
Optimal partition assignment in Garage

Mendes Oulamara

July 18, 2022

1 Introduction

1.1 Context

Garage is an open-source distributed storage service blablabla. . .
Every object to be stored in the system falls in a partition given by the last k

bits of its hash. There are N = 2k partitions. Every partition will be stored on
distinct nodes of the system. The goal of the assignment of partitions to nodes
is to ensure (nodes and zone) redundancy and to be as efficient as possible.

1.2 Formal description of the problem

We are given a set of nodes V and a set of zones Z. Every node v has a non-
negative storage capacity cv ≥ 0 and belongs to a zone zv ∈ Z. We are also
given a number of partition N > 0 (typically N = 256).

We would like to compute an assignment of three nodes to every partition.
That is, for every 1 ≤ i ≤ N , we compute a triplet of three distinct nodes
Ti = (T 1

i , T
2
i , T

3
i) ∈ V 3. We will impose some redundancy constraints to this

assignment, and under these constraints, we want our system to have the largest
storage capacity possible. To link storage capacity to partition assignment, we
make the following assumption:

All partitions have the same size s. (H1)

This assumption is justified by the dispersion of the hashing function, when the
number of partitions is small relative to the number of stored large objects.

Every node v needs to store nv = #{1 ≤ i ≤ N | v ∈ Ti} partitions (where
denots the number of indices in the set). Hence the partitions stored by v
(and hence all partitions by our assumption) have there size bounded by cv/nv.
This remark leads us to define the optimal size that we will want to maximize:

s∗ = min
v∈V

cv
nv
. (OPT)

When the capacities of the nodes are updated (this includes adding or remov-
ing a node), we want to update the assignment as well. However, transferring

1

the data between nodes has a cost and we would like to limit the number of
changes in the assignment. We make the following assumption:

Updates of capacity happens rarely relatively to object storing. (H2)

This assumption justifies that when we compute the new assignment, it is worth
to optimize the partition size (OPT) first, and then, among the possible optimal
solution, to try to minimize the number of partition transfers.

For now, in the following, we ask the following redundancy constraint:
Mode 3-strict: every partition needs to be assignated to three nodes be-

longing to three different zones.

2 Properties of an optimal 3-strict assignment

2.1 Optimal assignment

For every zone z ∈ Z, define the zone capacity cz =
∑

v,zv=z cv and define
C =

∑
v cv =

∑
z cz.

One can check that the best we could be doing to maximize s∗ would be to use
the nodes proportionally to their capacity. This would yield s∗ = C/(3N). This
is not possible because of (i) redundancy constraints and (ii) integer rounding
but it gives and upper bound.

Optimal utilization

We call an utilization a collection of non-negative integers (nv)v∈V such that∑
v nv = 3N and for every zone z,

∑
v∈z nv ≤ N . We call such utilization

optimal if it maximizes s∗.
We start by computing a node sub-utilization (n̂v)v∈V such that for every

zone z,
∑

v∈z n̂v ≤ N and we show that there is an optimal utilization respecting
the constraints and such that n̂v ≤ nv for every node.

Assume that there is a zone z0 such that cz0/C ≥ 1/3. Then for any v ∈ z0,
we define

n̂v =

⌊
cv
cz0

N

⌋
.

This choice ensures for any such v that

cv
n̂v
≥ cz0

N
≥ C

3N

which is the universal upper bound on s∗. Hence any optimal utilization (nv)
can be modified to another optimal utilization such that nv ≥ n̂v

Because z0 cannot store more than N partition occurences, in any assign-
ment, at least 2N partitions must be assignated to the zones Z \ {z0}. Let
C0 = C− cz0 . Suppose that there exists a zone z1 6= z0 such that cz1/C0 ≥ 1/2.
Then, with the same argument as for z0, we can define

n̂v =

⌊
cv
cz1

N

⌋

2

for every v ∈ z1.
Now we can assign the remaining partitions. Let (N̂ , Ĉ) to be

� (3N,C) if we did not find any z0;

� (2N,C − cz0) if there was a z0 but no z1;

� (N,C − cz0 − cz1) if there was a z0 and a z1.

Then at least N̂ partitions must be spread among the remaining zones. Hence
s∗ is upper bounded by Ĉ/N̂ and without loss of generality, we can define, for
every node that is not in z0 nor z1,

n̂v =

⌊
cv

Ĉ
N̂

⌋
.

We constructed a sub-utilization n̂v. Now notice that 3N −
∑

v n̂v ≤ #V
where #V denotes the number of nodes. We can iteratively pick a node v∗ such
that

�

∑
v∈zv∗ n̂v < N where zv∗ is the zone of v∗;

� v∗ maximizes the quantity cv/(n̂v + 1) among the vertices satisfying the
first condition (i.e. not in a saturated zone).

We iterate these instructions until
∑

v n̂v = 3N , and at this stage we define
(nv) = (n̂v). It is easy to prove by induction that at every step, there is an
optimal utilization that is pointwise larger than n̂v, and in particular, that (nv)
is optimal.

Existence of an optimal assignment

As for now, the optimal utilization that we obtained is just a vector of numbers
and it is not clear that it can be realized as the utilization of some concrete
assignment. Here is a way to get a concrete assignment.

Define 3N tokens t1, . . . , t3N ∈ V as follows:

� Enumerate the zones z of Z in any order;

� enumerate the nodes v of z in any order;

� repeat nv times the token v.

Then for 1 ≤ i ≤ N , define the triplet Ti to be (ti, ti+N , ti+2N). Since the same
nodes of a zone appear contiguously, the three nodes of a triplet must belong
to three distinct zones.

However simple, this solution to go from an utilization to an assignment has
the drawback of not spreading the triplets: a node will tend to be associated to
the same two other nodes for many partitions. Hence, during data transfer, it
will tend to use only two link, instead of spreading the bandwith use over many
other links to other nodes. To achieve this goal, we will reframe the search of
an assignment as a flow problem. and in the flow algorithm, we will introduce
randomness in the order of exploration. This will be sufficient to obtain a good
dispersion of the triplets.

3

Figure 1: On the left, the creation of a concrete assignment with the naive
approach of repeating tokens. On the right, the zones containing the nodes.

Assignment as a maximum flow problem

We describe the flow problem via its graph (X,E) where X is a set of vertices,
and E are directed weighted edges between the vertices. For every zone z, define
nz =

∑
v∈z nv.

The set of vertices X contains the source s and the sink t; a vertex xz for
every zone z ∈ Z, and a vertex yi for every partition index 1 ≤ i ≤ N .

The set of edges E contains

� the edge (s,xz, nz) for every zone z ∈ Z;

� the edge (xz,yi, 1) for every zone z ∈ Z and partition 1 ≤ i ≤ N ;

� the edge (yi, t, 3) for every partition 1 ≤ i ≤ N .

We first show the equivalence between this problem and and the construction
of an assignment. Given some optimal assignment (nv), define the flow f : E →
N that saturates every edge from s or to t, takes value 1 on the edge between
xz and yi if partition i is stored in some node of the zone z, and 0 otherwise.
One can easily check that f thus defined is indeed a flow and is maximum.

Figure 2: Flow problem to compute and optimal assignment.

4

Reciprocally, by the existence of maximum flows constructed from optimal
assignments, any maximum flow must saturate the edges linked to the source
or the sink. It can only take value 0 or 1 on the other edge, and every parti-
tion vertex is associated to exactly three distinct zone vertices. Every zone is
associated to exactly nz partitions.

A maximum flow can be constructed using, for instance, Dinic’s algorithm.
This algorithm works by discovering augmenting path to iteratively increase
the flow. During the exploration of the graph to find augmenting path, we can
shuffle the order of enumeration of the neighbours to spread the associations
between zones and partitions.

Once we have such association, we can randomly distribute the nz edges
picked for every zone z to its nodes v ∈ z such that every such v gets nz edges.
This defines an optimal assignment of partitions to nodes.

2.2 Minimal transfer

Assume that there was a previous assignment (T ′i)1≤i≤N corresponding to uti-
lizations (n′v)v∈V . We would like the new computed assignment (Ti)1≤i≤N from
some (nv)v∈V to minimize the number of partitions that need to be transferred.
We can imagine two different objectives corresponding to different hypotheses:

Transfers between different zones cost much more than inside a zone. (H3A)

Changing zone is not the largest cost when transferring a partition. (H3B)

In case A, our goal will be to minimize the number of changes of zone in the
assignment of partitions to zone. More formally, we will maximize the quantity

QZ :=
∑

1≤i≤N

#{z ∈ Z | z ∩ Ti 6= ∅, z ∩ T ′i 6= ∅}.

In case B, our goal will be to minimize the number of changes of nodes in
the assignment of partitions to nodes. We will maximize the quantity

QV :=
∑

1≤i≤N

#(Ti ∩ T ′i).

It is tempting to hope that there is a way to maximize both quantity, that
having the least discrepancy in terms of nodes will lead to the least discrepancy
in terms of zones. But this is actually wrong! We propose the following counter-
example to convince the reader:

We consider eight nodes a, a′, b, c, d, d′, e, e′ belonging to five different zones
{a, a′}, {b}, {c}, {d, d′}, {e, e′}. We take three partitions (N = 3), that are orig-
inally assigned with some utilization (n′v)v∈V as follows:

T ′1 = (a, b, c) T ′2 = (a′, b, d) T ′3 = (b, c, e).

5

This assignment, with updated utilizations (nv)v∈V minimizes the number of
zone changes:

T1 = (d, b, c) T2 = (a, b, d) T3 = (b, c, e′).

This one, with the same utilization, minimizes the number of node changes:

T1 = (a, b, c) T2 = (e′, b, d) T3 = (b, c, d′).

One can check that in this case, it is impossible to minimize both the number
of zone and node changes.

Because of the redundancy constraint, we cannot use a greedy algorithm to
just replace nodes in the triplets to try to get the new utilization rate: this
could lead to blocking situation where there is still a hole to fill in a triplet but
no available node satisfies the zone separation constraint. To circumvent this
issue, we propose an algorithm based on finding cycles in a graph encoding of
the assignment. As in section 2.1, we can explore the neigbours in a random
order in the graph algorithms, to spread the triplets distribution.

A) Minimizing the zone discrepancy

First, notice that, given an assignment of partitions to zones, it is easy to deduce
an assignment to nodes that minimizes the number of transfers for this zone
assignment: For every zone z and every node v ∈ z, pick in any way a set Pv

of partitions that where assigned to v in T ′, to zv in T , with the cardinality of
Pv smaller than nv. Once all these sets are chosen, complement the assignment
to reach the right utilization for every node. If #Pv > nv, it means that all the
partitions that could stay in v (i.e. that were already in v and are still assigned
to its zone) do stay in v. If #Pv = nv, then nv partitions stay in v, which is the
number of partitions that need to be in v in the end. In both cases, we could
not hope for better given the partition to zone assignment.

Our goal now is to find a assignment of partitions to zones that minimizes
the number of zone transfers. To do so we are going to represent an assignment
as a graph.

Let GT = (X,ET) be the directed weighted graph with vertices (xi)1≤i≤N
and (yz)z∈Z . For any 1 ≤ i ≤ N and z ∈ Z, ET contains the arc:

� (xi,yz,+1), if z appears in T ′i and Ti;

� (xi,yz,−1), if z appears in Ti but not in T ′i ;

� (yz,xi,−1), if z appears in T ′i but not in Ti;

� (yz,xi,+1), if z does not appear in T ′i nor in Ti.

In other words, the orientation of the arc encodes whether partition i is stored in
zone z in the assignment T and the weight ±1 encodes whether this corresponds
to what happens in the assignment T ′.

6

Figure 3: On the left: the graph GT encoding an assignment to minimize the
zone discrepancy. On the right: the graph GT encoding an assignment to min-
imize the node discrepancy.

Notice that at every partition, there are three outgoing arcs, and at every
zone, there are nz incoming arcs. Moreover, if w(e) is the weight of an arc e,
define the weight of GT by

w(GT) :=
∑
e∈E

w(e) = #Z ×N − 4
∑

1≤i≤N

#{z ∈ Z | z ∩ Ti = ∅, z ∩ T ′i 6= ∅}

= #Z ×N − 4
∑

1≤i≤N

3−#{z ∈ Z | z ∩ Ti 6= ∅, z ∩ T ′i 6= ∅}

= (#Z − 12)N + 4QZ .

Hence maximizing QZ is equivalent to maximizing w(GT).
Assume that their exist some assignment T ∗ with the same utilization (nv)v∈V .

Define GT∗ similarly and consider the set EDiff = ET \ET∗ of arcs that appear
only in GT . Since all vertices have the same number of incoming arcs in GT and
GT∗ , the vertices of the graph (X,EDiff) must all have the same number num-
ber of incoming and outgoing arrows. So EDiff can be expressed as a union of
disjoint cycles. Moreover, the edges of EDiff must appear in ET∗ with reversed
orientation and opposite weight. Hence, we have

w(GT)− w(GT∗) = 2
∑

e∈EDiff

w(e).

Hence, if T is not optimal, there exists some T ∗ with w(GT) < w(GT∗), and by
the considerations above, there must exist a cycle in EDiff , and hence in GT , with
negative weight. If we reverse the edges and weights along this cycle, we obtain
some graph. Since we did not change the incoming degree of any vertex, this is
the graph encoding of some valid assignment T+ such that w(GT+) > w(GT).
We can iterate this operation until there is no other assignment T ∗ with larger
weight, that is until we obtain an optimal assignment.

7

B) Minimizing the node discrepancy

We will follow an approach similar to the one where we minimize the zone dis-
crepancy. Here we will directly obtain a node assignment from a graph encoding.

Let GT = (X,ET) be the directed weighted graph with vertices (xi)1≤i≤N ,
(yz,i)z∈Z,1≤i≤N and (uv)v∈V . For any 1 ≤ i ≤ N and z ∈ Z, ET contains the
arc:

� (xi,yz,i, 0), if z appears in Ti;

� (yz,i,xi, 0), if z does not appear in Ti.

For any 1 ≤ i ≤ N and v ∈ V , ET contains the arc:

� (yzv,i,uv,+1), if v appears in T ′i and Ti;

� (yzv,i,uv,−1), if v appears in Ti but not in T ′i ;

� (uv,yzv,i,−1), if v appears in T ′i but not in Ti;

� (uv,yzv,i,+1), if v does not appear in T ′i nor in Ti.

Every vertex xi has outgoing degree 3, every vertex yz,v has outgoing degree 1,
and every vertex uv has incoming degree nv. Remark that any graph respecting
these degree constraints is the encoding of a valid assignment with utilizations
(nv)v∈V , in particular no partition is stored in two nodes of the same zone.

We define w(GT) similarly:

w(GT) :=
∑
e∈ET

w(e) = #V ×N − 4
∑

1≤i≤N

3−#(Ti ∩ T ′i)

= (#V − 12)N + 4QV .

Exactly like in the previous section, the existence of an assignment with
larger weight implies the existence of a negatively weighted cycle in GT . Re-
versing this cycle gives us the encoding of a valid assignment with a larger
weight. Iterating this operation yields an optimal assignment.

C) Linear combination of both criteria

In the graph GT defined in the previous section, instead of having weights 0
and ±1, we could be having weights ±α between x and y vertices, and weights
±β between y and u vertices, for some α, β > 0 (we have positive weight if the
assignment corresponds to T ′ and negative otherwise). Then

w(GT) =
∑
e∈ET

w(e) = α
(
(#Z − 12)N + 4QZ

)
+ β

(
(#V − 12)N + 4QV

)
= const + 4(αQZ + βQV).

So maximizing the weight of such graph encoding would be equivalent to max-
imizing a linear combination of QZ and QV .

8

2.3 Algorithm

We give a high level description of the algorithm to compute an optimal 3-strict
assignment. The operations appearing at lines 1,2,4 are respectively described
by Algorithms 2,3 and 4.

Algorithm 1 Optimal 3-strict assignment

1: function Optimal 3-strict assignment(N , (cv)v∈V , T ′)
2: (nv)v∈V ← Compute optimal utilization(N , (cv)v∈V)
3: (Ti)1≤i≤N ← Compute candidate assignment(N , (nv)v∈V)
4: if there was a previous assignment T ′ then
5: T ← Minimization of transfers((Ti)1≤i≤N , (T ′i)1≤i≤N)
6: end if
7: return T .
8: end function

We give some considerations of worst case complexity for these algorithms.
In the following, we assume N > #V > #Z. The complexity of Algorithm 1 is
O(N3#Z) if we assume (H3A) and O(N3#Z#V) if we assume (H3B).

Algorithm 2 can be implemented with complexity O(#V 2). The complexity
of the function call at line 2 is O(#V). The difference between the sum of
the subutilizations and 3N is at most the sum of the rounding errors when
computing the n̂v. Hence it is bounded by #V and the loop at line 3 is iterated
at most #V times. Finding the minimizing v at line 4 takes O(#V) operations
(naively, we could also use a heap).

Algorithm 3 can be implemented with complexity O(N3 × #Z). The flow
graph has O(N + #Z) vertices and O(N × #Z) edges. Dinic’s algorithm has
complexity O(#Vertices2#Edges) hence in our case it is O(N3 ×#Z).

Algorithm 4 can be implented with complexity O(N3#Z) under (H3A) and
O(N3#Z#V) under (H3B). The graph GT has O(N) vertices and O(N ×
#Z) edges under assumption (H3A) and respectively O(N ×#Z) vertices and
O(N × #V) edges under assumption (H3B). The loop at line 3 is iterated at
most N times since the distance between T and T ′ decreases at every iteration.
Bellman-Ford algorithm has complexity O(#Vertices#Edges), which in our case
amounts to O(N2#Z) under (H3A) and O(N2#Z#V) under (H3B).

3 TODO

- reunion deux fleurs : autres modes, autres contraintes

9

Algorithm 2 Computation of the optimal utilization

1: function Compute optimal utilization(N , (cv)v∈V)
2: (n̂v)v∈V ← Compute subutilization(N , (cv)v∈V)
3: while

∑
v∈V n̂v < 3N do

4: Pick v ∈ V minimizing cv
n̂v+1 and such that

∑
v′∈zv n̂v′ < N

5: n̂v ← n̂v + 1
6: end while
7: return (n̂v)v∈V
8: end function
9:

10: function Compute subutilization(N , (cv)v∈V)
11: R← 3
12: for v ∈ V do
13: n̂v ← unset
14: end for
15: for z ∈ Z do
16: cz ←

∑
v∈z cv

17: end for
18: C ←

∑
z∈Z cz

19: while ∃z ∈ Z such that R× cz > C do
20: for v ∈ z do
21: n̂v ←

⌊
cv
cz
N
⌋

22: end for
23: C ← C − cz
24: R← R− 1
25: end while
26: for v ∈ V do
27: if n̂v = unset then
28: n̂v ←

⌊
Rcv
C N

⌋
29: end if
30: end for
31: return (n̂v)v∈V
32: end function

Algorithm 3 Computation of a candidate assignment

1: function Compute candidate assignment(N , (nv)v∈V)
2: Compute the flow graph G
3: Compute the maximal flow f using Dinic’s algorithm with randomized

neighbours enumeration
4: Construct the assignment (Ti)1≤i≤N from f
5: return (Ti)1≤i≤N
6: end function

10

Algorithm 4 Minimization of the number of transfers

1: function Minimization of transfers((Ti)1≤i≤N , (T ′i)1≤i≤N)
2: Construct the graph encoding GT

3: repeat
4: Find a negative cycle γ using Bellman-Ford algorithm on GT

5: Reverse the orientations and weights of edges in γ
6: until no negative cycle is found
7: Update (Ti)1≤i≤N from GT

8: return (Ti)1≤i≤N
9: end function

11

