Refactoring: rename config files, make modifications less invasive
This commit is contained in:
parent
44edc0448b
commit
84110d682e
5 changed files with 155 additions and 141 deletions
|
@ -45,8 +45,8 @@ bind_addr = "0.0.0.0:$((3920+$count))"
|
|||
root_domain = ".web.garage.localhost"
|
||||
index = "index.html"
|
||||
|
||||
[admin_api]
|
||||
bind_addr = "0.0.0.0:$((9900+$count))"
|
||||
[admin]
|
||||
api_bind_addr = "0.0.0.0:$((9900+$count))"
|
||||
EOF
|
||||
|
||||
echo -en "$LABEL configuration written to $CONF_PATH\n"
|
||||
|
|
|
@ -47,7 +47,7 @@ pub async fn run_server(config_file: PathBuf) -> Result<(), Error> {
|
|||
let garage = Garage::new(config.clone(), db, background);
|
||||
|
||||
info!("Initialize tracing...");
|
||||
if let Some(export_to) = config.admin_api.otlp_export_traces_to {
|
||||
if let Some(export_to) = config.admin.trace_sink {
|
||||
init_tracing(&export_to, garage.system.id)?;
|
||||
}
|
||||
|
||||
|
@ -70,7 +70,7 @@ pub async fn run_server(config_file: PathBuf) -> Result<(), Error> {
|
|||
|
||||
info!("Configure and run admin web server...");
|
||||
let admin_server = tokio::spawn(
|
||||
admin_server_init.run(config.admin_api.bind_addr, wait_from(watch_cancel.clone())),
|
||||
admin_server_init.run(config.admin.api_bind_addr, wait_from(watch_cancel.clone())),
|
||||
);
|
||||
|
||||
// Stuff runs
|
||||
|
|
|
@ -66,8 +66,8 @@ bind_addr = "127.0.0.1:{web_port}"
|
|||
root_domain = ".web.garage"
|
||||
index = "index.html"
|
||||
|
||||
[admin_api]
|
||||
bind_addr = "127.0.0.1:{admin_port}"
|
||||
[admin]
|
||||
api_bind_addr = "127.0.0.1:{admin_port}"
|
||||
"#,
|
||||
path = path.display(),
|
||||
secret = GARAGE_TEST_SECRET,
|
||||
|
|
|
@ -238,154 +238,168 @@ impl RpcHelper {
|
|||
span.set_attribute(KeyValue::new("to", format!("{:?}", to)));
|
||||
span.set_attribute(KeyValue::new("quorum", quorum as i64));
|
||||
|
||||
async {
|
||||
let msg = Arc::new(msg);
|
||||
self.try_call_many_internal(endpoint, to, msg, strategy, quorum)
|
||||
.with_context(Context::current_with_span(span))
|
||||
.await
|
||||
}
|
||||
|
||||
// Build future for each request
|
||||
// They are not started now: they are added below in a FuturesUnordered
|
||||
// object that will take care of polling them (see below)
|
||||
let requests = to.iter().cloned().map(|to| {
|
||||
let self2 = self.clone();
|
||||
let msg = msg.clone();
|
||||
let endpoint2 = endpoint.clone();
|
||||
(to, async move {
|
||||
self2.call_arc(&endpoint2, to, msg, strategy).await
|
||||
async fn try_call_many_internal<M, H, S>(
|
||||
&self,
|
||||
endpoint: &Arc<Endpoint<M, H>>,
|
||||
to: &[Uuid],
|
||||
msg: M,
|
||||
strategy: RequestStrategy,
|
||||
quorum: usize,
|
||||
) -> Result<Vec<S>, Error>
|
||||
where
|
||||
M: Rpc<Response = Result<S, Error>> + 'static,
|
||||
H: EndpointHandler<M> + 'static,
|
||||
S: Send + 'static,
|
||||
{
|
||||
let msg = Arc::new(msg);
|
||||
|
||||
// Build future for each request
|
||||
// They are not started now: they are added below in a FuturesUnordered
|
||||
// object that will take care of polling them (see below)
|
||||
let requests = to.iter().cloned().map(|to| {
|
||||
let self2 = self.clone();
|
||||
let msg = msg.clone();
|
||||
let endpoint2 = endpoint.clone();
|
||||
(to, async move {
|
||||
self2.call_arc(&endpoint2, to, msg, strategy).await
|
||||
})
|
||||
});
|
||||
|
||||
// Vectors in which success results and errors will be collected
|
||||
let mut successes = vec![];
|
||||
let mut errors = vec![];
|
||||
|
||||
if strategy.rs_interrupt_after_quorum {
|
||||
// Case 1: once quorum is reached, other requests don't matter.
|
||||
// What we do here is only send the required number of requests
|
||||
// to reach a quorum, priorizing nodes with the lowest latency.
|
||||
// When there are errors, we start new requests to compensate.
|
||||
|
||||
// Retrieve some status variables that we will use to sort requests
|
||||
let peer_list = self.0.fullmesh.get_peer_list();
|
||||
let ring: Arc<Ring> = self.0.ring.borrow().clone();
|
||||
let our_zone = match ring.layout.node_role(&self.0.our_node_id) {
|
||||
Some(pc) => &pc.zone,
|
||||
None => "",
|
||||
};
|
||||
|
||||
// Augment requests with some information used to sort them.
|
||||
// The tuples are as follows:
|
||||
// (is another node?, is another zone?, latency, node ID, request future)
|
||||
// We store all of these tuples in a vec that we can sort.
|
||||
// By sorting this vec, we priorize ourself, then nodes in the same zone,
|
||||
// and within a same zone we priorize nodes with the lowest latency.
|
||||
let mut requests = requests
|
||||
.map(|(to, fut)| {
|
||||
let peer_zone = match ring.layout.node_role(&to) {
|
||||
Some(pc) => &pc.zone,
|
||||
None => "",
|
||||
};
|
||||
let peer_avg_ping = peer_list
|
||||
.iter()
|
||||
.find(|x| x.id.as_ref() == to.as_slice())
|
||||
.map(|pi| pi.avg_ping)
|
||||
.flatten()
|
||||
.unwrap_or_else(|| Duration::from_secs(1));
|
||||
(
|
||||
to != self.0.our_node_id,
|
||||
peer_zone != our_zone,
|
||||
peer_avg_ping,
|
||||
to,
|
||||
fut,
|
||||
)
|
||||
})
|
||||
});
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// Vectors in which success results and errors will be collected
|
||||
let mut successes = vec![];
|
||||
let mut errors = vec![];
|
||||
// Sort requests by (priorize ourself, priorize same zone, priorize low latency)
|
||||
requests
|
||||
.sort_by_key(|(diffnode, diffzone, ping, _to, _fut)| (*diffnode, *diffzone, *ping));
|
||||
|
||||
if strategy.rs_interrupt_after_quorum {
|
||||
// Case 1: once quorum is reached, other requests don't matter.
|
||||
// What we do here is only send the required number of requests
|
||||
// to reach a quorum, priorizing nodes with the lowest latency.
|
||||
// When there are errors, we start new requests to compensate.
|
||||
// Make an iterator to take requests in their sorted order
|
||||
let mut requests = requests.into_iter();
|
||||
|
||||
// Retrieve some status variables that we will use to sort requests
|
||||
let peer_list = self.0.fullmesh.get_peer_list();
|
||||
let ring: Arc<Ring> = self.0.ring.borrow().clone();
|
||||
let our_zone = match ring.layout.node_role(&self.0.our_node_id) {
|
||||
Some(pc) => &pc.zone,
|
||||
None => "",
|
||||
};
|
||||
// resp_stream will contain all of the requests that are currently in flight.
|
||||
// (for the moment none, they will be added in the loop below)
|
||||
let mut resp_stream = FuturesUnordered::new();
|
||||
|
||||
// Augment requests with some information used to sort them.
|
||||
// The tuples are as follows:
|
||||
// (is another node?, is another zone?, latency, node ID, request future)
|
||||
// We store all of these tuples in a vec that we can sort.
|
||||
// By sorting this vec, we priorize ourself, then nodes in the same zone,
|
||||
// and within a same zone we priorize nodes with the lowest latency.
|
||||
let mut requests = requests
|
||||
.map(|(to, fut)| {
|
||||
let peer_zone = match ring.layout.node_role(&to) {
|
||||
Some(pc) => &pc.zone,
|
||||
None => "",
|
||||
};
|
||||
let peer_avg_ping = peer_list
|
||||
.iter()
|
||||
.find(|x| x.id.as_ref() == to.as_slice())
|
||||
.map(|pi| pi.avg_ping)
|
||||
.flatten()
|
||||
.unwrap_or_else(|| Duration::from_secs(1));
|
||||
(
|
||||
to != self.0.our_node_id,
|
||||
peer_zone != our_zone,
|
||||
peer_avg_ping,
|
||||
to,
|
||||
fut,
|
||||
)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// Sort requests by (priorize ourself, priorize same zone, priorize low latency)
|
||||
requests.sort_by_key(|(diffnode, diffzone, ping, _to, _fut)| {
|
||||
(*diffnode, *diffzone, *ping)
|
||||
});
|
||||
|
||||
// Make an iterator to take requests in their sorted order
|
||||
let mut requests = requests.into_iter();
|
||||
|
||||
// resp_stream will contain all of the requests that are currently in flight.
|
||||
// (for the moment none, they will be added in the loop below)
|
||||
let mut resp_stream = FuturesUnordered::new();
|
||||
|
||||
// Do some requests and collect results
|
||||
'request_loop: while successes.len() < quorum {
|
||||
// If the current set of requests that are running is not enough to possibly
|
||||
// reach quorum, start some new requests.
|
||||
while successes.len() + resp_stream.len() < quorum {
|
||||
if let Some((_, _, _, req_to, fut)) = requests.next() {
|
||||
let span = tracer.start(format!("RPC to {:?}", req_to));
|
||||
resp_stream.push(tokio::spawn(
|
||||
fut.with_context(Context::current_with_span(span)),
|
||||
));
|
||||
} else {
|
||||
// If we have no request to add, we know that we won't ever
|
||||
// reach quorum: bail out now.
|
||||
break 'request_loop;
|
||||
}
|
||||
}
|
||||
assert!(!resp_stream.is_empty()); // because of loop invariants
|
||||
|
||||
// Wait for one request to terminate
|
||||
match resp_stream.next().await.unwrap().unwrap() {
|
||||
Ok(msg) => {
|
||||
successes.push(msg);
|
||||
}
|
||||
Err(e) => {
|
||||
errors.push(e);
|
||||
}
|
||||
// Do some requests and collect results
|
||||
'request_loop: while successes.len() < quorum {
|
||||
// If the current set of requests that are running is not enough to possibly
|
||||
// reach quorum, start some new requests.
|
||||
while successes.len() + resp_stream.len() < quorum {
|
||||
if let Some((_, _, _, req_to, fut)) = requests.next() {
|
||||
let tracer = opentelemetry::global::tracer("garage");
|
||||
let span = tracer.start(format!("RPC to {:?}", req_to));
|
||||
resp_stream.push(tokio::spawn(
|
||||
fut.with_context(Context::current_with_span(span)),
|
||||
));
|
||||
} else {
|
||||
// If we have no request to add, we know that we won't ever
|
||||
// reach quorum: bail out now.
|
||||
break 'request_loop;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Case 2: all of the requests need to be sent in all cases,
|
||||
// and need to terminate. (this is the case for writes that
|
||||
// must be spread to n nodes)
|
||||
// Just start all the requests in parallel and return as soon
|
||||
// as the quorum is reached.
|
||||
let mut resp_stream = requests
|
||||
.map(|(_, fut)| fut)
|
||||
.collect::<FuturesUnordered<_>>();
|
||||
assert!(!resp_stream.is_empty()); // because of loop invariants
|
||||
|
||||
while let Some(resp) = resp_stream.next().await {
|
||||
match resp {
|
||||
Ok(msg) => {
|
||||
successes.push(msg);
|
||||
if successes.len() >= quorum {
|
||||
break;
|
||||
}
|
||||
}
|
||||
Err(e) => {
|
||||
errors.push(e);
|
||||
}
|
||||
// Wait for one request to terminate
|
||||
match resp_stream.next().await.unwrap().unwrap() {
|
||||
Ok(msg) => {
|
||||
successes.push(msg);
|
||||
}
|
||||
Err(e) => {
|
||||
errors.push(e);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Case 2: all of the requests need to be sent in all cases,
|
||||
// and need to terminate. (this is the case for writes that
|
||||
// must be spread to n nodes)
|
||||
// Just start all the requests in parallel and return as soon
|
||||
// as the quorum is reached.
|
||||
let mut resp_stream = requests
|
||||
.map(|(_, fut)| fut)
|
||||
.collect::<FuturesUnordered<_>>();
|
||||
|
||||
if !resp_stream.is_empty() {
|
||||
// Continue remaining requests in background.
|
||||
// Continue the remaining requests immediately using tokio::spawn
|
||||
// but enqueue a task in the background runner
|
||||
// to ensure that the process won't exit until the requests are done
|
||||
// (if we had just enqueued the resp_stream.collect directly in the background runner,
|
||||
// the requests might have been put on hold in the background runner's queue,
|
||||
// in which case they might timeout or otherwise fail)
|
||||
let wait_finished_fut = tokio::spawn(async move {
|
||||
resp_stream.collect::<Vec<Result<_, _>>>().await;
|
||||
});
|
||||
self.0.background.spawn(wait_finished_fut.map(|_| Ok(())));
|
||||
while let Some(resp) = resp_stream.next().await {
|
||||
match resp {
|
||||
Ok(msg) => {
|
||||
successes.push(msg);
|
||||
if successes.len() >= quorum {
|
||||
break;
|
||||
}
|
||||
}
|
||||
Err(e) => {
|
||||
errors.push(e);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if successes.len() >= quorum {
|
||||
Ok(successes)
|
||||
} else {
|
||||
let errors = errors.iter().map(|e| format!("{}", e)).collect::<Vec<_>>();
|
||||
Err(Error::Quorum(quorum, successes.len(), to.len(), errors))
|
||||
if !resp_stream.is_empty() {
|
||||
// Continue remaining requests in background.
|
||||
// Continue the remaining requests immediately using tokio::spawn
|
||||
// but enqueue a task in the background runner
|
||||
// to ensure that the process won't exit until the requests are done
|
||||
// (if we had just enqueued the resp_stream.collect directly in the background runner,
|
||||
// the requests might have been put on hold in the background runner's queue,
|
||||
// in which case they might timeout or otherwise fail)
|
||||
let wait_finished_fut = tokio::spawn(async move {
|
||||
resp_stream.collect::<Vec<Result<_, _>>>().await;
|
||||
});
|
||||
self.0.background.spawn(wait_finished_fut.map(|_| Ok(())));
|
||||
}
|
||||
}
|
||||
.with_context(Context::current_with_span(span))
|
||||
.await
|
||||
|
||||
if successes.len() >= quorum {
|
||||
Ok(successes)
|
||||
} else {
|
||||
let errors = errors.iter().map(|e| format!("{}", e)).collect::<Vec<_>>();
|
||||
Err(Error::Quorum(quorum, successes.len(), to.len(), errors))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -68,7 +68,7 @@ pub struct Config {
|
|||
pub s3_web: WebConfig,
|
||||
|
||||
/// Configuration for the admin API endpoint
|
||||
pub admin_api: AdminConfig,
|
||||
pub admin: AdminConfig,
|
||||
}
|
||||
|
||||
/// Configuration for S3 api
|
||||
|
@ -96,9 +96,9 @@ pub struct WebConfig {
|
|||
#[derive(Deserialize, Debug, Clone)]
|
||||
pub struct AdminConfig {
|
||||
/// Address and port to bind for admin API serving
|
||||
pub bind_addr: SocketAddr,
|
||||
pub api_bind_addr: SocketAddr,
|
||||
/// OTLP server to where to export traces
|
||||
pub otlp_export_traces_to: Option<String>,
|
||||
pub trace_sink: Option<String>,
|
||||
}
|
||||
|
||||
fn default_sled_cache_capacity() -> u64 {
|
||||
|
|
Loading…
Reference in a new issue