25519::PublicKey, msg: HelloMessage) {
if let Some(h) = self.on_connected.load().as_ref() { if let Some(h) = self.on_connected_handler.load().as_ref() {
if let Some(c) = self.server_conns.read().unwrap().get(&id) { if let Some(c) = self.server_conns.read().unwrap().get(&id) {
let remote_addr = SocketAddr::new(c.remote_addr.ip(), msg.server_port); let remote_addr = SocketAddr::new(c.remote_addr.ip(), msg.server_port);
h(id, remote_addr, true); h(id, remote_addr, true);
@ -226,6 +298,9 @@ impl NetApp {
} }
} }
// Called from conn.rs when an incoming connection is closed.
// We deregister the connection from server_conns and call the
// handler registered by on_disconnected
pub(crate) fn disconnected_as_server(&self, id: &ed25519::PublicKey, conn: Arc<ServerConn>) { pub(crate) fn disconnected_as_server(&self, id: &ed25519::PublicKey, conn: Arc<ServerConn>) {
info!("Connection from {} closed", hex::encode(id)); info!("Connection from {} closed", hex::encode(id));
@ -235,12 +310,19 @@ impl NetApp {
conn_list.remove(id); conn_list.remove(id);
} }
if let Some(h) = self.on_disconnected.load().as_ref() { if let Some(h) = self.on_disconnected_handler.load().as_ref() {
h(conn.peer_pk, true); h(conn.peer_pk, true);
} }
} }
} }
// Called from conn.rs when an outgoinc connection is successfully established.
// The connection is registered in self.client_conns, and the
// on_connected handler is called.
//
// Since we are ourself listening, we send them a Hello message so that
// they know on which port to call us back. (TODO: don't do this if we are
// just a simple client and not a full p2p node)
pub(crate) fn connected_as_client(&self, id: ed25519::PublicKey, conn: Arc<ClientConn>) { pub(crate) fn connected_as_client(&self, id: ed25519::PublicKey, conn: Arc<ClientConn>) {
info!("Connection established to {}", hex::encode(id)); info!("Connection established to {}", hex::encode(id));
@ -251,32 +333,39 @@ impl NetApp {
} }
} }
if let Some(h) = self.on_connected.load().as_ref() { if let Some(h) = self.on_connected_handler.load().as_ref() {
h(conn.peer_pk, conn.remote_addr, false); h(conn.peer_pk, conn.remote_addr, false);
} }
let server_port = self.listen_addr.port();
tokio::spawn(async move { tokio::spawn(async move {
let server_port = conn.netapp.listen_addr.port(); conn.request(HelloMessage { server_port }, PRIO_NORMAL)
conn.request(HelloMessage { server_port }, prio::NORMAL)
.await .await
.log_err("Sending hello message"); .log_err("Sending hello message");
}); });
} }
// Called from conn.rs when an outgoinc connection is closed.
// The connection is removed from conn_list, and the on_disconnected handler
// is called.
pub(crate) fn disconnected_as_client(&self, id: &ed25519::PublicKey, conn: Arc<ClientConn>) { pub(crate) fn disconnected_as_client(&self, id: &ed25519::PublicKey, conn: Arc<ClientConn>) {
info!("Connection to {} closed", hex::encode(id)); info!("Connection to {} closed", hex::encode(id));
let mut conn_list = self.client_conns.write().unwrap(); let mut conn_list = self.client_conns.write().unwrap();
if let Some(c) = conn_list.get(id) { if let Some(c) = conn_list.get(id) {
if Arc::ptr_eq(c, &conn) { if Arc::ptr_eq(c, &conn) {
conn_list.remove(id); conn_list.remove(id);
}
if let Some(h) = self.on_disconnected.load().as_ref() { if let Some(h) = self.on_disconnected_handler.load().as_ref() {
h(conn.peer_pk, false); h(conn.peer_pk, false);
} }
} }
} }
}
/// Send a message to a remote host to which a client connection is already
/// established, and await their response. The target is the id of the peer we
/// want to send the message to.
/// The priority is an `u8`, with lower numbers meaning highest priority.
pub async fn request<T>( pub async fn request<T>(
&self, &self,
target: &ed25519::PublicKey, target: &ed25519::PublicKey,

View file

@ -264,18 +264,18 @@ impl Basalt {
}); });
let basalt2 = basalt.clone(); let basalt2 = basalt.clone();
netapp.on_connected.store(Some(Arc::new(Box::new( netapp.on_connected(
move |pk: ed25519::PublicKey, addr: SocketAddr, is_incoming: bool| { move |pk: ed25519::PublicKey, addr: SocketAddr, is_incoming: bool| {
basalt2.on_connected(pk, addr, is_incoming); basalt2.on_connected(pk, addr, is_incoming);
}, }
)))); );
let basalt2 = basalt.clone(); let basalt2 = basalt.clone();
netapp.on_disconnected.store(Some(Arc::new(Box::new( netapp.on_disconnected(
move |pk: ed25519::PublicKey, is_incoming: bool| { move |pk: ed25519::PublicKey, is_incoming: bool| {
basalt2.on_disconnected(pk, is_incoming); basalt2.on_disconnected(pk, is_incoming);
}, },
)))); );
let basalt2 = basalt.clone(); let basalt2 = basalt.clone();
netapp.add_msg_handler::<PullMessage, _, _>( netapp.add_msg_handler::<PullMessage, _, _>(
@ -331,7 +331,7 @@ impl Basalt {
async fn do_pull(self: Arc<Self>, peer: ed25519::PublicKey) { async fn do_pull(self: Arc<Self>, peer: ed25519::PublicKey) {
match self match self
.netapp .netapp
.request(&peer, PullMessage {}, prio::NORMAL) .request(&peer, PullMessage {}, PRIO_NORMAL)
.await .await
{ {
Ok(resp) => { Ok(resp) => {
@ -345,7 +345,7 @@ impl Basalt {
async fn do_push(self: Arc<Self>, peer: ed25519::PublicKey) { async fn do_push(self: Arc<Self>, peer: ed25519::PublicKey) {
let push_msg = self.make_push_message(); let push_msg = self.make_push_message();
if let Err(e) = self.netapp.request(&peer, push_msg, prio::NORMAL).await { if let Err(e) = self.netapp.request(&peer, push_msg, PRIO_NORMAL).await {
warn!("Error during push exchange: {}", e); warn!("Error during push exchange: {}", e);
} }
} }
@ -448,17 +448,9 @@ impl Basalt {
} }
fn close_all_diff(&self, prev_peers: &HashSet<Peer>, new_peers: &HashSet<Peer>) { fn close_all_diff(&self, prev_peers: &HashSet<Peer>, new_peers: &HashSet<Peer>) {
let client_conns = self.netapp.client_conns.read().unwrap();
for peer in prev_peers.iter() { for peer in prev_peers.iter() {
if !new_peers.contains(peer) { if !new_peers.contains(peer) {
if let Some(c) = client_conns.get(&peer.id) { self.netapp.disconnect(&peer.id);
debug!(
"Closing connection to {} ({})",
hex::encode(peer.id),
peer.addr
);
c.close();
}
} }
} }
} }

View file

@ -177,20 +177,20 @@ impl FullMeshPeeringStrategy {
); );
let strat2 = strat.clone(); let strat2 = strat.clone();
netapp.on_connected.store(Some(Arc::new(Box::new( netapp.on_connected(
move |pk: ed25519::PublicKey, addr: SocketAddr, is_incoming: bool| { move |pk: ed25519::PublicKey, addr: SocketAddr, is_incoming: bool| {
let strat2 = strat2.clone(); let strat2 = strat2.clone();
tokio::spawn(strat2.on_connected(pk, addr, is_incoming)); tokio::spawn(strat2.on_connected(pk, addr, is_incoming));
}, },
)))); );
let strat2 = strat.clone(); let strat2 = strat.clone();
netapp.on_disconnected.store(Some(Arc::new(Box::new( netapp.on_disconnected(
move |pk: ed25519::PublicKey, is_incoming: bool| { move |pk: ed25519::PublicKey, is_incoming: bool| {
let strat2 = strat2.clone(); let strat2 = strat2.clone();
tokio::spawn(strat2.on_disconnected(pk, is_incoming)); tokio::spawn(strat2.on_disconnected(pk, is_incoming));
}, },
)))); );
strat strat
} }
@ -271,7 +271,7 @@ impl FullMeshPeeringStrategy {
hex::encode(id), hex::encode(id),
ping_time ping_time
); );
match self.netapp.request(&id, ping_msg, prio::HIGH).await { match self.netapp.request(&id, ping_msg, PRIO_HIGH).await {
Err(e) => warn!("Error pinging {}: {}", hex::encode(id), e), Err(e) => warn!("Error pinging {}: {}", hex::encode(id), e),
Ok(ping_resp) => { Ok(ping_resp) => {
let resp_time = Instant::now(); let resp_time = Instant::now();
@ -300,7 +300,7 @@ impl FullMeshPeeringStrategy {
async fn exchange_peers(self: Arc<Self>, id: &ed25519::PublicKey) { async fn exchange_peers(self: Arc<Self>, id: &ed25519::PublicKey) {
let peer_list = KnownHosts::map_into_vec(&self.known_hosts.read().unwrap().list); let peer_list = KnownHosts::map_into_vec(&self.known_hosts.read().unwrap().list);
let pex_message = PeerListMessage { list: peer_list }; let pex_message = PeerListMessage { list: peer_list };
match self.netapp.request(id, pex_message, prio::BACKGROUND).await { match self.netapp.request(id, pex_message, PRIO_BACKGROUND).await {
Err(e) => warn!("Error doing peer exchange: {}", e), Err(e) => warn!("Error doing peer exchange: {}", e),
Ok(resp) => { Ok(resp) => {
self.handle_peer_list(&resp.list[..]); self.handle_peer_list(&resp.list[..]);

View file

@ -16,19 +16,36 @@ use crate::error::*;
use kuska_handshake::async_std::{BoxStreamRead, BoxStreamWrite, TokioCompat}; use kuska_handshake::async_std::{BoxStreamRead, BoxStreamWrite, TokioCompat};
/// Priority of a request (click to read more about priorities).
///
/// This priority value is used to priorize messages
/// in the send queue of the client, and their responses in the send queue of the
/// server. Lower values mean higher priority.
///
/// This mechanism is usefull for messages bigger than the maximum chunk size
/// (set at `0x4000` bytes), such as large file transfers.
/// In such case, all of the messages in the send queue with the highest priority
/// will take turns to send individual chunks, in a round-robin fashion.
/// Once all highest priority messages are sent successfully, the messages with
/// the next highest priority will begin being sent in the same way.
///
/// The same priority value is given to a request and to its associated response.
pub type RequestPriority = u8;
/// Priority class: high
pub const PRIO_HIGH: RequestPriority = 0x20;
/// Priority class: normal
pub const PRIO_NORMAL: RequestPriority = 0x40;
/// Priority class: background
pub const PRIO_BACKGROUND: RequestPriority = 0x80;
/// Priority: primary among given class
pub const PRIO_PRIMARY: RequestPriority = 0x00;
/// Priority: secondary among given class (ex: `PRIO_HIGH || PRIO_SECONDARY`)
pub const PRIO_SECONDARY: RequestPriority = 0x01;
const MAX_CHUNK_SIZE: usize = 0x4000; const MAX_CHUNK_SIZE: usize = 0x4000;
pub mod prio { pub(crate) type RequestID = u16;
pub const HIGH: u8 = 0x20;
pub const NORMAL: u8 = 0x40;
pub const BACKGROUND: u8 = 0x80;
pub const PRIMARY: u8 = 0x00;
pub const SECONDARY: u8 = 0x01;
}
pub type RequestID = u16;
pub type RequestPriority = u8;
struct SendQueueItem { struct SendQueueItem {
id: RequestID, id: RequestID,

View file

@ -1,6 +1,10 @@
use serde::Serialize; use serde::Serialize;
// util /// Utility function: encodes any serializable value in MessagePack binary format
/// using the RMP library.
///
/// Field names and variant names are included in the serialization.
/// This is used internally by the netapp communication protocol.
pub fn rmp_to_vec_all_named<T>(val: &T) -> Result<Vec<u8>, rmp_serde::encode::Error> pub fn rmp_to_vec_all_named<T>(val: &T) -> Result<Vec<u8>, rmp_serde::encode::Error>
where where
T: Serialize + ?Sized, T: Serialize + ?Sized,