Distributed object storage is centralised

A quest for autonomy in the modern hosting ecology

Adrien Luxey

Wednesday, 28th April, 2021

Introduction
A very casual motivation

| want to host resilient web services with
acceptable performance on commodity hardware
behind household networks.

» Decentralised networks » Distributed storage

» Edge computing » Privacy

Introduction
Context

Resilience: Ability to recover quickly from failures and changes.

Only achievable through distribution of the hosted applications
across several physical locations.

Application = computations on data
» Computation: Stateless; easy to distribute & orchestrate.
» Data: Stateful; hard to distribute & full of trade-offs.

Introduction

Concurrent writes example How to lose vaccines

Paris # vaccines Lille
-+ TO0: 5000
We acquired 1000 doses! We acquired 500 doses!
/ \
x + 1000 x + 500

K ‘y
+
Y

Introduction
The problem

Can we design an available data store tailored for
adverse network conditions?

State of the art

Th e CA P th eorem Consistency vs. Availability

Eric Brewer's theorem

‘A shared-state system can have at most two of the following
properties at any given time:

» Consistency
> Availability

» Partition tolerance”

Under network partitions, a distributed data store
has to sacrifice either availability or consistency.

» Consistency-first: Abort incoming queries;

» Availability-first: Return possibly stale data.

State of the art

Consistency-first: the ACID model Cansistency v. Avallabilty

Transaction: unit of work within an ACID data store.

» Atomicity: Transactions either complete entirely or fail.
No transaction ever seen as in-progress.

» Consistency: Transactions always generate a valid state.
The database maintains its invariants across transactions.

» Isolation: Concurrent transactions are seen as sequential.
Transactions are serializable, or sequentially consistent.

» Durability: Committed transactions are never forgotten.

Reads are fast, writes are slow.

Example: relational databases.

State of the art

Concurrent writes in ACID Consistency ve. Availability

Paris # vaccines Lille

AcqDoses(1000) @

1

- T0: 5000

transaction AcqDoses(y):
x <— SELECT #vaccines;
UPDATE #vaccines = (x + y);

T T1:6000

&fquoses(SOO)

Supports compound operations. ‘y

T T2: 6500

\

State of the art

Ava lla b llltg_ﬁrst: th (S BAS E mOd el Consistency vs. Availability

Some apps prefer availability, e.g. Amazon products’ reviews.

The BASE model trades Consistency & Isolation for Availability.

» Basic Availability: The data store thrives to be available.
» Soft-state: Replicas can disagree on the valid state.

» Eventual consistency: In the absence of write queries, the
data store will eventually converge to a single valid state.

Writes are fast, reads are slow.

Examples: key-value & object stores.

State of the art

CO ncurre nt W I"lteS .ln BAS E Consistency vs. Availability

. Paris # vaccines Lille
Object

» Unique key <+ T0: (L, 5000)
Q

X

K /

=+ T1:[(TO, 6000),(TO, 5500)]

» Arbitrary value

» Metadata X +900

Conflict resolution = client’s job!

Now solve this!
And write back! Y

No compound operations.

State of the art

Strong Eventual Consistency w/ CRDTSs cousistency vs. mvatabitiy

M. Shapiro et al. “Conflict-Free Replicated Data Types”. In:
Stabilization, Safety, and Security of Distributed Systems. Berlin,
Heidelberg, 2011

Strong Eventual Consistency (SEC)

» CRDTs specify distributed operations
» Conflicts will be solved according to specification

» Proven & bound eventual convergence

CRDT [V\DatastoreJ

State of the art

Concurrent writes with CRDTs Consistency ve. Availability

Paris # vaccines Lille

CRDT Counter(x0):
history = {}
op. incr(y):
history U= {(UUID(), y)}
op. decr(y): incr(1000) incr(500)

history U= {(UUID(), —y)}
op. read(): K Ay

x = x0
for (_, y) in history: 1 11: (5000,
X +=y {(a, 1000), (b, 500)})

return x /

Operations commute? Y
= screw total order!

4 T10: (5000, 9)

State of the art

A com p [eX C R DT: th e DAG Consistency vs. Availability

payload set V, A -- sets of pairs { (element ¢, unique-tag w), ...}
initial @, @ -- V: vertices; A: arcs
query lookup (vertex v) : boolean b
let b= (Fw: (v,w) € V)
query lookup (arc (v',v”)) : boolean b
let b = (lookup(v") A lookup(v") A (Fw : ((v/,v"), w) € A)
update addVertez (vertex v)

prepare (v) : w

let w = unique() -- unique() returns a unique value
effect (v, w)

V= VU{(v,w)} — v + unique tag

update removeVerter (vertex v)
prepare (v) : R

pre lookup(v) -- precondition

pre Av' : lookup((v,v")) - v is not the head of an existing arc

let R={(v,w)[3w: (v,w) € V} - Collect all unique pairs in V containing v
effect (R)

V=V\R

update addArc (vertex v', vertex v")
prepare (v',v") : w

pre lookup(v') -- head node must exist

let w = unique() -- unique() returns a unique value
effect (v/, v, w)

A= AU{((v,v"),w)} - (v',v") + unique tag

update removeAre (vertex v', vertex v”
p
prepare (v',v”) : R

pre lookup((v',v")) — are(v',v") exists
let R = {((v/,v"),w)]3w : ((v/,v"),w) € A}
effect (R) — Collect all unique pairs in A containing arc (v',v")

A:=A\R 13

State of the art

A com p [eX C R DT: th e DAG Consistency vs. Availability

Just to say | swept a lot under the rug.

For details, go read:
M. Shapiro et al. “Conflict-Free Replicated Data Types”. In:
Stabilization, Safety, and Security of Distributed Systems.
Berlin, Heidelberg, 2011

For an implementation, check AntidoteDB.

State of the art

State Of th (S p ra Ctlce Path dependency to the “cloud”

The BASE model is fashionable because

“High-performance object storage for Al analytics with PBs of loT
data streams at the edge, using 5G.”

Internet Cloud

|
(Global Load Balancer)
10T Apps
Centralized Object Storage Edge Storage 3(@ Drones
& Auto

G Surveillance

|| A/ML
MINIO
Applications Object Storage ETL
etes

(Kubernetes]

» Always backed by cloud: high performance network links.
» Edge nodes always seen as clients or data sources, not peers.

Escaping the cloud
Why?

» Privacy: no prying eyes besides your ISP
» Control of your infrastructure

» Ecology: reuse old hardware

Tim Berners-Lee (1994)

“Now, if someone tries to monopolize the Web, for example
pushes proprietary variations on network protocols, then that
would make me unhappy.”

» Make Tim Berners-Lee happy

Escaping the cloud
What?

A data store for commodity hardware on
heterogenous household connections.

Targetting user-facing services

» Static sites

» E-mails

» Instant communication
» Collaboration

Nothing fancy like sensors data streams, Al or loT.

Escaping the cloud
What?

Requirements

» No single point of failure / flat hierarchy:
Any node can die for extended periods of time.

» Multi-site: cluster spans regions/countries.
> Acceptable performance.
> Lightweight: targets legacy hardware.

» Conceptually simple: built for low-tech organisations.
Adding/maintaining cluster nodes should be easy.

Non-goals

» Super badass performance.

> NAT traversal etc.: we require full-mesh connectivity.

Escaping the cloud
How?

» Theoretically possible with object storage & CRDTs.

» Household uplinks are getting decent (optical fibers).

Escaping the cloud

Research Questions

» Decent performance despite bad inter-node connectivity.

» Tailoring workloads as a function of nodes’ capabilities:

» Make use of low-end nodes (e.g. Raspberry Pis),
» Avoid impeding global performance because of low-end nodes.

» Building CRDTs for target use-cases:

» Software engineering: DSL or native code?
» Provide APIs to data store users? Risky?

» Cluster management: effortless UX, low perf. overhead.

Introducing Garage

Brought to you by the Deuxfleurs association

deuxfleurs.fr — a libre hosting association with a vision

“Shifting the current structure of the Internet from a world of a
few very large service providers, to a world where services are
hosted by a variety of smaller organisations.”

Our goals

» To propose performant & reliable libre services for the masses

To host and administer our infrastructure ourselves

>
» To allow members to contribute storage/compute nodes
» Resilience: for availability & the sysadmins’ sleep

>

Conceptual simplicity to ease onboarding & demistify hosting

20

Introducing Garage

The lacking state of the practice

Obiject storage fitted our needs
» Distributed by design
» Objects are replicated

» Conceptually simple

Existing object stores did not

» Too specific / complex
» Resource hungry

» Hidden constraints

We developed Garage, an object store with minimal functionality.
It works, and serves our static sites and media.

21

Introducing Garage

Introducing Garage

garagehq.deuxfleurs.fr
git.deuxfleurs.fr/Deuxfleurs/garage

» Distributed data store
» Based on DynamoDB object store (P2P!)
» Modular data types/protocols with CRDTs:
» Done: objects (media, static sites, backups...) via S3 API
» To do: e-mails via IMAP protocol, and more
22

garagehq.deuxfleurs.fr
git.deuxfleurs.fr/Deuxfleurs/garage

Introducing Garage

The RING

G. DeCandia et al. “Dynamo: Amazon's Highly Available
Key-Value Store”. In: ACM SOSP. New York, USA, 2007

Fa

Each node is assigned a unique ID on the circular address space.

23

Introducing Garage

The RING

G. DeCandia et al. “Dynamo: Amazon's Highly Available
Key-Value Store”. In: ACM SOSP. New York, USA, 2007

When a new object is added to the store...

23

Introducing Garage

The RING

G. DeCandia et al. “Dynamo: Amazon's Highly Available
Key-Value Store”. In: ACM SOSP. New York, USA, 2007

When a new object is added to the store...
It is assigned a unique ID (its key) on the address space.

23

Introducing Garage

The RING

G. DeCandia et al. “Dynamo: Amazon's Highly Available
Key-Value Store”. In: ACM SOSP. New York, USA, 2007

The R nodes after the object are in charge of replicating it.

23

Introducing Garage

Distributed metadata

Objects table Versions table Blocks table
Object
b bucket
L file path
- Version

Version 2 Tock
Ta } id Data bloc
size h(block 1) ! hash
MIME type h(block 2) data
Version 1
deleted

The objects, versions and blocks are all stored in the ring.

24

Written in Rust

Introducing Garage

Entirely written in Rust!

Pros:
» Compiled and fast

» Features prevent usual mistakes:
strongly typed, immutable by

default, ownership instead of GC...

» Best of several paradigms:
imperative, OO, functional

» Good libraries for network
programmings:
serialization, http, async/await...

Cons:
» Steep learning curve

» Long compilation
times

» Compiler rage

25

Conclusion

The future is cooler when we bend it our way

Contributions welcome! :D

26

Thank you for your attention.

Now let’s chat!

	Introduction
	State of the art
	Escaping the cloud
	Introducing Garage
	Conclusion

