
Distributed object storage is centralised
A quest for autonomy in the modern hosting ecology

Adrien Luxey

Wednesday, 28th April, 2021

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

A very casual motivation

I want to host resilient web services with
acceptable performance on commodity hardware

behind household networks.

Keywords
I Decentralised networks
I Edge computing

I Distributed storage
I Privacy

2

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Context

Resilience: Ability to recover quickly from failures and changes.
Only achievable through distribution of the hosted applications
across several physical locations.

Application = computations on data
I Computation: Stateless; easy to distribute & orchestrate.
I Data: Stateful; hard to distribute & full of trade-offs.

3

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Concurrent writes example How to lose vaccines

T0: 5000

vaccinesParis Lille

R

W

R

W

We acquired 1000 doses!

x + 1000 x + 500

We acquired 500 doses!

???

4

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

The problem

Can we design an available data store tailored for
adverse network conditions?

5

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

The CAP theorem Consistency vs. Availability

Eric Brewer’s theorem
“A shared-state system can have at most two of the following
properties at any given time:
I Consistency
I Availability
I Partition tolerance”

Under network partitions, a distributed data store
has to sacrifice either availability or consistency.
I Consistency-first: Abort incoming queries;
I Availability-first: Return possibly stale data.

6

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Consistency-first: the ACID model Consistency vs. Availability

Transaction: unit of work within an ACID data store.
I Atomicity: Transactions either complete entirely or fail.

No transaction ever seen as in-progress.
I Consistency: Transactions always generate a valid state.

The database maintains its invariants across transactions.
I Isolation: Concurrent transactions are seen as sequential.

Transactions are serializable, or sequentially consistent.
I Durability: Committed transactions are never forgotten.

Reads are fast, writes are slow.
Example: relational databases.

7

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Concurrent writes in ACID Consistency vs. Availability

t r a n s a c t i o n AcqDoses (y) :
x <− SELECT #va c c i n e s ;
UPDATE #vac c i n e s = (x + y) ;

Supports compound operations.

T0: 5000

vaccinesParis Lille

R

W

AcqDoses(1000)

R

W

AcqDoses(500)
T1: 6000

T2: 6500

8

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Availability-first: the BASE model Consistency vs. Availability

Some apps prefer availability, e.g. Amazon products’ reviews.
The BASE model trades Consistency & Isolation for Availability.

I Basic Availability: The data store thrives to be available.
I Soft-state: Replicas can disagree on the valid state.
I Eventual consistency: In the absence of write queries, the

data store will eventually converge to a single valid state.

Writes are fast, reads are slow.
Examples: key-value & object stores.

9

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Concurrent writes in BASE Consistency vs. Availability

Object
I Unique key
I Arbitrary value
I Metadata

Conflict resolution = client’s job!

No compound operations.

vaccinesParis Lille

R

W

R

W

T1: [(T0, 6000),(T0, 5500)]

R

Now solve this!
And write back!

x + 1000 x + 500

T0: (⊥, 5000)

10

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Strong Eventual Consistency w/ CRDTs Consistency vs. Availability

M. Shapiro et al. “Conflict-Free Replicated Data Types”. In:
Stabilization, Safety, and Security of Distributed Systems. Berlin,

Heidelberg, 2011

Strong Eventual Consistency (SEC)
I CRDTs specify distributed operations
I Conflicts will be solved according to specification
I Proven & bound eventual convergence

App CRDT Datastore

11

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Concurrent writes with CRDTs Consistency vs. Availability

CRDT Counter (x0) :
h i s t o r y = {}
op . i n c r (y) :

h i s t o r y U= {(UUID () , y) }
op . dec r (y) :

h i s t o r y U= {(UUID () , −y)}
op . read () :

x = x0
f o r (_ , y) i n h i s t o r y :

x += y
r e t u r n x

Operations commute?
=⇒ screw total order!

vaccinesParis Lille

W W
incr(1000) incr(500)

T1: (5000, {(a, 1000), (b, 500)})
R

6500

T0: (5000, ∅)

12

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

A complex CRDT: the DAG Consistency vs. Availability

13

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

A complex CRDT: the DAG Consistency vs. Availability

Just to say I swept a lot under the rug.

For details, go read:
M. Shapiro et al. “Conflict-Free Replicated Data Types”. In:
Stabilization, Safety, and Security of Distributed Systems.

Berlin, Heidelberg, 2011

For an implementation, check AntidoteDB.

13

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

State of the practice Path dependency to the “cloud”

The BASE model is fashionable because
“High-performance object storage for AI analytics with PBs of IoT

data streams at the edge, using 5G.”

I Always backed by cloud: high performance network links.
I Edge nodes always seen as clients or data sources, not peers.

14

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Why?

I Privacy: no prying eyes besides your ISP
I Control of your infrastructure
I Ecology: reuse old hardware

Tim Berners-Lee (1994)
“Now, if someone tries to monopolize the Web, for example
pushes proprietary variations on network protocols, then that
would make me unhappy.”
I Make Tim Berners-Lee happy

15

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

What?

A data store for commodity hardware on
heterogenous household connections.

Targetting user-facing services
I Static sites
I E-mails
I Instant communication
I Collaboration

Nothing fancy like sensors data streams, AI or IoT.

16

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

What?
Requirements
I No single point of failure / flat hierarchy:

Any node can die for extended periods of time.
I Multi-site: cluster spans regions/countries.
I Acceptable performance.
I Lightweight: targets legacy hardware.
I Conceptually simple: built for low-tech organisations.

Adding/maintaining cluster nodes should be easy.

Non-goals
I Super badass performance.
I NAT traversal etc.: we require full-mesh connectivity.

17

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

How?

I Theoretically possible with object storage & CRDTs.

I Household uplinks are getting decent (optical fibers).

18

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Research Questions

I Decent performance despite bad inter-node connectivity.

I Tailoring workloads as a function of nodes’ capabilities:
I Make use of low-end nodes (e.g. Raspberry Pis),
I Avoid impeding global performance because of low-end nodes.

I Building CRDTs for target use-cases:
I Software engineering: DSL or native code?
I Provide APIs to data store users? Risky?

I Cluster management: effortless UX, low perf. overhead.

19

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Brought to you by the Deuxfleurs association

deuxfleurs.fr – a libre hosting association with a vision
“Shifting the current structure of the Internet from a world of a
few very large service providers, to a world where services are
hosted by a variety of smaller organisations.”
Our goals
I To propose performant & reliable libre services for the masses
I To host and administer our infrastructure ourselves
I To allow members to contribute storage/compute nodes
I Resilience: for availability & the sysadmins’ sleep
I Conceptual simplicity to ease onboarding & demistify hosting

20

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

The lacking state of the practice
Object storage fitted our needs
I Distributed by design
I Objects are replicated
I Conceptually simple

Existing object stores did not
I Too specific / complex
I Resource hungry
I Hidden constraints

We developed Garage, an object store with minimal functionality.
It works, and serves our static sites and media.

21

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Introducing Garage
garagehq.deuxfleurs.fr

git.deuxfleurs.fr/Deuxfleurs/garage

I Distributed data store
I Based on DynamoDB object store (P2P!)
I Modular data types/protocols with CRDTs:

I Done: objects (media, static sites, backups...) via S3 API
I To do: e-mails via IMAP protocol, and more

22

garagehq.deuxfleurs.fr
git.deuxfleurs.fr/Deuxfleurs/garage

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

The RING
G. DeCandia et al. “Dynamo: Amazon’s Highly Available

Key-Value Store”. In: ACM SOSP. New York, USA, 2007

1

2

3

4

5

6

Each node is assigned a unique ID on the circular address space.

23

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

The RING
G. DeCandia et al. “Dynamo: Amazon’s Highly Available

Key-Value Store”. In: ACM SOSP. New York, USA, 2007

1

2

3

4

5

6

When a new object is added to the store...

23

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

The RING
G. DeCandia et al. “Dynamo: Amazon’s Highly Available

Key-Value Store”. In: ACM SOSP. New York, USA, 2007

1

2

3

4

5

6

When a new object is added to the store...
It is assigned a unique ID (its key) on the address space.

23

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

The RING
G. DeCandia et al. “Dynamo: Amazon’s Highly Available

Key-Value Store”. In: ACM SOSP. New York, USA, 2007

1

2

3

4

5

6

The R nodes after the object are in charge of replicating it.

23

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Distributed metadata

Object

bucket

file path

Version 1

deleted

Version 2

id
size
MIME type
...

Version

id

h(block 1)
h(block 2)
...

Data block

hash

data

Objects table Versions table Blocks table

The objects, versions and blocks are all stored in the ring.

24

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

Written in Rust

Entirely written in Rust!

Pros:
I Compiled and fast
I Features prevent usual mistakes:

strongly typed, immutable by
default, ownership instead of GC...

I Best of several paradigms:
imperative, OO, functional

I Good libraries for network
programmings:
serialization, http, async/await...

Cons:
I Steep learning curve
I Long compilation

times
I Compiler rage

25

Introduction State of the art Escaping the cloud Introducing Garage Conclusion

The future is cooler when we bend it our way

Contributions welcome! :D

26

Thank you for your attention.

Now let’s chat!

	Introduction
	State of the art
	Escaping the cloud
	Introducing Garage
	Conclusion

